JP3563833B2 - Method for treating oil containing organochlorine compounds - Google Patents

Method for treating oil containing organochlorine compounds Download PDF

Info

Publication number
JP3563833B2
JP3563833B2 JP19249995A JP19249995A JP3563833B2 JP 3563833 B2 JP3563833 B2 JP 3563833B2 JP 19249995 A JP19249995 A JP 19249995A JP 19249995 A JP19249995 A JP 19249995A JP 3563833 B2 JP3563833 B2 JP 3563833B2
Authority
JP
Japan
Prior art keywords
oil
chlorine
pressure
oil containing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19249995A
Other languages
Japanese (ja)
Other versions
JPH0919604A (en
Inventor
信行 三方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19249995A priority Critical patent/JP3563833B2/en
Publication of JPH0919604A publication Critical patent/JPH0919604A/en
Application granted granted Critical
Publication of JP3563833B2 publication Critical patent/JP3563833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃プラスチックを熱分解等して得られる生成油、市販の石油製品(例えば、ナフサ、灯油、軽油、重油等)に含まれる塩素を除去する処理方法に関する。
【0002】
【従来の技術】
石油化学の発展によって大量のプラスチックが日常生活や工業分野で使用されているが、これらは腐敗しないので使用後のプラスチックの取扱いが問題となり、従来はその殆どが焼却処分されていた。ところが、廃棄処分すると資源として有効に生かされないし、更には公害等の問題が生じるので、近年においては、廃プラスチックの有効利用が検討され、この一方法として、廃プラスチックを加熱・分解して分解油を得る方法が、例えば特開昭51−115578号公報や、特開平3−212491号公報において提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記廃プラスチックを原料とする油においては、原料とする廃プラスチックに塩素を含むプラスチック(例えば、ポリ塩化ビニール)もあり、これらは熱分解の過程で、塩化水素となって気化して除去されるが、操業条件及び廃プラスチックの原料によっては、生成される油に微少の塩素を塩化物として含む場合がある。また、一般の石油製品においても、その製造方法や製品の種類によっては1〜100ppm前後の塩素が含まれていることがある。これらの一部は一般的にR−Cl、Ar−Clの有機塩素の形となって含有されている。なお、Rはアルキル基、Arはアリール基を示す。これら塩素が結合した油を、例えば自動車、ボイラー等の燃料として使用すると、塩素の濃度によっては有害物質が発生し公害となるという問題がある。
本発明はかかる事情に鑑みてなされたもので、石油製品からなる油又は廃プラスチックから再生される油等から脱塩素処理を行う有機塩素化合物を含む油の処理方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記目的に沿う請求項1記載の有機塩素化合物を含む油の処理方法は、有機塩素化合物を含む油を、ラネーニッケル触媒を用い、温度150〜400℃、圧力を大気圧以上で10kg/cm2 未満の条件下で水素含有ガスと反応させ、含まれている塩素を塩化水素として除去している。
ここで、有機塩素化合物を含む油とは、炭化水素系の油(例えば、脂肪族系、芳香族系の油)の水素部分が塩素と置き変わっているものをいう。
また、ラネーニッケル触媒とは、ニッケルとアルミニウムを溶解混合して、粉砕し、アルカリによって活性化したものをいう。
【0005】
【作用】
請求項1記載の有機塩素化合物を含む油の処理方法においては、ラネーニッケル触媒を用い、温度150〜400℃、圧力を大気圧以上で10kg/cm2 未満の条件下で水素ガスと反応させているので、油中に含まれる塩素の殆どは以下の反応式(1)、(2)によって、塩化水素となって脱塩される。なお、その他、ラネーニッケル触媒と直接反応し、AlCl3 、NiCl2 等として除去されるものもある。なお、150℃以下で反応させると反応速度が遅く、400℃をえると油(油の種類にもよる)が熱分解を起こす。
R−Cl +H2 → R−H + HCl ・・・・(1)
Ar−Cl+H2 →Ar−H + HCl ・・・・(2)
又、有機塩素化合物を含む油の処理方法は、大気圧以上の条件の水素ガスと反応させているので、温度を適切に保つことによって十分な速度で塩素と水素との置換が行われ、更には、10kg/cm2 未満の圧力で反応を行うので容器本体の安全性が高い。
【0006】
【実施例】
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施例に係る有機塩素化合物を含む油の処理方法の作用、効果を確認するために行った実験装置の側断面図、図2は同処理方法のフロー図、図3は反応時間と塩素濃度の関係を示すグラフ、図4は反応温度と塩素濃度の関係を示すグラフである。
【0007】
図1に示すように、本発明の作用、効果を確認するために行った実験装置10は、オートクレーブ処理を行うヒータ加熱式の容器本体11と、容器本体11の蓋板12と、蓋板12に貫通して取付けられた電磁攪拌機13と、蓋板12の一方側の連通孔に取付けられたジョイント14を介してそれぞれ設けられた圧力計15、ニードルバルブ16及び安全弁17と、蓋板12の他方側の連通孔に取付けられたニードルバルブ18と、蓋板12に取付けられ、容器本体11内の温度を測定する温度計19とを有している。そして、ニードルバルブ16を介して高圧水素ガスを容器本体11内に導入し、その圧力を圧力計15で測定し、電磁攪拌機13によって攪拌させながら内部の試験用油と高温、高圧下で反応させるようになっている。そして、反応が終了した後は、ニードルバルブ18を開いて内部の気圧を常圧にした後、ねじ20を回して蓋板12を開けることができるようになっている。なお、21は冷却管を示す。
【0008】
実験に使用した試験用油としては、灯油及び軽油を用い、この灯油及び軽油各7.5kgにクロロベンゼン(C65 Cl)を23.8g加えたものを作り、それぞれを1対1の割合で混合して、400gの混合油を使用した。なお、この試験用油には、500ppmの塩素が含まれていることになる。
【0009】
次に、ラネーニッケル触媒は一般に市販されているが、本実験においては、以下に記載する方法で製造した自家製のものを使用した。即ち、アルミニウムとニッケルを1対1の割合で混合溶解し、これを冷却したものを粉砕して150メッシュの篩通過分が99%以上の粉末を、カセイソーダで展開処理をして表面の活性化処理をして、ラネーニッケル触媒とし、前記400gの試験用油にニッケル分10gを含む量を投入した。
【0010】
反応フローは図2に示すように、塩素を500ppmに調整した試験用油400gと、前記方法によって製造したラネーニッケル触媒10g(ニッケル分換算)とを、容器本体11内に入れて蓋板12を閉じ、ヒータによって加熱して約90分かかって180〜230℃程度とし、約10kg/cm2 程度の高圧で水素ガスを容器本体11内に導入し、電磁攪拌機13によって攪拌した。
この状態で一定時間保持した後、内部の圧力を抜いて蓋板12を開き、内部の試験用油を濾過して、ラネーニッケル触媒を取り除き、濾過した試験用油の塩素濃度を測定した。
残留塩素の濃度測定は、燃焼−イオンクロマト法(全塩素)による定量分析によって行った。また、比較実験のために、触媒としてPd/Al23 を用いたものも合わせて実験した(実験番号5)。これらの結果を表1に示す。
【0011】
【表1】

Figure 0003563833
【0012】
そして、反応時間と塩素濃度の関係を図3に示し、反応温度と塩素濃度の関係を図4に示すが、表1及び図3、4に示す結果から、ラネーニッケル触媒を用いた場合には、Pd/Al23 触媒を用いた場合より、塩素と水素の置換反応を効率的に起こすことが分かる。また、反応条件は温度が高い程、そして反応時間が長い程塩素濃度が下がることが分かる。なお、反応温度が高過ぎる場合には、処理しようとする油が分解を起こすので、通常は400℃以下となるが、この場合であっても処理しようとする油が、その反応圧力で沸点をえない温度とすることが極めて好ましい。また、高圧水素の圧力も高い方が反応速度の向上という面からは好ましいが、容器本体の製造上の問題を考慮すると、10kg/cm2 未満とするのが、極めて好ましいことになる。
【0013】
前記実施例は、バッチ式の例について説明したが、連続式とすることも可能であり、この場合には、処理しようとする油に触媒を混入して、連続式で脱塩処理を行うことも可能である。
また、前記実施例は、アリール基の油について説明したが、アルキル基の油についても当然本発明は適用される。
なお、本実施例において系外から供給した水素は水素ボンベからの純水素を使用したが、本発明はこれに限られるものではなく、例えば、別の例として廃プラスチックの熱分解時に伴い発生する水素含有ガスでも同様な作用及び効果を奏する。
【0014】
【発明の効果】
請求項1記載の有機塩素化合物を含む油の処理方法は、以上の説明からも明らかなように、ラネーニッケル触媒を用いて特定条件で有機塩素化合物を含む油から脱塩処理を行うことが可能となった。
これによって、例えば、廃プラスチックを成分とする油又は灯油等に塩素が含まれていても、本発明方法によって脱塩処理が行われ、燃焼処理してもダイオキシン等の発生が無くなった。
【図面の簡単な説明】
【図1】本発明の一実施例に係る有機塩素化合物を含む油の処理方法の作用、効果を確認するために行った実験装置の側断面図である。
【図2】同処理方法のフロー図である。
【図3】反応時間と塩素濃度の関係を示すグラフである。
【図4】反応温度と塩素濃度の関係を示すグラフである。
【符号の説明】
10 実験装置
11 容器本体
12 蓋板
13 電磁攪拌機
14 ジョイント
15 圧力計
16 ニードルバルブ
17 安全弁
18 ニードルバルブ
19 温度計
20 ねじ
21 冷却管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a treatment method for removing chlorine contained in oil produced by pyrolysis of waste plastics and the like, and in commercial petroleum products (for example, naphtha, kerosene, light oil, heavy oil, etc.).
[0002]
[Prior art]
Due to the development of petrochemicals, a large amount of plastic is used in daily life and in the industrial field. However, since these do not rot, handling of used plastic becomes a problem, and most of them have been conventionally incinerated. However, waste disposal does not effectively use it as a resource, and furthermore, there is a problem of pollution.Therefore, in recent years, effective use of waste plastics has been considered. Methods for obtaining oil have been proposed, for example, in JP-A-51-115578 and JP-A-3-212491.
[0003]
[Problems to be solved by the invention]
However, among the above-mentioned oils made from waste plastics, there are plastics containing chlorine (for example, polyvinyl chloride) in the waste plastics as a raw material, and these are vaporized and removed as hydrogen chloride in the course of thermal decomposition. However, depending on the operating conditions and the raw material of the waste plastic, the generated oil may contain minute chlorine as chloride. Further, even a general petroleum product may contain about 1 to 100 ppm of chlorine depending on the production method and the type of the product. Some of these are generally contained in the form of R-Cl and Ar-Cl organic chlorine. R represents an alkyl group and Ar represents an aryl group. When the oil combined with chlorine is used as a fuel for automobiles, boilers, and the like, there is a problem that harmful substances are generated depending on the concentration of chlorine, resulting in pollution.
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for treating an oil containing an organic chlorine compound that performs a dechlorination treatment from an oil composed of petroleum products or an oil regenerated from waste plastic. .
[0004]
[Means for Solving the Problems]
The method for treating an oil containing an organic chlorine compound according to claim 1, which meets the above object, comprises using an oil containing a organic chlorine compound with a Raney nickel catalyst at a temperature of 150 to 400 ° C and a pressure of at least atmospheric pressure and less than 10 kg / cm 2. Under the conditions described above to remove the contained chlorine as hydrogen chloride.
Here, the oil containing an organic chlorine compound refers to a hydrocarbon-based oil (for example, an aliphatic or aromatic oil) in which the hydrogen portion is replaced with chlorine.
The Raney nickel catalyst refers to a catalyst obtained by dissolving and mixing nickel and aluminum, pulverizing, and activating with alkali.
[0005]
[Action]
In the method for treating an oil containing an organic chlorine compound according to claim 1, a Raney nickel catalyst is used to react with hydrogen gas at a temperature of 150 to 400 ° C. and a pressure of not less than atmospheric pressure and less than 10 kg / cm 2 . Therefore, most of the chlorine contained in the oil is converted into hydrogen chloride and desalted by the following reaction formulas (1) and (2). Others react directly with the Raney nickel catalyst and are removed as AlCl 3 , NiCl 2 or the like. Incidentally, slow reaction rate is reacted at 0.99 ° C. or less, (depending on the type of oil) is exceeded and oil 400 ° C. causes a thermal decomposition.
R-Cl + H 2 → R-H + HCl (1)
Ar-Cl + H 2 → Ar-H + HCl (2)
In addition, in the method for treating an oil containing an organic chlorine compound, since the reaction is performed with hydrogen gas at atmospheric pressure or higher, the replacement of chlorine and hydrogen is performed at a sufficient rate by maintaining the temperature appropriately. Performs the reaction at a pressure of less than 10 kg / cm 2, so the safety of the container body is high.
[0006]
【Example】
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
FIG. 1 is a side sectional view of an experimental apparatus used for confirming the operation and effect of the method for treating an oil containing an organic chlorine compound according to one embodiment of the present invention, and FIG. FIG. 3 is a graph showing the relationship between the reaction time and the chlorine concentration, and FIG. 4 is a graph showing the relationship between the reaction temperature and the chlorine concentration.
[0007]
As shown in FIG. 1, an experimental apparatus 10 used for confirming the operation and effect of the present invention includes a heater-heated container main body 11 for performing an autoclave treatment, a lid plate 12 of the container main body 11, and a lid plate 12 And a pressure gauge 15, a needle valve 16 and a safety valve 17 provided via a joint 14 attached to a communication hole on one side of the cover plate 12, respectively. It has a needle valve 18 attached to the other communication hole and a thermometer 19 attached to the cover plate 12 for measuring the temperature inside the container body 11. Then, high-pressure hydrogen gas is introduced into the container main body 11 through the needle valve 16, the pressure is measured by the pressure gauge 15, and reacted with the internal test oil at high temperature and high pressure while being stirred by the electromagnetic stirrer 13. It has become. After the reaction is completed, the needle valve 18 is opened to set the internal pressure to normal pressure, and then the screw 20 is turned to open the cover plate 12. Incidentally, 21 indicates a cooling pipe.
[0008]
Kerosene and light oil were used as test oils used in the experiments, and 7.5 kg of this kerosene and light oil were added with 23.8 g of chlorobenzene (C 6 H 5 Cl), and the ratio of each was 1: 1. And 400 g of the mixed oil was used. This test oil contains 500 ppm of chlorine.
[0009]
Next, Raney nickel catalysts are generally commercially available, but in this experiment, homemade ones produced by the method described below were used. That is, aluminum and nickel are mixed and dissolved at a ratio of 1: 1, and the mixture is cooled and pulverized, and a powder having a sieve passing through a 150-mesh sieve of 99% or more is developed with caustic soda to activate the surface. After the treatment, a Raney nickel catalyst was charged into the above-mentioned 400 g of test oil in an amount containing 10 g of nickel.
[0010]
As shown in FIG. 2, the reaction flow is such that 400 g of test oil prepared by adjusting chlorine to 500 ppm and 10 g of Raney nickel catalyst produced by the above method (in terms of nickel content) are put in the container body 11 and the lid plate 12 is closed. The temperature was raised to about 180 to 230 ° C. in about 90 minutes by heating with a heater, and hydrogen gas was introduced into the container body 11 at a high pressure of about 10 kg / cm 2 and stirred by the electromagnetic stirrer 13.
After maintaining this state for a certain period of time, the internal pressure was released, the lid plate 12 was opened, the internal test oil was filtered, the Raney nickel catalyst was removed, and the chlorine concentration of the filtered test oil was measured.
The measurement of the concentration of residual chlorine was performed by a quantitative analysis by a combustion-ion chromatography method (total chlorine). For comparative experiments, experiments using Pd / Al 2 O 3 as a catalyst were also conducted (Experiment No. 5). Table 1 shows the results.
[0011]
[Table 1]
Figure 0003563833
[0012]
FIG. 3 shows the relationship between the reaction time and the chlorine concentration, and FIG. 4 shows the relationship between the reaction temperature and the chlorine concentration. From the results shown in Tables 1 and 3, 4, when the Raney nickel catalyst was used, It can be seen that the substitution reaction between chlorine and hydrogen occurs more efficiently than when the Pd / Al 2 O 3 catalyst was used. Also, it can be seen that the reaction conditions are such that the higher the temperature and the longer the reaction time, the lower the chlorine concentration. If the reaction temperature is too high, the oil to be treated is decomposed, so that the temperature is usually 400 ° C. or lower. Even in this case, the oil to be treated has a boiling point at the reaction pressure. it is highly preferred to exceed no temperature. A higher pressure of the high-pressure hydrogen is preferable from the viewpoint of improving the reaction rate. However, considering the problem in manufacturing the container body, it is extremely preferable to set the pressure to less than 10 kg / cm 2 .
[0013]
In the above embodiment, the example of the batch type is described, but it is also possible to use a continuous type. In this case, the catalyst is mixed into the oil to be treated, and the desalting treatment is performed in a continuous type. Is also possible.
Further, in the above-described embodiments, oils having an aryl group have been described, but the present invention is naturally applicable to oils having an alkyl group.
Although hydrogen supplied from outside the system in this example used pure hydrogen from a hydrogen cylinder, the present invention is not limited to this, and for example, it is generated during the thermal decomposition of waste plastic as another example. The same action and effect can be obtained with a hydrogen-containing gas.
[0014]
【The invention's effect】
As is clear from the above description, the method for treating an oil containing an organic chlorine compound according to claim 1 can perform desalination from oil containing an organic chlorine compound under specific conditions using a Raney nickel catalyst. became.
Thereby, for example, even if chlorine is contained in oil or kerosene containing waste plastic as a component, the desalting treatment is performed by the method of the present invention, and the generation of dioxin and the like is eliminated even by the combustion treatment.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an experimental apparatus used for confirming the operation and effect of a method for treating an oil containing an organic chlorine compound according to one embodiment of the present invention.
FIG. 2 is a flowchart of the processing method.
FIG. 3 is a graph showing a relationship between a reaction time and a chlorine concentration.
FIG. 4 is a graph showing a relationship between a reaction temperature and a chlorine concentration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Experimental apparatus 11 Container body 12 Cover plate 13 Electromagnetic stirrer 14 Joint 15 Pressure gauge 16 Needle valve 17 Safety valve 18 Needle valve 19 Thermometer 20 Screw 21 Cooling pipe

Claims (1)

有機塩素化合物を含む油を、ラネーニッケル触媒を用い、温度150〜400℃、圧力を大気圧以上で10kg/cm2 未満の条件下で水素含有ガスと反応させ、含まれている塩素を塩化水素として除去することを特徴とする有機塩素化合物を含む油の処理方法。An oil containing an organic chlorine compound is reacted with a hydrogen-containing gas at a temperature of 150 to 400 ° C. at a pressure of not less than atmospheric pressure and less than 10 kg / cm 2 using a Raney nickel catalyst, and the contained chlorine is converted into hydrogen chloride. A method for treating an oil containing an organic chlorine compound, wherein the oil is removed.
JP19249995A 1995-07-04 1995-07-04 Method for treating oil containing organochlorine compounds Expired - Fee Related JP3563833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19249995A JP3563833B2 (en) 1995-07-04 1995-07-04 Method for treating oil containing organochlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19249995A JP3563833B2 (en) 1995-07-04 1995-07-04 Method for treating oil containing organochlorine compounds

Publications (2)

Publication Number Publication Date
JPH0919604A JPH0919604A (en) 1997-01-21
JP3563833B2 true JP3563833B2 (en) 2004-09-08

Family

ID=16292331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19249995A Expired - Fee Related JP3563833B2 (en) 1995-07-04 1995-07-04 Method for treating oil containing organochlorine compounds

Country Status (1)

Country Link
JP (1) JP3563833B2 (en)

Also Published As

Publication number Publication date
JPH0919604A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
US4810365A (en) Hydrogenation of mineral oils contaminated with chlorinated hydrocarbons
JP3385025B2 (en) How to process used or waste plastic
CA1300540C (en) Process for the reprocessing of carbon containing wastes
EP0073355B1 (en) Production of liquid hydrocarbons
US5064523A (en) Process for the hydrogenative conversion of heavy oils and residual oils, used oils and waste oils, mixed with sewage sludge
NO174933B (en) Process for Hydrogenation Conversion of Heavy Oils and Residual Oils
JP2534461B2 (en) Syngas production method
JPH02276889A (en) Method for treating temperature sensitive hydrocarbon flow containing undistillable component
EP0688354A1 (en) Process for waste plastic recycling
GB2082625A (en) A method for the destruction of polyhalogenated biphenyl compounds
JP4520095B2 (en) Waste plastic treatment method
JPH04500476A (en) Decomposition method of polychlorinated biphenyls
US3668109A (en) Process for hydroconversion of organic materials
JP3563833B2 (en) Method for treating oil containing organochlorine compounds
JPH1161148A (en) Treatment of waste plastic
US5015457A (en) Process for the hydrogenation of organochlorine compounds, neutralization of the hydrochloric acid obtained and a neutralization agent for hydrochloric acid obtained from organochlorine compounds
EP0306164A1 (en) Hydrogenating a temperature sensitive hydrocarbonaceous waste stream
CN212833613U (en) Rubbish liquid phase suspension bed hydrotreating system
US5004533A (en) Process for treating an organic stream containing a non-distillable component to produce an organic vapor and a solid
JPH02503690A (en) A method for producing components, elements or compounds from mixtures of substances
CA1122911A (en) Recovery of catalysts from the hydrogenation of coal
JPH0776688A (en) Process for converting plastic into oil
US4840722A (en) Non-catalytic process for the conversion of a hydrocarbonaceous stream containing halogenated organic compounds
JPH11140460A (en) Thermal decomposition of plastics, and device and dechlorinating agent used therefor
JPH07138576A (en) Method of processing waste plastic

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees