JP3561281B2 - Dehydration method of tangible sodium hydrosulfide with inert gas - Google Patents

Dehydration method of tangible sodium hydrosulfide with inert gas Download PDF

Info

Publication number
JP3561281B2
JP3561281B2 JP08603193A JP8603193A JP3561281B2 JP 3561281 B2 JP3561281 B2 JP 3561281B2 JP 08603193 A JP08603193 A JP 08603193A JP 8603193 A JP8603193 A JP 8603193A JP 3561281 B2 JP3561281 B2 JP 3561281B2
Authority
JP
Japan
Prior art keywords
temperature
sodium
hydrogen sulfide
dehydration
sodium hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08603193A
Other languages
Japanese (ja)
Other versions
JPH06298503A (en
Inventor
昭允 片岡
章 定兼
千秋 小坂
忠政 松尾
博明 江田
伸吾 今井
Original Assignee
ナガオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガオ株式会社 filed Critical ナガオ株式会社
Priority to JP08603193A priority Critical patent/JP3561281B2/en
Publication of JPH06298503A publication Critical patent/JPH06298503A/en
Application granted granted Critical
Publication of JP3561281B2 publication Critical patent/JP3561281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/38Dehydration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、水硫化ソーダのフレーク状、チップ状、ペレット状等の成型物や、水溶液の冷却固化物を前記成型物と同程度まで粉砕した物など、ある大きさ以上の水硫化ソーダ有形物を脱水する方法に関する。
【0002】
【従来の技術】
市販の水硫化ソーダは、全水硫化ソーダ分が約25〜45%の水溶液を加熱濃縮して全水硫化ソーダ分約70重量%にし、この濃縮液をフレーカーにかけてフレーク状にするか、容器に入れて冷却固化したものである。
この水硫化ソーダには水分が25%強含有されており、水分を嫌う反応、特に有機物との反応などへの使用を妨げている。
【0003】
一方、高濃度水硫化ソーダを脱水濃縮によって製造するときには、濃度75重量%付近から液粘度が急激に上昇し、液の移動を通常のポンプで行うことが不可能になり、また、増粘にともない脱水効率も著しく低下する。
このような事情から水硫化ソーダは、70〜75重量%のものが市販されている。
【0004】
そこで、本発明者等は、水硫化ソーダ有形物を減圧下で加熱脱水する方法として、減圧下で60℃以下の温度で有形物の表面を脱水した後、加熱脱水する第1の方法(特願平5−41265号出願参照)、水硫化ソーダ有形物の溶融付着を防止するため、低水分の水硫化ソーダ粉末を添加して加熱脱水する第2の方法(特願平5−41267号出願参照)を先に提案した。
【0005】
【発明が解決しようとする課題】
しかし、第1の方法は、減圧下の予備的脱水における温度管理を厳密に行う必要があり、かつ、脱水処理に時間がかかるため、その間に空気中の酸素や蒸発水などに起因する水硫化ソーダの変質を避けることができない。
また、第2の方法では、脱水した後有形物から粉末を篩別する工程が必要になり、また、添加する粉末は脱水処理済の有形物を粉砕して用いるので、生産効率の低下につながるとともに、粉砕操作中に空気と接触して変質した粉末が製品中に混入する恐れがある。
そこで、本発明は、上記の欠点を解消し、水硫化ソーダ有形物を簡単に、かつ、効果的に脱水する方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明は、(1)全水硫化ソーダ分65重量%以上を含有する水硫化ソーダ有形物を脱水する方法において、水硫化ソーダ有形物に原料の水硫化ソーダの融点プラス5℃以下の温度に加熱された不活性ガスを、該原料100g当たり毎分2ノルマルリットル以上の流量で流して脱水を開始し、その後、原料の水硫化ソーダの融点プラス5℃より不活性ガスを昇温するにあたり、昇温速度を毎分0.1℃以下に抑え、該有形物の温度が57℃以上になるまで徐々に昇温し、その後急速に昇温して通気脱水することを特徴とする水硫化ソーダ有形物の脱水方法、及び、(2)全水硫化ソーダ分65重量%以上を含有する水硫化ソーダ有形物を脱水する方法において、水硫化ソーダ有形物に水硫化ソーダ有形物原料100g当たり毎分2ノルマルリットル以上の流量で不活性ガスを流しながら、該原料を収容する容器を原料の水硫化ソーダの融点プラス5℃以下の温度に加熱して脱水を開始し、その後、原料の水硫化ソーダの融点プラス5℃より原料容器の温度を昇温するにあたり、昇温速度を毎分0.1℃以下に抑え、有形物の温度が57℃以上になるまで徐々に昇温し、その後急速に昇温して通気脱水することを特徴とする水硫化ソーダ有形物の脱水方法である。
【0007】
本発明で、水硫化ソーダ有形物とは、フレーク状、チップ状、ペレット状のもの、さらには水溶液の冷却固化物を粉砕した約3〜10mm径の粉砕物をいう。また、本発明で用いる不活性ガスとしては、水硫化ソーダに対して不活性な水素、窒素、アルゴンなどのガスを挙げることができる。
本発明は、全水硫化ソーダ分65重量%以上の水硫化ソーダ有形物を脱水するのに有効である。全水硫化ソーダ分が65重量%を下回ると脱水の過程で溶融し容器に付着し、脱水効率を低下させる恐れがある。
【0008】
【作用】
本発明者等は、不活性ガスを通気して加熱脱水する方法を種々検討する中で、有形物を57℃以上に加熱脱水した後は、急速昇温しても有形物を溶融することもなく、加熱通気脱水できることを見出し、本発明を完成するに至った。
即ち、水硫化ソーダ有形物は、不活性ガス及び又は原料容器を該有形物原料の融点プラス5℃以下の温度に加熱して脱水を開始し、不活性ガス及び又は原料容器の昇温速度を毎分0.1℃以下、好ましくは0.04〜0.07℃の範囲に調整しながら、有形物の温度が57℃になるまで脱水すると、その後、急速昇温による通気脱水が可能となる。特に、急速昇温脱水工程において、有形物の溶融を心配することなく、正確な昇温制御を必要とせずに、通気脱水を行うことが可能となった。
【0009】
なお、有形物が57℃以上に加熱された後、そのときの不活性ガス及び原料容器の温度を保持して脱水することも可能であるが、脱水に長時間を要するので工業的には有効でない。
上記の通気脱水において、不活性ガスは、水硫化ソーダ有形物原料100g当たり毎分2ノルマルリットル以上で通気する必要があり、好ましくは毎分4〜30ノルマルリットルである。
【0010】
通気脱水開始時の不活性ガスの温度、並びに、原料容器の温度が水硫化ソーダ有形物原料の融点プラス5℃を越えると、有形物が溶融する恐れがあり、不活性ガスの流量が毎分2ノルマルリットルを下回ると、溶融防止効果が低下して溶融の恐れがあるとともに、処理時間が長くなるので適当でない。
また、水硫化ソーダ有形物の温度が57℃を越えると、急速に昇温して加熱脱水することができるが、170℃を越えた脱水は実用的でなく、経済的温度は150℃以下である。
全体の処理時間は、250〜400分が好ましい。
【0011】
また、不活性ガスの相対湿度(以下、水分という)は50%以下のものを使用する必要がある。50%を越えると、処理時間が長くなるので好ましくない。
本発明では、不活性ガス流中で水硫化ソーダ有形物を処理するので、水硫化ソーダが空気と接触して変質することもない。
【0012】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれらにより制限されるものではない
【0013】
(実施例
市販のフレーク状水硫化ソーダ(約1〜2cm 2 で厚さが約1.5mm、全水硫化ソーダ分72.4重量%、融点52℃)200gを、500ミリリットルのロータリーエバポレーターに入れ、室温の窒素ガスを毎分8ノルマルリットルの速度で通気し、内容物を攪拌しながら56℃の恒温槽に浸して脱水を開始し、300分かけて恒温槽の温度を73℃まで昇温して内容物の温度を57℃にした。その後、恒温槽の温度を60分かけて110℃まで昇温し、その温度を30分間維持して脱水した。
得られたフレーク状水硫化ソーダは、137g(回収率93%)で、その組成は、全水硫化ソーダ分98.3重量%、水分0.3重量%であった。
【0014】
(実施例
実施例において、窒素ガスの供給量を毎分5ノルマルリットルに変更した以外は、実施例と同様にしてフレーク状水硫化ソーダ有形物の脱水を行ったところ、全水硫化ソーダ分98.1重量%、水分0.5重量%のフレーク状水硫化ソーダを136g回収することができ、回収率は92%であった。
【0015】
(実施例
実施例において、フレーク状水硫化ソーダの代わりに、水硫化ソーダ水溶液を冷却固化し、3〜8mm径に粉砕した水硫化ソーダ粉砕物(全水硫化ソーダ分66.9重量%、融点49℃)200gを、500ミリリットルのロータリーエバポレーターに入れ、内容物を攪拌しながら52℃の恒温槽に浸し、45℃に加熱した窒素ガスを毎分12ノルマルリットルの速度で通気を開始し、次いで、恒温槽の温度を250分かけて65℃まで昇温して内容物の温度を58℃にした。
その後、恒温槽の温度を100分かけて120℃まで昇温し、その温度を50分間維持して脱水を行ったところ、全水硫化ソーダ分98.4重量%、水分0.2重量%の水硫化ソーダ粉砕物を127g回収することができ、回収率は93%であった。
【0016】
(比較例1)
実施例において、通気脱水開始後、恒温槽の温度を90分かけて56℃から62℃まで昇温し、内容物の温度を46℃にした。その後、恒温槽の昇温速度を0.5℃/分で急速昇温したところ、後段の急速昇温を開始した後、15分で溶融が始まった。
【0017】
(比較例2)
実施例1において、通気脱水開始時の恒温槽の温度を56℃から60℃に変更した以外は、実施例と同様にしてフレーク状水硫化ソーダ有形物の脱水を行ったところ、通気脱水開始後12分で溶融が始まった。
【0018】
(比較例3)
実施例1において、通気脱水開始後、恒温槽温度を毎分0.5℃で昇温したところ、通気脱水開始後15分で溶融が始まった。
【0019】
(比較例4)
実施例において、窒素ガスの通気量を毎分3ノルマルリットルに変更した以外は、実施例と同様にしてフレーク状水硫化ソーダ有形物の脱水を行ったところ、窒素ガス通気後40分で溶融が始まった。
【0020】
【発明の効果】
本発明は、上記の構成を採用することにより、水硫化ソーダを変質させることなく、短時間で高濃度の水硫化ソーダ有形物を高い収率で得ることができるようになった。特に、内容物の温度を57℃以上にした後は、急速な昇温の下で脱水を行うことができるようになり、昇温制御が極めて簡単になった。また、かかる高濃度の水硫化ソーダは、水分を嫌う分野特に有機化学反応への使用を可能にし、使用範囲の拡大に大きく寄与するものである。
[0001]
[Industrial applications]
The present invention is a molded product such as flakes, chips, and pellets of sodium hydrogen sulfide, and a solidified product obtained by cooling and solidifying an aqueous solution to the same degree as the molded product, such as a sodium sulfide tangible material having a certain size or more. To a method of dehydrating.
[0002]
[Prior art]
Commercially available sodium hydrogen sulfide is obtained by heating and concentrating an aqueous solution having a total sodium sulfide content of about 25 to 45% to a total sodium sulfide content of about 70% by weight. It is put and cooled and solidified.
This sodium bisulfide contains a little more than 25% of water, which hinders its use in reactions that dislike water, especially reactions with organic substances.
[0003]
On the other hand, when producing high-concentration sodium hydrogen sulfide by dehydration and concentration, the viscosity of the liquid sharply increases from a concentration of about 75% by weight, and it becomes impossible to transfer the liquid with a normal pump. As a result, the dehydration efficiency is significantly reduced.
Under these circumstances, 70 to 75% by weight of sodium hydrosulfide is commercially available.
[0004]
Therefore, the present inventors devised a first method of heating and dehydrating the surface of a tangible material at a temperature of 60 ° C. or less under reduced pressure, as a method of heating and dehydrating the tangible sodium hydrosulfide under reduced pressure. (See Japanese Patent Application No. 5-41265), a second method of adding a low-moisture sodium bisulfide powder and heating and dehydrating to prevent the molten sodium sulfide tangible material from adhering to the melt (Japanese Patent Application No. 5-41267). See above).
[0005]
[Problems to be solved by the invention]
However, the first method requires strict temperature control in the preliminary dehydration under reduced pressure, and requires a long time for the dehydration treatment. The transformation of soda cannot be avoided.
Further, in the second method, a step of sieving the powder from the tangible material after dehydration is required, and the powder to be added is used by pulverizing the dehydrated tangible material, which leads to a decrease in production efficiency. At the same time, there is a risk that powder that has been altered by contact with air during the pulverization operation may be mixed into the product.
Therefore, the present invention is intended to solve the above-mentioned drawbacks and to provide a method for simply and effectively dehydrating a soda hydrosulfide tangible material.
[0006]
[Means for Solving the Problems]
The present invention provides (1) a method for dehydrating a sodium hydrogen sulfide tangible material containing 65% by weight or more of total sodium hydrogen sulfide, wherein the sodium hydrosulfide tangible material is heated to a temperature equal to or lower than the melting point of the raw material sodium hydrogen sulfide plus 5 ° C or less. Dehydration is started by flowing the heated inert gas at a flow rate of 2 normal liters or more per minute per 100 g of the raw material, and then, when raising the temperature of the inert gas from the melting point of the raw material sodium hydrogen sulfide plus 5 ° C, Sodium hydrogen sulfide, characterized in that the rate of temperature rise is kept at 0.1 ° C. or less per minute , the temperature of the tangible material is gradually raised until it reaches 57 ° C. or more, and then the temperature is rapidly raised to aeration and dehydration. A method for dehydrating a tangible material, and (2) a method for dehydrating a tangible sodium bisulfide material containing 65% by weight or more of total sodium hydrosulfide content, wherein the sodium bisulfide tangible material is converted to a sodium hydrosulfide tangible material per 100 g per minute. 2 normal liters or less While flowing the inert gas at the above flow rate, the container containing the raw material is heated to a temperature not higher than the melting point of the raw material sodium hydrogen sulfide plus 5 ° C. to start dehydration, and then the melting point of the raw material sodium bisulfide plus Upon 5 ° C. for raising the temperature of the raw material container than, kept below min 0.1 ° C. the rate of temperature increase, the temperature was gradually raised to a temperature of the material object is equal to or greater than 57 ° C., then rapidly heated a dehydrating method of sodium hydrosulfide material objects you characterized bubbling dehydration by.
[0007]
In the present invention, the tangible sodium hydrosulfide refers to flakes, chips, pellets, and a pulverized product having a diameter of about 3 to 10 mm obtained by pulverizing a cooled solidified aqueous solution. Examples of the inert gas used in the present invention include hydrogen, nitrogen, argon, and other gases that are inactive against sodium bisulfide.
INDUSTRIAL APPLICABILITY The present invention is effective for dewatering tangible sodium hydrosulfide having a total sodium hydrosulfide content of 65% by weight or more. If the total sodium hydrosulfide content is less than 65% by weight, it melts in the process of dehydration and adheres to the container, which may reduce the dehydration efficiency.
[0008]
[Action]
The present inventors have studied various methods of heating and dehydrating by passing an inert gas, and after heating and dehydrating the tangible material to 57 ° C. or more, the tangible material may be melted even if the temperature is rapidly increased. In addition, the inventors have found that heating, ventilation, and dehydration can be performed, and have completed the present invention.
That is, the soda hydrosulfide tangible material starts dehydration by heating the inert gas and / or the raw material container to a temperature equal to or lower than the melting point of the tangible material raw material plus 5 ° C., and increases the temperature rising rate of the inert gas and / or the raw material container. While dehydrating until the temperature of the tangible material reaches 57 ° C. while adjusting the temperature to 0.1 ° C. per minute or less, preferably in the range of 0.04 to 0.07 ° C., aeration dehydration by rapid temperature rise is possible thereafter. . In particular, in the rapid temperature rising dehydration step, the ventilation dehydration can be performed without worrying about melting of the tangible material and without requiring precise temperature rising control.
[0009]
In addition, after the tangible material is heated to 57 ° C. or higher, it is possible to perform dehydration while maintaining the temperature of the inert gas and the raw material container at that time, but it is industrially effective because dehydration requires a long time. Not.
In the above-mentioned aeration dehydration, the inert gas needs to be aerated at a rate of 2 normal liters per minute or more per 100 g of the raw material of sodium sulfide material, preferably 4 to 30 normal liters per minute.
[0010]
If the temperature of the inert gas at the start of aeration and dehydration and the temperature of the raw material container exceed the melting point of the raw material of sodium hydrosulfide tangible material plus 5 ° C., the tangible material may be melted, and the flow rate of the inert gas per minute If the amount is less than 2 normal liters, the effect of preventing melting is reduced, and there is a possibility of melting.
Further, when the temperature of the sodium hydrogen sulfide tangible exceeds 57 ° C., the temperature can be raised rapidly to perform dehydration by heating. However, dehydration exceeding 170 ° C. is not practical, and the economical temperature is 150 ° C. or lower. is there.
The total processing time is preferably from 250 to 400 minutes.
[0011]
Further, it is necessary to use an inert gas having a relative humidity (hereinafter, referred to as moisture) of 50% or less. If it exceeds 50%, the processing time is undesirably long.
In the present invention, since the tangible sodium hydrosulfide is treated in the inert gas stream, the sodium hydrosulfide does not deteriorate in contact with air.
[0012]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto .
[0013]
(Example 1 )
200 g of commercially available flaked sodium hydrosulfide (about 1-2 cm 2 , about 1.5 mm thick, 72.4% by weight of total sodium hydrosulfide, melting point 52 ° C.) was placed in a 500 ml rotary evaporator, Nitrogen gas is introduced at a rate of 8 normal liters per minute, the contents are immersed in a constant temperature bath at 56 ° C. with stirring to start dehydration, and the temperature of the constant temperature bath is raised to 73 ° C. over 300 minutes. The material temperature was 57 ° C. Thereafter, the temperature of the thermostat was raised to 110 ° C. over 60 minutes, and the temperature was maintained for 30 minutes to perform dehydration.
The obtained flaked sodium hydrogen sulfide was 137 g (recovery rate 93%), and its composition was 98.3% by weight of total sodium hydrosulfide and 0.3% by weight of water.
[0014]
(Example 2 )
In Example 1 , the flaked sodium sulfide tangible material was dehydrated in the same manner as in Example 1 except that the supply amount of nitrogen gas was changed to 5 normal liters per minute. 136 g of flaky sodium hydrogen sulfide having 1% by weight and 0.5% by weight of water could be recovered, and the recovery rate was 92%.
[0015]
(Example 3 )
In Example 1 , instead of the flaked sodium hydrosulfide, an aqueous solution of sodium hydrosulfide was cooled and solidified, and ground to a size of 3 to 8 mm (66.9% by weight of total sodium hydrosulfide, melting point 49 ° C). 200 g) was placed in a 500 ml rotary evaporator, and the contents were immersed in a constant temperature bath at 52 ° C. with stirring, and nitrogen gas heated to 45 ° C. was started to be ventilated at a rate of 12 normal liters per minute, and then heated at a constant temperature. The temperature of the vessel was raised to 65 ° C over 250 minutes to bring the temperature of the contents to 58 ° C.
Thereafter, the temperature of the constant temperature bath was raised to 120 ° C. over 100 minutes, and the temperature was maintained for 50 minutes to perform dehydration. The total sodium hydrosulfide content was 98.4% by weight and the water content was 0.2% by weight. 127 g of ground sodium hydrogen sulfide could be recovered, and the recovery rate was 93%.
[0016]
(Comparative Example 1)
In Example 1 , after the start of the aeration and dehydration, the temperature of the thermostat was raised from 56 ° C. to 62 ° C. over 90 minutes, and the temperature of the contents was set to 46 ° C. Thereafter, when the temperature of the thermostatic bath was rapidly increased at a rate of 0.5 ° C./min, melting started in 15 minutes after the subsequent rapid temperature increase was started.
[0017]
(Comparative Example 2)
In Example 1, except that the temperature of the thermostat at the start of the ventilation dehydration was changed from 56 ° C. to 60 ° C., dehydration of the flaky sodium hydrosulfide tangible material was performed in the same manner as in Example 1. Twelve minutes later melting began.
[0018]
(Comparative Example 3)
In Example 1, when the temperature of the thermostatic bath was raised at 0.5 ° C./min after the start of the ventilation dehydration, the melting started 15 minutes after the start of the ventilation dehydration.
[0019]
(Comparative Example 4)
In Example 1 , the flake-like sodium hydrosulfide tangible was dehydrated in the same manner as in Example 1 except that the nitrogen gas flow rate was changed to 3 normal liters per minute. Melting has begun.
[0020]
【The invention's effect】
ADVANTAGE OF THE INVENTION By adopting the said structure, this invention became able to obtain the high concentration sodium sulfide tangible material with high yield in a short time, without denaturing sodium bisulfide. In particular, after the temperature of the contents was raised to 57 ° C. or higher, dehydration could be performed under rapid temperature rise, and the temperature rise control became extremely simple. Such high-concentration sodium bisulfide enables use in fields that dislike moisture, especially in organic chemical reactions, and greatly contributes to expansion of the range of use.

Claims (2)

全水硫化ソーダ分65重量%以上を含有する水硫化ソーダ有形物を脱水する方法において、水硫化ソーダ有形物に原料の水硫化ソーダの融点プラス5℃以下の温度に加熱された不活性ガスを、該原料100g当たり毎分2ノルマルリットル以上の流量で流して脱水を開始し、その後、原料の水硫化ソーダの融点プラス5℃より不活性ガスを昇温するにあたり、昇温速度を毎分0.1℃以下に抑え、該有形物の温度が57℃以上になるまで徐々に昇温し、その後急速に昇温して通気脱水することを特徴とする水硫化ソーダ有形物の脱水方法。In a method for dehydrating a sodium hydrogen sulfide material containing 65% by weight or more of total sodium hydrogen sulfide , an inert gas heated to a temperature not higher than the melting point of the raw material sodium hydrogen sulfide plus 5 ° C is added to the sodium hydrogen sulfide material. Then, dehydration is started by flowing at a flow rate of 2 normal liters or more per minute per 100 g of the raw material, and then, when the temperature of the inert gas is raised from the melting point of the raw material sodium bisulfide plus 5 ° C., the heating rate is set to 0 / min. 1. A method for dehydrating sodium sulfide tangible material, wherein the temperature is controlled to 1 ° C. or less, the temperature of the tangible material is gradually increased until the temperature becomes 57 ° C. or higher, and then the temperature is rapidly increased to carry out aeration dehydration. 全水硫化ソーダ分65重量%以上を含有する水硫化ソーダ有形物を脱水する方法において、水硫化ソーダ有形物に水硫化ソーダ有形物原料100g当たり毎分2ノルマルリットル以上の流量で不活性ガスを流しながら、該原料を収容する容器を原料の水硫化ソーダの融点プラス5℃以下の温度に加熱して脱水を開始し、その後、原料の水硫化ソーダの融点プラス5℃より原料容器の温度を昇温するにあたり、昇温速度を毎分0.1℃以下に抑え、有形物の温度が57℃以上になるまで徐々に昇温し、その後急速に昇温して通気脱水することを特徴とする水硫化ソーダ有形物の脱水方法。 A method for dehydrating a sodium hydrogen sulfide material containing 65% by weight or more of total sodium hydrogen sulfide, wherein an inert gas is supplied to the sodium hydrogen sulfide material at a flow rate of at least 2 normal liters per minute per 100 g of the sodium hydrogen sulfide material material. While flowing, the container containing the raw material is heated to a temperature equal to or lower than the melting point of the raw material sodium hydrosulfide plus 5 ° C. to start dehydration, and then the temperature of the raw material container is raised from the melting point of the raw material sodium bisulfide plus 5 ° C. Upon raising the temperature, kept below min 0.1 ° C. the rate of temperature increase, characterized in that the temperature of the tangible object is gradually heated until the above 57 ° C., vented dried then rapidly heated dehydration process of be that sodium hydrosulfide tangible products and.
JP08603193A 1993-04-13 1993-04-13 Dehydration method of tangible sodium hydrosulfide with inert gas Expired - Lifetime JP3561281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08603193A JP3561281B2 (en) 1993-04-13 1993-04-13 Dehydration method of tangible sodium hydrosulfide with inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08603193A JP3561281B2 (en) 1993-04-13 1993-04-13 Dehydration method of tangible sodium hydrosulfide with inert gas

Publications (2)

Publication Number Publication Date
JPH06298503A JPH06298503A (en) 1994-10-25
JP3561281B2 true JP3561281B2 (en) 2004-09-02

Family

ID=13875297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08603193A Expired - Lifetime JP3561281B2 (en) 1993-04-13 1993-04-13 Dehydration method of tangible sodium hydrosulfide with inert gas

Country Status (1)

Country Link
JP (1) JP3561281B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636443A1 (en) * 1996-09-07 1998-03-12 Bosch Gmbh Robert Device and method for monitoring sensors in a vehicle
US6503474B1 (en) 1997-12-16 2003-01-07 Degussa Ag Process for the preparation of anhydrous sodium sulfide
CN101811674B (en) * 2010-04-08 2012-09-19 天津师范大学 Industrial production method for anhydrous sodium hydrosulfide

Also Published As

Publication number Publication date
JPH06298503A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
DE3665415D1 (en) Process for the production of free-flowing granulates
JP2003500208A (en) Method and apparatus for continuously hydrolyzing organic materials
JP3561281B2 (en) Dehydration method of tangible sodium hydrosulfide with inert gas
US4652675A (en) Process and device for purifying benzoic acid
JP3408577B2 (en) Dehydration method of tangible sodium sulfide using inert gas
JP3408575B2 (en) Dehydration method of tangible sodium hydrosulfide with inert gas
US3367951A (en) Process for purifying solid peroxides
KR101180353B1 (en) Refining method of Phosphorus and other impurities from MG-Si by acid leaching
JP3408576B2 (en) Method for dehydrating tangible sodium sulfide with inert gas
JPH0597733A (en) Drying of erythritol crystal
JP3408570B2 (en) Dehydration method of tangible sodium hydrosulfide
US3321142A (en) Method for the production of an abrasion-resistant discoloration-free caffeine granulate
US1941623A (en) Recovery of sulphur
GB1584704A (en) Process for the preparation of sodium bisulphate granules
RU2052528C1 (en) Scandium obtaining method
JPH06256003A (en) Production of formed material of highly concentrated sodium hydrosulfide
WO1998041219A1 (en) Process of increasing calcium content in an aqueous solution
JPS63201080A (en) Manufacture of calcium-urea nitrate
JPH0411988A (en) Production of purifying agent for sterilization
US3420629A (en) Production of boron nitride
JP3995850B2 (en) Method for producing L-aspartic acid
KR950013401A (en) Nutritious salt and its manufacturing method
CN1436719A (en) Prepn process of sodium sulfide crystal
CN114769282A (en) Harmless treatment method for arsenic-precipitating slag of copper smelting waste acid
JPH0231021B2 (en) HAKUSHOKUTAKOSHITSUZAIRYONOSEIZOHO

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

EXPY Cancellation because of completion of term