JP3558008B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP3558008B2
JP3558008B2 JP2000177171A JP2000177171A JP3558008B2 JP 3558008 B2 JP3558008 B2 JP 3558008B2 JP 2000177171 A JP2000177171 A JP 2000177171A JP 2000177171 A JP2000177171 A JP 2000177171A JP 3558008 B2 JP3558008 B2 JP 3558008B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
pressure
throttle
common rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000177171A
Other languages
Japanese (ja)
Other versions
JP2001349261A (en
Inventor
貴文 山田
潔 内貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000177171A priority Critical patent/JP3558008B2/en
Priority to DE2001600030 priority patent/DE60100030T2/en
Priority to EP20010113920 priority patent/EP1162364B1/en
Publication of JP2001349261A publication Critical patent/JP2001349261A/en
Application granted granted Critical
Publication of JP3558008B2 publication Critical patent/JP3558008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/004Joints; Sealings
    • F02M55/005Joints; Sealings for high pressure conduits, e.g. connected to pump outlet or to injector inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料噴射装置に関し、詳細には例えば内燃機関のコモンレール式燃料噴射装置のように、高圧の燃料を貯留する蓄圧室(コモンレール)から各燃料噴射弁に燃料を分配し、各燃料噴射弁から断続的に燃料噴射を行う燃料噴射装置に関する。
【0002】
【従来の技術】
高圧燃料を貯留する蓄圧室(コモンレール)を設け、このコモンレールに各燃料噴射弁を接続してコモンレール内の高圧燃料を各燃料噴射弁に分配するコモンレール式燃料噴射装置が知られている。コモンレール式燃料噴射装置では、高圧燃料ポンプからコモンレールに圧送される燃料量を制御することにより、コモンレール内圧力(すなわち各燃料噴射弁からの噴射圧力)を機関運転状態に応じた所望の値に維持することが可能となる。このため、コモンレール式燃料噴射装置では、例えば従来の機関駆動式燃料噴射ポンプ(ジャーク式ポンプ)等とは異なり、機関低回転時にも燃料噴射圧力を高く維持することが可能となり、機関低回転時にも噴射燃料の霧化が良好になるため機関の燃焼状態が改善される利点がある。
【0003】
ところが、コモンレール式燃料噴射装置では高圧(例えば100から150MPa)の燃料噴射が行われるため、各燃料噴射弁では燃料噴射開始、終了時に大きな圧力変動が生じる。この圧力変動は燃料噴射弁とコモンレールとを接続する燃料供給配管を介してコモンレールに伝播し、複雑に反射して燃料噴射弁の噴射圧力に変動を生じる。例えば、燃料噴射終了時の燃料噴射弁における圧力変動がコモンレールで反射して燃料噴射弁に再度戻ってくると燃料噴射終了後も圧力変動が減衰するまでは燃料供給配管の圧力は脈動する。このため、例えばディーゼル機関等で主燃料噴射に先立ってパイロット燃料噴射を行うような場合には、パイロット燃料噴射により生じた燃料供給配管の圧力変動が減衰する前に主燃料噴射が開始されるような場合が生じてしまい、主燃料噴射の噴射量、噴射時期が不正確になる場合がある。
【0004】
また、各燃料噴射弁は共通のコモンレールに接続されているため、1つの燃料噴射弁の燃料噴射動作により生じた圧力変動はコモンレール内で反射して他の燃料噴射弁の燃料供給配管の圧力にも影響を生じるようになる。
この各燃料噴射弁の圧力変動による影響を防止するため、通常、コモンレールと各燃料噴射弁への燃料供給配管接続部にはオリフィスのような流路断面縮小部が設けられており、オリフィスの流路抵抗により圧力の脈動を短時間で減衰させるようにしている。
【0005】
この場合、圧力脈動を短時間で減衰させるためには、オリフィス径はできるだけ小さく設定することが好ましい。ところが、オリフィス径を小さく設定すると、オリフィスの抵抗が大きくなってしまい、コモンレールから各燃料噴射弁への燃料流量まで減少してしまう問題が生じる。すなわち、オリフィス径をある程度以上小さくすると燃料噴射中の噴射圧力が低下してしまい必要な量の燃料を噴射するための燃料噴射期間が長くなる問題が生じる。一方、各燃料噴射弁の燃料噴射中の噴射圧力を充分に高い値に維持しようとすると、オリフィス径はある程度以下にはすることができず、圧力脈動の減衰が不十分になってしまう問題が生じる。
【0006】
この問題を解決するために、例えば特開平9−112380号公報は、コモンレールと各燃料噴射弁とを接続する燃料配管に流体ダイオードを配置することを提案している。上記特開平9−112380号公報に記載された流体ダイオードには、コモンレール側から燃料噴射弁側に向けて大径孔、縮管状テーパー孔、オリフィス孔が連続して形成されている。同公報の流体ダイオードでは、コモンレール側から燃料噴射弁側に向けて流れる燃料は、大径孔から縮管状のテーパー孔を通ってオリフィス孔に流入するため比較的流動抵抗が小さくなるのに対して、燃料噴射弁の圧力脈動による燃料噴射弁側からコモンレール側への燃料の流れは直接オリフィス孔に流入するため流路抵抗が大きくなることを利用して、コモンレールから燃料噴射弁への燃料の供給を減少させることなく圧力脈動のみを短時間で減衰させるようにしたものである。
【0007】
【発明が解決しようとする課題】
ところが、上記特開平9−112380号公報のような流体ダイオードを使用した場合には、コモンレール側から燃料噴射弁側に流れる燃料の流路抵抗は、通常のオリフィスに較べて多少は低下するものの依然として大きな値になっている。このため、上記公報の流体ダイオードを使用した場合でも、圧力脈動を充分に減少させるためにオリフィス孔径を小さくするとコモンレール側から燃料噴射弁側への燃料供給が不十分になり燃料噴射中に噴射圧が低下する問題が生じてしまう。
【0008】
本発明は、上記問題に鑑み、コモンレール式燃料噴射装置に適用した場合にコモンレール側から各燃料噴射弁側への燃料の流動抵抗を充分に小さく維持しつつ、しかも各燃料噴射弁側からコモンレール側への燃料の流動抵抗を充分に大きくすることが可能な燃料噴射装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明によれば、加圧燃料を貯留する蓄圧室と、該蓄圧室に接続され蓄圧室から供給される燃料を噴射する燃料噴射弁とを備えた燃料噴射装置において、
前記蓄圧室から前記燃料噴射弁に至る燃料供給流路中に流路断面積縮小部からなる絞りを設け、前記蓄圧室から前記絞りに至る燃料供給流路に所定の壁面傾斜角を有する縮管状の第1のテーパー部を介して前記絞りを接続し、前記絞りから前記燃料噴射弁に至る燃料供給流路に所定の壁面傾斜角を有する拡管状の第2のテーパー部を介して前記絞りを接続するとともに、前記第2のテーパー部の壁面傾斜角を前記第1のテーパー部の壁面傾斜角より小さく設定したことを特徴とする、燃料噴射装置が提供される。
【0010】
すなわち、本発明では従来技術と同様に、燃料供給流路中に絞りを設け、絞りの入口側(コモンレール側)にテーパー部を設けている。しかし、本発明では更に絞りの出口側(燃料噴射弁側)にもテーパー部を設け、この出口側のテーパー部(第2のテーパー部)の壁面の傾斜角を入口側のテーパー部(第1のテーパー部)より小さく設定した点が大きく相違している。
【0011】
流路中に絞りを設けた場合、流路の入り口側では絞りに流入する燃料の流れは絞り入口で流路が急縮小するため流動抵抗が増大する。前述の従来技術の流体ダイオードは流路入口側に縮管状のテーパーを設け、絞りに流入する燃料の流動抵抗を減少させたものである。また、従来技術では絞り出口にはテーパー部を設けていないため、逆方向の流れ(燃料噴射弁からコモンレールに向かう流れ)については絞りに流入する流れは急縮小することになり、流動抵抗が増大する。すなわち、従来技術の流体ダイオードは、絞り入口側のみにテーパーを設けることにより、順方向の流れ(コモンレールから燃料噴射弁に向かう流れ)に対する抵抗は小さく、逆方向の流れ(燃料噴射弁からコモンレールに向かう流れ)の抵抗を増大させようとしたものである。
【0012】
ところが、後述するように、絞りを通る流体の実際の流路抵抗は絞り入口側のみならず絞り出口側の形状によっても大きく変化することが判明している。すなわち、絞り出口側で流路が急拡大する形状であると、流路の急拡大による渦損失が非常に大きくなり流路抵抗が増大してしまうのである。
このため、従来技術のように絞り入口側に縮管状のテーパー部を設けても出口側が不連続的に流路が急拡大する形状であると、入口側にテーパー部を設けたことによる流路抵抗の減少より出口側の流路急拡大による抵抗の増大の影響が支配的となり、全体として順方向の流れに対する絞り部の流路抵抗は単に絞りのみを設けた場合と較べてほとんど減少しない。このため、従来技術では逆方向(燃料噴射弁からコモンレール側)の流路抵抗増大による圧力脈動の減少効果は見られるものの、順方向(コモンレール側から燃料噴射弁側)への流れの流路抵抗は単に絞りを設けた場合と較べてほとんど低下せず、燃料噴射期間中の燃料噴射弁への燃料供給が依然として不十分になる問題が生じるのである。
【0013】
これに対して、本発明では絞りの入口側のみならず、出口側にもテーパー部を設けており、しかも絞りの出口側テーパー部は入口側テーパー部よりも壁面傾斜角(テーパーの傾斜角)が小さくなるようにされている。このように、絞り出口側にもテーパー部を設けたことにより、順方向の流れでは絞り入口における流路急縮小による損失が生じないだけでなく、更に絞り出口における流路の急拡大損失が生じないようになり順方向の流れに対する流路抵抗は単に絞りのみを設けた場合に較べて大幅に減少するようになる。
【0014】
また、本発明では絞り入口側のテーパーの傾斜角は絞り出口側のテーパー傾斜角に較べて大きくなっている。この、絞り入口側のテーパーは逆方向の流れに対しては絞り出口側のテーパーとして機能するが、テーパーの傾斜が大きいと流路急拡大による渦損失が増大する。前述のように、順方向の流れに対しては絞り出口側のテーパーは比較的緩やかであるため、流路の急拡大は生じず順方向の流れの流路抵抗は小さくなるが、絞り入口側のテーパーは傾斜が比較的大きいため、逆方向の流れに対しては絞り出口における流路の急拡大による抵抗増大が生じる。このため、本発明では単に絞りのみを設けた場合に較べて、燃料供給流路の順方向(コモンレールから燃料噴射弁に向かう方向)の流れに対する流路抵抗は大幅に小さくなるが、逆方向(燃料噴射弁からコモンレールに向かう方向)の流れに対しては流路抵抗はほとんど低下しない。
【0015】
従って、燃料噴射弁の噴射における圧力変動により流路を逆方向に向かう流れは大きな抵抗のために阻止され、一方、流路を順方向に向かう流れは抵抗を受けない。このため、本発明では燃料噴射による圧力変動は短時間で減衰するにもかかわらず、燃料噴射期間中に充分な量の燃料が燃料噴射弁に供給され燃料噴射期間中の燃料噴射圧力の低下が生じない。
【0016】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
図1は、本発明の燃料噴射装置を自動車用ディーゼル機関に適用した場合の実施形態の概略構成を示す図である。
図1において、1は内燃機関(本実施形態では#1から#4の4つの気筒を備えた4気筒4サイクルディーゼル機関が使用される)、10aから10d は機関1の#1から#4の各気筒内に直接燃料を噴射する燃料噴射弁を示している。燃料噴射弁10aから10dは、それぞれ高圧燃料配管(燃料供給流路)11aから11dを介して共通の蓄圧室(コモンレール)3に接続されている。コモンレール3は、高圧燃料噴射ポンプ5から供給される加圧燃料を貯留し、貯留した高圧燃料を高圧燃料配管11aから11dを介して各燃料噴射弁10aから10d に分配する機能を有する。
【0017】
本実施形態では、高圧燃料噴射ポンプ5は、例えば吐出量調節機構を有するプランジャ形式のポンプとされ、図示しない燃料タンクから供給される燃料を所定の圧力に昇圧しコモンレール3に供給する。ポンプ5からコモンレール3への燃料圧送量は、コモンレール3圧力が目標圧力になるようにECU20によりフィードバック制御される。このため、コモンレール3燃料圧力(すなわち各燃料噴射弁の燃料噴射圧力)は機関低回転時にも高い圧力に設定することができる。また、各燃料噴射弁10aから10dが開弁すると、コモンレール3から高圧燃料が各燃料噴射弁を通じて各気筒に噴射されるが、コモンレール3の容積は1回の燃料噴射量に較べてはるかに大きいため、各燃料噴射弁10の燃料噴射期間中、コモンレール3燃料圧力(すなわち燃料噴射圧力)はほぼ一定に維持される。
【0018】
図1に20で示すのは、機関の制御を行う電子制御ユニット(ECU)である。ECU20は、リードオンリメモリ(ROM)、ランダムアクセスメモリ(RAM)、マイクロプロセッサ(CPU)、入出力ポートを双方向バスで接続した公知の構成のマイクロコンピュータとして構成されている。ECU20は、本実施形態では、燃料ポンプ5の吐出量を制御してコモンレール3圧力を機関運転条件に応じて定まる目標値に制御する燃料圧制御を行っている他、燃料噴射弁10aから10dの開弁時期、時間等の開弁動作を制御してメイン燃料噴射の噴射時期及び噴射量を制御する燃料噴射制御等の機関の基本制御を行う。
【0019】
これらの制御を行なうために、本実施形態ではコモンレール3にはコモンレール内燃料圧力を検出する燃料圧センサ27が設けられている他、機関1のアクセルペダル(図示せず)近傍にはアクセル開度(運転者のアクセルペダル踏み込み量)を検出するアクセル開度センサ21が設けられている。また、図1に23で示すのは機関1のカム軸の回転位相を検出するカム角センサ、25で示すのはクランク軸の回転位相を検出するクランク角センサである。カム角センサ23は、機関1のカム軸近傍に配置され、クランク回転角度に換算して720度毎に基準パルスを出力する。また、クランク角センサ25は、機関1 のクランク軸近傍に配置され所定クランク回転角毎(例えば15度毎)にクランク角パルスを発生する。
【0020】
ECU20は、クランク各センサ25から入力するクランク回転角パルス信号の周波数から機関回転数を算出し、アクセル開度センサ21から入力するアクセル開度信号と、機関回転数とに基づいて燃料噴射弁10aから10dの燃料噴射時期と燃料噴射量とを算出する。なお、本実施形態では、燃料噴射弁からの燃料噴射時期と燃料噴射量との算出方法は、公知のいずれの方法をも使用することができる。
【0021】
燃料噴射期間中、燃料噴射弁が開弁するとコモンレール3から高圧燃料配管11aから11d(以下、高圧燃料配管11と総称する)を通って燃料が燃料噴射弁10aから10d(以下燃料噴射弁10と総称する)に流入する。この燃料の流れは燃料噴射が停止して燃料噴射弁が閉弁すると急激に遮断されることになり、燃料噴射弁では流れの遮断による圧力波が発生する。この圧力波は高圧燃料配管11を通ってコモンレール3に戻り、一部はコモンレール3内から他の高圧燃料配管に伝播するとともに、一部はコモンレール3入口で反射して再度燃料噴射弁10に伝播する。このため、燃料噴射停止時には反射した圧力波により燃料噴射弁の燃料供給圧力が変動するようになる。
【0022】
この圧力変動は高圧燃料通路11に絞りを設け、燃料噴射弁10からコモンレール3に向かう燃料の流動を阻止することにより短時間で減衰させることができる。しかし、高圧燃料通路11に絞りを設けると、燃料噴射時にコモンレール3から燃料噴射弁10に向かう燃料の流れに大きな抵抗を生じ、燃料噴射中に燃料噴射弁10における燃料噴射圧力が低下してしまい、所要量の燃料を噴射するための燃料噴射時間が増大する問題が生じる。
【0023】
本実施形態では、図2に示すように各高圧燃料配管11中(正確には高圧燃料配管11とコモンレール3との接続部)に、両側にテーパー部を有する絞りを形成したオリフィスピース100を介挿することにより上記問題を解決している。図1において、3はコモンレール、11は高圧燃料配管を示す。また、3aはコモンレール壁に形成された細孔からなる燃料通路を示している。コモンレール3aには高圧の燃料(例えば100から150MPa程度)が貯留されるため、コモンレール3に貫通孔を設ける際にはできるだけ孔径を小さくすることがコモンレールの強度上好ましい。そこで、本実施形態ではコモンレール壁に形成される燃料通路3aの径を小さく設定している。この燃料通路3aはコモンレールから燃料噴射弁への燃料供給経路中の絞りとしても機能する。本実施形態では、高圧燃料通路11の圧力変動防止のためにオリフィスピース100を設けているため、本来燃料通路3aを絞りとして機能させる必要はないが、上述したようにコモンレール3の強度上燃料通路3aの径は小さい方が好ましいため、燃料通路3aとして従来と同様細径の通路を形成している。
【0024】
本実施形態のオリフィスピース100は高圧燃料配管11の内径部に嵌装される小径端103とコモンレール3のオリフィスピース接続部に受承される大径端105とを備えている。高圧燃料配管11とコモンレール3とは図2に示すようにオリフィスピース100を間に介挿した状態で継手(図示せず)により互いに強固に連結される。
【0025】
オリフィスピース100には、入口側テーパー部111、細径絞り部113、出口側テーパー部115からなる燃料通路110が内部に形成されている。
図3は、燃料通路110の形状を説明する拡大図である。
図3に示すように、入口側テーパー部111は細径絞り部113の入口側(コモンレール側)に形成されており、流れの順方向(コモンレールから燃料噴射弁に向かう方向)に見て縮管状のテーパーとされている。本実施形態では、入口側テーパー部111の壁面傾斜角(テーパー拡がり角、図3にαで示す)は120度以上の角度とされている。
【0026】
また、出口側テーパー部115は細径絞り部113の出口側(燃料噴射弁側)に形成されており、流れの順方向に見て拡管状のテーパーとされている。本実施形態では、出口側テーパー部115の壁面傾斜角(図3にβで示す)は7〜8度(約7.5度)の角度とされており、出口側テーパー部115の壁面傾斜角は入口側テーパー部111の壁面傾斜角より小さくなっている。
【0027】
次に、本実施形態における出口側テーパー部115の有する機能について説明する。
仮に、出口側テーパー部115を設けていない場合を考えると、細径絞り部113から出口側に流出する燃料は細径絞り部113出口で流路が急拡大することになり、細径絞り部113出口周囲に渦領域が形成され、渦形成のため燃料の流れには細径絞り部113出口で大きな圧力損失が生じる。この圧力損失はかなり大きなものとなり、例えば入口側テーパー部111を設けて順方向の流れの流路急縮小による圧力損失の低減効果をほぼ相殺してしまう。一方、図3のように細径絞り部113出口に出口側テーパー部115を設けると、燃料の流路は細径絞り部113から高圧燃料配管11へ徐々に拡がるようになるため、出口における流路急拡大による損失は低減される。
【0028】
ところが、この出口側テーパー部115による流路急拡大防止効果はテーパーの拡がり角βに応じて変化する。図4は、出口側テーパー部115の拡がり角βを変えた場合の出口側テーパー部115を通る燃料流の圧力損失の変化を説明する図である。図4に示すように、拡がり角βを増大して行くと、それにつれて圧力損失は増大するが、例えばβ=0(細径絞り部113出口に直管を接続した場合に相当する)からβ=βまでの間はβを増大しても圧力損失はほとんど上昇しない。すなわち、拡がり角βをβ以下にしても圧力損失はβ=βの場合からほとんど減少しない。また、拡がり角βがβを越えるとβの増大につれて圧力損失は比較的急激に増大するが、拡がり角βがβ(β>β)に到達すると、それ以上拡がり角βを増大しても圧力損失はほとんど上昇しない。すなわち、βがある角度β以上になると、出口側テーパー部を設けていても圧力損失はテーパー部を設けない場合(すなわちβ=180度に相当)とほぼ同等まで増大してしまう。
【0029】
そこで、本実施形態では、出口側テーパー部115の拡がり角は、実際上圧力損失が最小となるβに設定している。実験の結果、この角度は約7.5度付近となることが判明している。これにより、オリフィスピース100の流路110を通る順方向の流れの流路抵抗は事実上最小となる。
更に、本実施形態では、入口側テーパー部111の拡がり角αは、上記β以上の値に設定している。βは実験の結果約120度であり、本実施形態では入口側テーパー部111の拡がり角αは、α≧120度(α<180度)とされている。入口側テーパー部111の拡がり角をβ以上に設定するのは、流路110を通る逆方向(燃料噴射弁側からコモンレール側に向かう方向)の流れの圧力損失を増大させるためである。すなわち、入口側テーパー部111は順方向の流れに対しては、流路急縮小を防止して圧力損失を低減するが、逆方向の流れに対しては出口側テーパー部として機能するため、テーパーの拡がり角αを大きくすることにより流路110を通る逆方向の流れの圧力損失を逆に増大させることができる。すなわち、入口側テーパー部111の拡がり角αを120度以上とすることにより、順方向の流れの圧力損失低減効果を維持しながら逆方向の流れの圧力損失を増大させることが可能となる。
【0030】
このため、本実施形態のオリフィスピース100では流路110を通る逆方向(燃料噴射弁からコモンレールに向かう方向)の流れには、細径絞り部113における圧力損失に加えて、入口側テーパー部111における流路急拡大の圧力損失が生じることになり、流路110は逆方向の流れに対しては大きな抵抗を与えるようになる。一方、流路110を通る順方向の流れでは、入口側テーパー部111により流路急縮小の圧力損失が低減され、更に出口側テーパー部115により流路急拡大の圧力損失が大幅に低減される。このため、流路110は順方向の流れに対しては、細径絞り部113の管路抵抗と同等程度の小さい抵抗しか与えない。このため、本実施形態のオリフィスピース100は順方向流れに対しては流路抵抗が小さく、逆方向流れに対しては流路抵抗が大きい特性を示すようになる。
【0031】
従って、本実施形態のオリフィスピース100をコモンレール3と燃料噴射弁10との間の燃料流路に配置すると、圧力変動による逆方向の燃料の流れは効果的に減衰され圧力変動が大きく減衰するにもかかわらず、順方向の燃料の流れに対する影響は小さいため、燃料噴射期間中に充分な量の燃料が燃料噴射弁に供給され、燃料噴射圧力の低下が生じなくなる。
【0032】
図5(A) 、(B) は、本実施形態のオリフィスピース100を設けた場合の効果を実測結果に基づいて説明する図である。
図5(A) は燃料噴射期間中における燃料噴射弁10の燃料噴射率の変化を示し、図5(B) は燃料噴射弁入口における燃料圧力の変化を示している。また、図5(A) 、(B) において、カーブIは高圧燃料通路11に絞りを設けていない場合(すなわち、燃料供給経路中には細径部としてコモンレール3壁貫通部の燃料通路3aが存在するだけの場合)を、カーブIIは本実施形態のオリフィスピース100を設けた場合を示し、カーブIIIは高圧燃料通路に絞りのみ(両側にテーパー部を設けない細径絞りのみ)を設けた場合をそれぞれ示している。また、図5(A) 、(B) において、A点は燃料噴射開始時(燃料噴射弁開弁時)、B点は燃料噴射終了時(燃料噴射弁閉弁時)を示している。
【0033】
まず、高圧燃料通路11に絞りを設けていない場合(カーブI)について説明する。この場合、燃料噴射弁が開弁して燃料噴射が開始されると(A点)、燃料噴射率は急激に増大(図5(A) )するが、燃料噴射に伴って燃料噴射弁入口の燃料圧力は低下する(図5(B) )。しかし、その後燃料噴射開始に伴う圧力脈動が生じ、燃料圧力は上昇し(図5(B) 、C点)、燃料噴射率は増大を続ける(図5(A) )。そして、燃料噴射弁が閉弁すると(図5、B点)燃料噴射率は急激に低下し(図5(A) )、燃料圧力は閉弁に伴って急上昇する(図5(B) )。そして、燃料噴射弁閉弁後、閉弁動作に伴う圧力波の反射により燃料圧力の脈動が発生する(図5(B) 、区間D)。
【0034】
一方、高圧燃料通路11に絞りのみを設けた場合(カーブIII)では、燃料噴射弁閉弁後(図5(B) 、区間D)での圧力脈動幅は絞りを設けない場合(カーブI)に対して大幅に小さくなる。しかし、この場合には、燃料噴射期間の後半では絞りの大きな抵抗のために燃料噴射弁に流入する燃料流量が絞りを設けない場合(カーブI)に較べて低下してしまい、燃料圧力が低くなり(図5(B) )、それに伴って燃料噴射率が低下するようになる(図5(A) )。
【0035】
一方、本実施形態のオリフィスピース100を高圧燃料配管11に配置した場合(カーブII)では、前述した出口側テーパー部115を設けた効果により燃料噴射期間後期に燃料噴射弁に流入する燃料量は絞りを設けない場合(カーブI)に較べて殆ど低下せず、燃料圧力もわずかに低下するのみとなる(図5(B) )。このため、燃料噴射率は絞りを設けない場合(カーブI)とほぼ同一となり、燃料噴射期間後期における燃料噴射率の低下が生じない。また、前述したように、入口側テーパー部111が逆方向の流れに対しては大きな抵抗として作用するため、燃料噴射終了後の圧力脈動幅は絞りを設けない場合に較べて低減され、圧力脈動は短時間で減衰するようになる(図5(B) )。
【0036】
前述したように、燃料噴射終了後の圧力脈動は次の燃料噴射の燃料噴射量、噴射時期に影響を及ぼす場合がある。特に、主燃料噴射に先立ってパイロット燃料噴射を行うディーゼル機関では、パイロット燃料噴射終了後の燃料圧力脈動が主燃料噴射の噴射量や噴射時期に影響を与える場合がある。このため、燃料噴射終了後の燃料圧力脈動は早期に減衰させる必要がある。
【0037】
図6(A) 、(B) はパイロット燃料噴射を行った場合の圧力脈動の圧力脈動の燃料噴射量に与える影響を説明する図である。図6(B) は、図6(A) に示すように、パイロット燃料噴射でQの量の燃料を噴射し、インターバルTの後に所定時間の主燃料噴射量を行う場合に、インターバルTを変化させたときの合計燃料噴射量(すなわち、パイロット燃料噴射量Qと主燃料噴射量Qとの合計量Q+Q)の変化を示している。
【0038】
前述したように、インターバルTの期間はパイロット燃料噴射により燃料噴射弁入口の圧力が変動するため、インターバルが変化すると主燃料噴射開始時の燃料噴射圧力が変化する。このため、主燃料噴射期間を同一に維持した場合でも、燃料噴射量はインターバルTに応じて変動するようになる。
図6(B) においても、図5(A) 、(B) と同様にカーブIは高圧燃料噴射通路11に絞りを設けない場合を、カーブIIは本実施形態のオリフィスピース100を設けた場合を、カーブIIIは両側にテーパー部を有さない絞りのみを設けた場合を、それぞれ示している。図6(B) に示すように、絞りを設けない場合(カーブI)は、パイロット燃料噴射終了後の燃料圧力脈動が大きいため、インターバルTを変えた場合の合計燃料噴射量の変動幅が最も大きくなり、絞りのみを設けた場合(カーブIII)とオリフィスピース100を設けた場合(カーブII)ではいずれも合計燃料噴射量の変動幅はカーブIに較べて小さくなることがわかる。このため、本実施形態のオリフィスピース100を設けた場合には、燃料噴射期間中の燃料噴射率の低下が防止され(図5(A) )、更にパイロット燃料噴射と主燃料噴射とのインターバルTを変化させた場合にも燃料噴射量の変動が少なくなり、正確な燃料噴射制御が可能となることが判る。
【0039】
次に、図7と図8とを用いて本発明の上記とは別の実施形態について説明する。上述の実施形態では、コモンレール3と高圧燃料配管11との接続部にオリフィスピース100を介挿して、管継手で固定していたのに対して、以下の実施形態では、独立したオリフィスピース100を設けていない点が相違している。
すなわち、図7では、入口テーパー部111、細径絞り部113及び出口側テーパー部115は、コモンレール3の壁内に形成されている。また、図8では、コモンレール3と高圧燃料配管11との接続に使用する管継手(ユニオン)80内に入口テーパー部111、細径絞り部113及び出口側テーパー部115とが形成されている。図7と図8の実施形態では、いずれもテーパー部111、115のテーパー拡がり角は、図2、図3の実施形態と同じに設定されている。図7と図8の実施形態によれば、別体のオリフィスピース100が必要とされないため、装置全体の部品点数を低減し、組み付け工程を簡略化することが可能となる。
【0040】
【発明の効果】
本発明によれば、コモンレール式燃料噴射装置に適用した場合にコモンレール側から各燃料噴射弁側への燃料の流動抵抗を充分に小さく維持しつつ、しかも各燃料噴射弁側からコモンレール側への燃料の流動抵抗を充分に大きくすることが可能となり、燃料噴射制御の精度が向上するという効果を奏する。
【図面の簡単な説明】
【図1】本発明を自動車用ディーゼル機関に適用した場合の燃料噴射装置全体の概略構成の一例を説明する図である。
【図2】本発明の第1の実施形態を説明する図である。
【図3】図2の燃料流路詳細を説明する図である。
【図4】出口側テーパー部の拡がり角による流路抵抗の変化を説明する図である。
【図5】燃料噴射期間中の燃料噴射率と燃料圧力の変化を説明する図である。
【図6】パイロット燃料噴射実施時の燃料噴射インターバルの変化による燃料噴射量の変動を説明する図である。
【図7】本発明の第2の実施形態を説明する図である。
【図8】本発明の第3の実施形態を説明する図である。
【符号の説明】
1…ディーゼル機関
3…コモンレール
10a〜10d…燃料噴射弁
11a〜11d…高圧燃料配管
100…オリフィスピース
110…燃料通路
111…入口側テーパー部(第1のテーパー部)
113…細径絞り部
115…出口側テーパー部(第2のテーパー部)
α…入口側テーパー部の拡がり角(第1のテーパー部の壁面傾斜角)
β…出口側テーパー部の拡がり角(第2のテーパー部の壁面傾斜角)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection device, and in particular, distributes fuel from a pressure storage chamber (common rail) for storing high-pressure fuel to each fuel injection valve, such as a common rail type fuel injection device for an internal combustion engine, for example. The present invention relates to a fuel injection device that intermittently performs fuel injection from a fuel injection device.
[0002]
[Prior art]
2. Description of the Related Art There is known a common rail type fuel injection device in which a pressure accumulation chamber (common rail) for storing high pressure fuel is provided, and each fuel injection valve is connected to the common rail to distribute high pressure fuel in the common rail to each fuel injection valve. In the common rail fuel injection device, the pressure in the common rail (that is, the injection pressure from each fuel injection valve) is maintained at a desired value according to the engine operating state by controlling the amount of fuel pumped from the high-pressure fuel pump to the common rail. It is possible to do. For this reason, in the common rail type fuel injection device, for example, unlike a conventional engine drive type fuel injection pump (jerk type pump), it is possible to maintain a high fuel injection pressure even when the engine is running at a low speed. This also has the advantage that the combustion state of the engine is improved because the atomization of the injected fuel is improved.
[0003]
However, in the common rail type fuel injection device, high-pressure (for example, 100 to 150 MPa) fuel injection is performed, so that a large pressure fluctuation occurs at the start and end of fuel injection in each fuel injection valve. This pressure fluctuation propagates to the common rail via a fuel supply pipe connecting the fuel injection valve and the common rail, and is reflected in a complicated manner to cause a fluctuation in the injection pressure of the fuel injection valve. For example, when the pressure fluctuation at the fuel injection valve at the end of fuel injection is reflected on the common rail and returns to the fuel injection valve again, the pressure in the fuel supply pipe pulsates even after the end of fuel injection until the pressure fluctuation attenuates. Therefore, for example, in a case where pilot fuel injection is performed prior to main fuel injection in a diesel engine or the like, main fuel injection is started before pressure fluctuations in the fuel supply pipe caused by pilot fuel injection attenuate. In some cases, the injection amount and the injection timing of the main fuel injection may be incorrect.
[0004]
Further, since each fuel injection valve is connected to a common common rail, the pressure fluctuation caused by the fuel injection operation of one fuel injection valve is reflected in the common rail and is reflected on the pressure of the fuel supply pipe of another fuel injection valve. Will also have an effect.
In order to prevent the influence of the pressure fluctuation of each fuel injection valve, a connecting section of the fuel supply pipe to the common rail and each fuel injection valve is generally provided with a flow path cross-sectional reduction portion such as an orifice. The pulsation of the pressure is attenuated in a short time by the road resistance.
[0005]
In this case, in order to attenuate the pressure pulsation in a short time, it is preferable to set the orifice diameter as small as possible. However, when the orifice diameter is set to be small, the resistance of the orifice becomes large, and there is a problem that the fuel flow from the common rail to each fuel injection valve is reduced. That is, if the diameter of the orifice is reduced to a certain degree or more, the injection pressure during fuel injection decreases, and the fuel injection period for injecting a required amount of fuel becomes longer. On the other hand, if the injection pressure of each fuel injection valve during fuel injection is to be maintained at a sufficiently high value, the orifice diameter cannot be reduced to a certain level or less, and the problem of insufficient attenuation of pressure pulsation occurs. Occurs.
[0006]
In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 9-112380 proposes disposing a fluid diode in a fuel pipe connecting a common rail and each fuel injection valve. In the fluid diode described in Japanese Patent Application Laid-Open No. Hei 9-112380, a large diameter hole, a tapered tubular hole, and an orifice hole are continuously formed from the common rail side toward the fuel injection valve side. In the fluid diode of the publication, the fuel flowing from the common rail side to the fuel injection valve side flows from the large-diameter hole to the orifice hole through the constricted tapered hole, so that the flow resistance is relatively small. The fuel flow from the fuel injection valve to the common rail due to the pressure pulsation of the fuel injection valve flows directly into the orifice hole. In this case, only the pressure pulsation is attenuated in a short time without reducing the pressure pulsation.
[0007]
[Problems to be solved by the invention]
However, when a fluid diode as disclosed in Japanese Patent Application Laid-Open No. 9-112380 is used, the flow resistance of the fuel flowing from the common rail side to the fuel injection valve side is slightly reduced as compared with a normal orifice, but still is not. It has a large value. For this reason, even when the fluid diode of the above publication is used, if the orifice hole diameter is reduced to sufficiently reduce pressure pulsation, fuel supply from the common rail side to the fuel injection valve side becomes insufficient, and the injection pressure during fuel injection is reduced. Is reduced.
[0008]
In view of the above problems, the present invention, when applied to a common rail type fuel injection device, keeps the flow resistance of fuel from the common rail side to each fuel injection valve side sufficiently small, and furthermore, from each fuel injection valve side to the common rail side. It is an object of the present invention to provide a fuel injection device capable of sufficiently increasing the flow resistance of fuel to the fuel injection device.
[0009]
[Means for Solving the Problems]
According to the present invention, in a fuel injection device including a pressure accumulator that stores pressurized fuel, and a fuel injection valve that is connected to the pressure accumulator and injects fuel supplied from the pressure accumulator,
A throttle formed of a flow path cross-sectional area reducing portion is provided in a fuel supply flow path from the pressure accumulation chamber to the fuel injection valve, and a reduced pipe having a predetermined wall surface inclination angle in a fuel supply flow path from the pressure accumulation chamber to the throttle. The throttle is connected via a first taper portion of the first, and the throttle is connected via a second expanded taper portion having a predetermined wall surface inclination angle in a fuel supply flow path from the throttle to the fuel injection valve. A fuel injection device is provided, wherein the fuel injection device is connected and the wall inclination angle of the second taper portion is set smaller than the wall inclination angle of the first taper portion.
[0010]
That is, in the present invention, similarly to the related art, a throttle is provided in the fuel supply flow path, and a tapered portion is provided on the inlet side (common rail side) of the throttle. However, in the present invention, a taper portion is further provided on the outlet side (fuel injection valve side) of the throttle, and the inclination angle of the wall surface of the taper portion (second taper portion) on the outlet side is adjusted to the taper portion on the inlet side (first taper portion). (Tapered portion) of FIG.
[0011]
When a throttle is provided in the flow channel, the flow resistance of the fuel flowing into the throttle at the entrance side of the flow channel increases because the flow channel is rapidly reduced at the throttle inlet. The above-described fluid diode of the prior art has a tapered tubular shape on the inlet side of the flow channel to reduce the flow resistance of the fuel flowing into the throttle. Further, in the prior art, since the tapered portion is not provided at the throttle outlet, the flow flowing into the throttle rapidly decreases in the reverse direction (flow from the fuel injection valve toward the common rail), and the flow resistance increases. I do. That is, in the conventional fluid diode, by providing a taper only on the throttle inlet side, the resistance to the flow in the forward direction (flow from the common rail to the fuel injection valve) is small, and the flow in the reverse direction (from the fuel injection valve to the common rail). The purpose of this is to increase the resistance of the forward flow.
[0012]
However, as will be described later, it has been found that the actual flow resistance of the fluid passing through the throttle greatly changes not only depending on the shape of the throttle outlet but also on the shape of the throttle outlet. That is, if the flow path is abruptly expanded on the outlet side of the throttle, the vortex loss due to the rapid expansion of the flow path becomes very large, and the flow path resistance increases.
For this reason, even if a constricted tubular taper portion is provided on the inlet side of the throttle as in the prior art, if the outlet side has a shape in which the flow path suddenly expands discontinuously, the flow path due to the provision of the taper section on the inlet side The influence of the increase in resistance due to the rapid expansion of the flow path on the outlet side becomes dominant rather than the decrease in resistance, and the flow path resistance of the throttle portion for forward flow as a whole hardly decreases compared to the case where only the throttle is provided. For this reason, in the prior art, although the effect of reducing the pressure pulsation due to the increase in the flow resistance in the reverse direction (from the fuel injector to the common rail) is seen, the flow resistance of the flow in the forward direction (from the common rail to the fuel injector) is increased. Does not substantially decrease as compared with the case where the throttle is merely provided, and there is a problem that the fuel supply to the fuel injector during the fuel injection period is still insufficient.
[0013]
On the other hand, in the present invention, the taper portion is provided not only on the inlet side of the throttle but also on the outlet side, and the outlet taper portion of the throttle is more inclined to the wall surface than the inlet taper (the taper tilt angle). Is made smaller. As described above, the provision of the tapered portion on the outlet side of the throttle not only causes no loss due to the rapid contraction of the flow path at the inlet of the throttle, but also causes a rapid expansion loss of the flow path at the outlet of the throttle in the forward flow. As a result, the flow path resistance to the forward flow is greatly reduced as compared with the case where only the throttle is provided.
[0014]
In the present invention, the inclination angle of the taper on the inlet side of the throttle is larger than the taper inclination angle on the outlet side of the throttle. The taper on the inlet side of the throttle functions as a taper on the outlet side of the throttle with respect to the flow in the opposite direction. However, if the inclination of the taper is large, the vortex loss due to rapid expansion of the flow path increases. As described above, the taper on the outlet side of the throttle is relatively gentle for the flow in the forward direction, so that the flow path does not suddenly expand and the flow path resistance of the forward flow becomes smaller, Since the taper has a relatively large slope, the flow in the reverse direction causes an increase in resistance due to the sudden expansion of the flow path at the throttle outlet. For this reason, in the present invention, the flow resistance in the forward direction of the fuel supply flow path (the direction from the common rail to the fuel injection valve) is significantly reduced as compared with the case where only the throttle is provided, but the flow resistance in the reverse direction ( The flow path resistance hardly decreases for the flow in the direction from the fuel injector to the common rail).
[0015]
Therefore, the flow in the reverse direction through the flow path due to the pressure fluctuation in the injection of the fuel injection valve is blocked by the large resistance, while the flow in the forward direction through the flow path is not affected by the resistance. For this reason, in the present invention, although the pressure fluctuation due to the fuel injection attenuates in a short time, a sufficient amount of fuel is supplied to the fuel injection valve during the fuel injection period, and the fuel injection pressure decreases during the fuel injection period. Does not occur.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of an embodiment in which the fuel injection device of the present invention is applied to an automobile diesel engine.
1, reference numeral 1 denotes an internal combustion engine (in this embodiment, a four-cylinder four-cycle diesel engine having four cylinders # 1 to # 4 is used); 10a to 10d denote the internal combustion engines # 1 to # 4 of the engine 1; 2 shows a fuel injection valve that injects fuel directly into each cylinder. The fuel injection valves 10a to 10d are connected to a common accumulator (common rail) 3 via high-pressure fuel pipes (fuel supply passages) 11a to 11d, respectively. The common rail 3 has a function of storing pressurized fuel supplied from the high-pressure fuel injection pump 5 and distributing the stored high-pressure fuel to the fuel injection valves 10a to 10d via the high-pressure fuel pipes 11a to 11d.
[0017]
In the present embodiment, the high-pressure fuel injection pump 5 is, for example, a plunger-type pump having a discharge amount adjusting mechanism, and boosts fuel supplied from a fuel tank (not shown) to a predetermined pressure and supplies the fuel to the common rail 3. The amount of fuel pumped from the pump 5 to the common rail 3 is feedback-controlled by the ECU 20 so that the common rail 3 pressure becomes the target pressure. Therefore, the fuel pressure of the common rail 3 (that is, the fuel injection pressure of each fuel injection valve) can be set to a high pressure even when the engine is running at a low speed. When each of the fuel injection valves 10a to 10d is opened, high-pressure fuel is injected from the common rail 3 into each cylinder through each fuel injection valve, but the volume of the common rail 3 is much larger than a single fuel injection amount. Therefore, during the fuel injection period of each fuel injection valve 10, the fuel pressure of the common rail 3 (that is, the fuel injection pressure) is maintained substantially constant.
[0018]
In FIG. 1, reference numeral 20 denotes an electronic control unit (ECU) that controls the engine. The ECU 20 is configured as a microcomputer having a known configuration in which a read-only memory (ROM), a random access memory (RAM), a microprocessor (CPU), and an input / output port are connected by a bidirectional bus. In the present embodiment, the ECU 20 controls the discharge amount of the fuel pump 5 to control the pressure of the common rail 3 to a target value determined according to the engine operating conditions, and also performs the fuel pressure control of the fuel injection valves 10a to 10d. Basic control of the engine such as fuel injection control for controlling the injection timing and injection amount of the main fuel injection by controlling the valve opening operation such as the valve opening timing and time is performed.
[0019]
In order to perform these controls, in the present embodiment, the common rail 3 is provided with a fuel pressure sensor 27 for detecting the fuel pressure in the common rail, and an accelerator opening degree near the accelerator pedal (not shown) of the engine 1. An accelerator opening sensor 21 for detecting (a driver's accelerator pedal depression amount) is provided. In FIG. 1, reference numeral 23 denotes a cam angle sensor for detecting the rotational phase of the camshaft of the engine 1, and reference numeral 25 denotes a crank angle sensor for detecting the rotational phase of the crankshaft. The cam angle sensor 23 is disposed near the camshaft of the engine 1 and outputs a reference pulse every 720 degrees in terms of a crank rotation angle. The crank angle sensor 25 is disposed near the crankshaft of the engine 1 and generates a crank angle pulse at every predetermined crank rotation angle (for example, every 15 degrees).
[0020]
The ECU 20 calculates the engine speed from the frequency of the crank rotation angle pulse signal input from each of the crank sensors 25, and based on the accelerator opening signal input from the accelerator opening sensor 21 and the engine speed, the fuel injection valve 10a The fuel injection timing and the fuel injection amount of 10d are calculated from the above. In the present embodiment, any known method can be used to calculate the fuel injection timing and the fuel injection amount from the fuel injection valve.
[0021]
During the fuel injection period, when the fuel injection valve is opened, fuel flows from the common rail 3 through the high pressure fuel pipes 11a to 11d (hereinafter collectively referred to as the high pressure fuel pipe 11) and the fuel is injected from the fuel injection valves 10a to 10d (hereinafter referred to as the fuel injection valve 10). Collectively). When the fuel injection stops and the fuel injection valve closes, the flow of the fuel is suddenly shut off, and the fuel injection valve generates a pressure wave due to the flow interruption. The pressure wave returns to the common rail 3 through the high-pressure fuel pipe 11, and a part of the pressure wave propagates from the common rail 3 to another high-pressure fuel pipe, and a part of the pressure wave is reflected at the entrance of the common rail 3 and propagates again to the fuel injection valve 10. I do. For this reason, when the fuel injection is stopped, the fuel supply pressure of the fuel injector fluctuates due to the reflected pressure wave.
[0022]
This pressure fluctuation can be attenuated in a short time by providing a throttle in the high-pressure fuel passage 11 and blocking the flow of fuel from the fuel injection valve 10 toward the common rail 3. However, if a throttle is provided in the high-pressure fuel passage 11, a large resistance occurs in the flow of fuel from the common rail 3 toward the fuel injection valve 10 during fuel injection, and the fuel injection pressure in the fuel injection valve 10 decreases during fuel injection. In addition, there is a problem that the fuel injection time for injecting a required amount of fuel increases.
[0023]
In this embodiment, as shown in FIG. 2, an orifice piece 100 having a restrictor having tapered portions on both sides is formed in each of the high-pressure fuel pipes 11 (more precisely, the connection between the high-pressure fuel pipe 11 and the common rail 3). The above problem is solved by the insertion. In FIG. 1, 3 indicates a common rail, and 11 indicates a high-pressure fuel pipe. Numeral 3a denotes a fuel passage formed of a fine hole formed in the common rail wall. Since high-pressure fuel (for example, about 100 to 150 MPa) is stored in the common rail 3a, it is preferable to make the hole diameter as small as possible when providing a through-hole in the common rail 3 in terms of the strength of the common rail. Therefore, in this embodiment, the diameter of the fuel passage 3a formed in the common rail wall is set small. The fuel passage 3a also functions as a throttle in a fuel supply path from the common rail to the fuel injection valve. In the present embodiment, since the orifice piece 100 is provided to prevent pressure fluctuations in the high-pressure fuel passage 11, the fuel passage 3a does not need to function as a throttle, but as described above, the fuel passage 3a has a high strength due to the strength of the common rail 3. Since it is preferable that the diameter of the fuel passage 3a is small, a small diameter passage is formed as the fuel passage 3a as in the related art.
[0024]
The orifice piece 100 of the present embodiment has a small-diameter end 103 fitted into the inner diameter portion of the high-pressure fuel pipe 11 and a large-diameter end 105 received at the orifice piece connection portion of the common rail 3. As shown in FIG. 2, the high-pressure fuel pipe 11 and the common rail 3 are firmly connected to each other by a joint (not shown) with the orifice piece 100 interposed therebetween.
[0025]
In the orifice piece 100, a fuel passage 110 including an inlet side tapered portion 111, a small-diameter throttle portion 113, and an outlet side tapered portion 115 is formed inside.
FIG. 3 is an enlarged view illustrating the shape of the fuel passage 110.
As shown in FIG. 3, the inlet side tapered portion 111 is formed on the inlet side (common rail side) of the small-diameter constricted portion 113, and has a reduced tubular shape when viewed in the forward direction of the flow (the direction from the common rail to the fuel injection valve). It is a taper. In the present embodiment, the wall surface inclination angle (taper divergence angle, indicated by α in FIG. 3) of the inlet-side taper portion 111 is set to 120 ° or more.
[0026]
The outlet-side taper portion 115 is formed on the outlet side (the fuel injection valve side) of the small-diameter throttle portion 113, and has an expanded tubular taper when viewed in the forward direction of the flow. In the present embodiment, the wall surface inclination angle (indicated by β in FIG. 3) of the outlet side taper portion 115 is set to an angle of 7 to 8 degrees (about 7.5 degrees), and the wall surface inclination angle of the outlet side taper portion 115 is set. Is smaller than the wall surface inclination angle of the entrance side tapered portion 111.
[0027]
Next, a function of the outlet side tapered portion 115 in the present embodiment will be described.
Assuming that the outlet side taper portion 115 is not provided, the flow of the fuel flowing out from the small-diameter throttle portion 113 to the outlet side is suddenly expanded at the outlet of the small-diameter throttle portion 113, and the narrow-diameter throttle portion 113 is formed. A vortex region is formed around the outlet of the 113, and a large pressure loss occurs at the outlet of the small-diameter throttle unit 113 in the fuel flow due to the formation of the vortex. This pressure loss is quite large, for example, the taper part on the inlet side111Is provided, the effect of reducing the pressure loss due to the rapid contraction of the flow path in the forward direction is almost offset. On the other hand, if the outlet-side taper portion 115 is provided at the outlet of the small-diameter throttle portion 113 as shown in FIG. 3, the flow path of the fuel gradually expands from the small-diameter throttle portion 113 to the high-pressure fuel pipe 11. The loss due to rapid road expansion is reduced.
[0028]
However, the effect of preventing the rapid expansion of the flow path by the outlet-side tapered portion 115 changes in accordance with the expansion angle β of the taper. FIG. 4 is a diagram illustrating a change in pressure loss of the fuel flow passing through the outlet side taper portion 115 when the divergence angle β of the outlet side taper portion 115 is changed. As shown in FIG. 4, as the divergence angle β increases, the pressure loss increases accordingly. For example, when β = 0 (when a straight pipe is connected to the outlet of the small-diameter throttle unit 113),Equivalent to) To β = β1In the meantime, even if β is increased, the pressure loss hardly increases. That is, the divergence angle β is β1Even if the pressure loss is below, β = β1Hardly decreases from the case of The spread angle β is β1Exceeds β, the pressure loss increases relatively rapidly as β increases, but the divergence angle β becomes β22> Β1), The pressure loss hardly increases even if the divergence angle β is further increased. That is, β is an angle β2As described above, even if the outlet side taper portion is provided, the pressure loss increases to substantially the same as when the taper portion is not provided (that is, β = 180 degrees).
[0029]
Therefore, in the present embodiment, the divergence angle of the outlet side taper portion 115 is β1Is set to As a result of experiments, it has been found that this angle is about 7.5 degrees. Thereby, the flow resistance of the forward flow through the flow path 110 of the orifice piece 100 is practically minimized.
Furthermore, in the present embodiment, the divergence angle α of the entrance-side taper portion 111 is2It is set to the above value. β2Is about 120 degrees as a result of an experiment, and in this embodiment, the divergence angle α of the inlet-side tapered portion 111 is α ≧ 120 degrees (α <180 degrees). The divergence angle of the entrance side taper portion 111 is β2The reason for the above setting is to increase the pressure loss of the flow in the reverse direction (the direction from the fuel injector side to the common rail side) passing through the flow passage 110. In other words, the inlet-side taper portion 111 prevents the flow path from abruptly contracting and reduces the pressure loss for the forward flow, but functions as the outlet-side taper portion for the reverse flow. By increasing the divergence angle α, the pressure loss of the flow in the opposite direction through the flow path 110 can be increased. That is, by setting the divergence angle α of the inlet-side tapered portion 111 to 120 degrees or more, it is possible to increase the pressure loss of the reverse flow while maintaining the effect of reducing the pressure loss of the forward flow.
[0030]
For this reason, in the orifice piece 100 of the present embodiment, in addition to the pressure loss in the small-diameter constricted portion 113, the flow in the reverse direction (the direction from the fuel injection valve toward the common rail) passing through the flow path 110 is also reduced. , A pressure loss due to the rapid expansion of the flow path occurs, and the flow path 110 gives a large resistance to the flow in the reverse direction. On the other hand, in the forward flow through the flow channel 110, the pressure loss due to the rapid taper of the flow channel is reduced by the inlet-side tapered portion 111, and the pressure loss due to the rapid expansion of the flow channel is further significantly reduced by the taper portion 115 at the outlet side. . For this reason, the flow path 110 gives only a resistance to the flow in the forward direction, which is as small as the pipe resistance of the small-diameter constricted portion 113. For this reason, the orifice piece 100 of the present embodiment has a characteristic that the flow path resistance is small for the forward flow and large for the reverse flow.
[0031]
Therefore, when the orifice piece 100 of the present embodiment is disposed in the fuel flow path between the common rail 3 and the fuel injection valve 10, the flow of fuel in the opposite direction due to the pressure fluctuation is effectively attenuated, and the pressure fluctuation is greatly attenuated. Nevertheless, since the influence on the fuel flow in the forward direction is small, a sufficient amount of fuel is supplied to the fuel injection valve during the fuel injection period, and the fuel injection pressure does not decrease.
[0032]
FIGS. 5A and 5B are diagrams for explaining the effect when the orifice piece 100 of the present embodiment is provided, based on actual measurement results.
FIG. 5A shows a change in the fuel injection rate of the fuel injection valve 10 during the fuel injection period, and FIG. 5B shows a change in the fuel pressure at the fuel injection valve inlet. 5 (A) and 5 (B), the curve I does not have a throttle in the high-pressure fuel passage 11 (that is, the fuel passage 3a has a small diameter portion in the fuel supply passage, and the fuel passage 3a penetrates the wall of the common rail 3). Curve II shows the case where the orifice piece 100 of the present embodiment is provided, and curve III shows only the throttle (only the small diameter throttle having no tapered portions on both sides) provided in the high-pressure fuel passage. Each case is shown. 5 (A) and 5 (B), point A indicates the start of fuel injection (when the fuel injection valve is opened), and point B indicates the end of fuel injection (when the fuel injection valve is closed).
[0033]
First, a case where no throttle is provided in the high-pressure fuel passage 11 (curve I) will be described. In this case, when the fuel injection valve is opened and fuel injection is started (point A), the fuel injection rate sharply increases (FIG. 5 (A)). The fuel pressure decreases (FIG. 5B). However, after that, pressure pulsation occurs with the start of fuel injection, the fuel pressure rises (points C and B in FIG. 5B), and the fuel injection rate continues to increase (FIG. 5A). When the fuel injection valve closes (point B in FIG. 5), the fuel injection rate sharply decreases (FIG. 5A), and the fuel pressure sharply increases with the valve closing (FIG. 5B). Then, after the fuel injection valve is closed, pulsation of the fuel pressure occurs due to reflection of the pressure wave accompanying the valve closing operation (FIG. 5B, section D).
[0034]
On the other hand, when only the throttle is provided in the high-pressure fuel passage 11 (curve III), the pressure pulsation width after closing the fuel injection valve (FIG. 5B, section D) is when no throttle is provided (curve I). Significantly smaller. However, in this case, in the latter half of the fuel injection period, the flow rate of the fuel flowing into the fuel injection valve is reduced as compared with the case where no throttle is provided (curve I) due to the large resistance of the throttle, and the fuel pressure is reduced. (FIG. 5 (B)), and the fuel injection rate decreases accordingly (FIG. 5 (A)).
[0035]
On the other hand, when the orifice piece 100 of the present embodiment is arranged in the high-pressure fuel pipe 11 (curve II), the amount of fuel flowing into the fuel injection valve in the latter half of the fuel injection period is reduced by the effect of the provision of the outlet taper portion 115 described above. As compared with the case where no throttle is provided (curve I), the pressure hardly decreases, and the fuel pressure only slightly decreases (FIG. 5B). For this reason, the fuel injection rate is almost the same as when the throttle is not provided (curve I), and the fuel injection rate does not decrease in the latter half of the fuel injection period. Further, as described above, since the inlet-side tapered portion 111 acts as a large resistance against the flow in the reverse direction, the pressure pulsation width after the end of the fuel injection is reduced as compared with the case where no throttle is provided, and the pressure pulsation is reduced. Is attenuated in a short time (FIG. 5B).
[0036]
As described above, the pressure pulsation after the end of the fuel injection may affect the fuel injection amount and the injection timing of the next fuel injection in some cases. In particular, in a diesel engine that performs pilot fuel injection prior to main fuel injection, the fuel pressure pulsation after the end of pilot fuel injection may affect the injection amount and injection timing of main fuel injection. For this reason, it is necessary to attenuate the fuel pressure pulsation immediately after the end of the fuel injection.
[0037]
FIGS. 6A and 6B are diagrams for explaining the effect of the pressure pulsation on the fuel injection amount when pilot fuel injection is performed. FIG. 6 (B) shows Q in pilot fuel injection as shown in FIG. 6 (A).1When the main fuel injection amount is injected for a predetermined time after the interval T, the total fuel injection amount when the interval T is changed (that is, the pilot fuel injection amount Q1And main fuel injection quantity Q2And the total amount Q1+ Q2).
[0038]
As described above, during the interval T, the pressure at the fuel injection valve inlet fluctuates due to the pilot fuel injection. Therefore, when the interval changes, the fuel injection pressure at the start of the main fuel injection changes. Therefore, even when the main fuel injection period is kept the same, the fuel injection amount fluctuates according to the interval T.
In FIG. 6B, as in FIGS. 5A and 5B, curve I represents the case where no throttle is provided in the high-pressure fuel injection passage 11, and curve II represents the case where the orifice piece 100 of the present embodiment is provided. Curve III shows a case where only a stop having no tapered portion is provided on both sides. As shown in FIG. 6B, when the throttle is not provided (curve I), the fuel pressure pulsation after the end of the pilot fuel injection is large, so that the variation width of the total fuel injection amount when the interval T is changed is the largest. It can be seen that the fluctuation width of the total fuel injection amount is smaller than that of the curve I in both the case where only the throttle is provided (curve III) and the case where the orifice piece 100 is provided (curve II). For this reason, when the orifice piece 100 of this embodiment is provided, a decrease in the fuel injection rate during the fuel injection period is prevented (FIG. 5A), and the interval T between the pilot fuel injection and the main fuel injection is further reduced. It can be seen that the variation of the fuel injection amount is reduced even when is changed, and that accurate fuel injection control becomes possible.
[0039]
Next, another embodiment of the present invention will be described with reference to FIGS. In the above-described embodiment, the orifice piece 100 is inserted into the connection portion between the common rail 3 and the high-pressure fuel pipe 11 and fixed with a pipe joint. In the following embodiment, an independent orifice piece 100 is connected. The difference is that they are not provided.
That is, in FIG.~ sideThe tapered portion 111, the small-diameter throttle portion 113, and the outlet-side tapered portion 115 are formed in the wall of the common rail 3. In FIG. 8, an inlet is provided in a pipe joint (union) 80 used to connect the common rail 3 and the high-pressure fuel pipe 11.~ sideA taper portion 111, a small-diameter throttle portion 113, and an outlet-side taper portion 115 are formed. In the embodiments of FIGS. 7 and 8, the taper divergence angles of the tapered portions 111 and 115 are set to be the same as those in the embodiments of FIGS. According to the embodiment of FIGS. 7 and 8, since a separate orifice piece 100 is not required, the number of parts of the entire apparatus can be reduced and the assembling process can be simplified.
[0040]
【The invention's effect】
According to the present invention, when applied to a common rail type fuel injection device, the flow resistance of fuel from the common rail side to each fuel injection valve side is kept sufficiently small, and the fuel flow from each fuel injection valve side to the common rail side is maintained. Thus, the flow resistance of the fuel injection can be sufficiently increased, and the accuracy of the fuel injection control can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a schematic configuration of an entire fuel injection device when the present invention is applied to an automobile diesel engine.
FIG. 2 is a diagram illustrating a first embodiment of the present invention.
FIG. 3 is a diagram illustrating details of a fuel flow path in FIG. 2;
FIG. 4 is a diagram illustrating a change in flow path resistance due to a divergence angle of an outlet-side tapered portion.
FIG. 5 is a diagram illustrating changes in fuel injection rate and fuel pressure during a fuel injection period.
FIG. 6 is a diagram illustrating a change in a fuel injection amount due to a change in a fuel injection interval when performing pilot fuel injection.
FIG. 7 is a diagram illustrating a second embodiment of the present invention.
FIG. 8 is a diagram illustrating a third embodiment of the present invention.
[Explanation of symbols]
1. Diesel engine
3… Common rail
10a to 10d: fuel injection valve
11a to 11d ... High pressure fuel pipe
100 ... orifice piece
110 ... fuel passage
111 ... Inlet side taper(1st taper part)
113 ... Small diameter drawing part
115 ... Exit side taper part(2nd taper part)
α ...The divergence angle of the taper part on the inlet side (the wall inclination angle of the first taper part)
β ...The divergence angle of the outlet-side taper (the wall inclination angle of the second taper)

Claims (2)

加圧燃料を貯留する蓄圧室と、該蓄圧室に接続され蓄圧室から供給される燃料を噴射する燃料噴射弁とを備えた燃料噴射装置において、
前記蓄圧室から前記燃料噴射弁に至る燃料供給流路中に流路断面積縮小部からなる絞りを設け、前記蓄圧室から前記絞りに至る燃料供給流路に所定の壁面傾斜角を有する縮管状の第1のテーパー部を介して前記絞りを接続し、前記絞りから前記燃料噴射弁に至る燃料供給流路に所定の壁面傾斜角を有する拡管状の第2のテーパー部を介して前記絞りを接続するとともに、前記第2のテーパー部の壁面傾斜角を前記第1のテーパー部の壁面傾斜角より小さく設定したことを特徴とする、燃料噴射装置。
In a fuel injection device including a pressure accumulator that stores pressurized fuel, and a fuel injection valve that is connected to the pressure accumulator and injects fuel supplied from the pressure accumulator,
A throttle formed of a flow path cross-sectional area reducing portion is provided in a fuel supply flow path from the pressure accumulation chamber to the fuel injection valve, and a reduced pipe having a predetermined wall surface inclination angle in a fuel supply flow path from the pressure accumulation chamber to the throttle. The throttle is connected via a first taper portion, and the throttle is connected via a second expanded taper portion having a predetermined wall surface inclination angle to a fuel supply flow path from the throttle to the fuel injection valve. The fuel injection device is connected, and the wall inclination angle of the second taper portion is set smaller than the wall inclination angle of the first taper portion.
前記第1のテーパー部の壁面傾斜角がテーパー拡がり角で120度以上180度未満である、請求項1に記載の燃料噴射装置。2. The fuel injection device according to claim 1, wherein a wall inclination angle of the first tapered portion is 120 degrees or more and less than 180 degrees in a taper spread angle . 3.
JP2000177171A 2000-06-08 2000-06-08 Fuel injection device Expired - Fee Related JP3558008B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000177171A JP3558008B2 (en) 2000-06-08 2000-06-08 Fuel injection device
DE2001600030 DE60100030T2 (en) 2000-06-08 2001-06-07 Fuel injector
EP20010113920 EP1162364B1 (en) 2000-06-08 2001-06-07 Fuel injection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177171A JP3558008B2 (en) 2000-06-08 2000-06-08 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2001349261A JP2001349261A (en) 2001-12-21
JP3558008B2 true JP3558008B2 (en) 2004-08-25

Family

ID=18678804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177171A Expired - Fee Related JP3558008B2 (en) 2000-06-08 2000-06-08 Fuel injection device

Country Status (3)

Country Link
EP (1) EP1162364B1 (en)
JP (1) JP3558008B2 (en)
DE (1) DE60100030T2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217592A1 (en) * 2002-04-19 2003-11-06 Siemens Ag Injector for the injection of fuel
US6886537B2 (en) * 2002-07-04 2005-05-03 Denso Corporation Accumulation type fuel injection system for engine
FR2845129B1 (en) 2002-09-30 2006-04-28 Delphi Tech Inc INSERT OF FLUIDIC DIODE TYPE FOR ATTENUATING PRESSURE WAVES, AND COMMON RAIL EQUIPPED WITH SUCH INSERTS
US6925989B2 (en) 2003-08-18 2005-08-09 Visteon Global Technologies, Inc. Fuel system having pressure pulsation damping
DE102004030266A1 (en) 2004-06-23 2006-01-12 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
DE102004041238A1 (en) * 2004-08-26 2006-03-02 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
AU2006212024A1 (en) 2005-02-11 2006-08-17 Dynal Biotech Asa Method for isolating nucleic acids comprising the use of ethylene glycol multimers
DE102005026993A1 (en) * 2005-06-10 2006-12-14 Robert Bosch Gmbh High-pressure storage chamber body with high-pressure throttles
JP4572843B2 (en) * 2005-10-13 2010-11-04 株式会社デンソー Control device for common rail fuel injection system
DE102005057951A1 (en) 2005-12-05 2007-06-06 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
JP5178176B2 (en) * 2007-12-17 2013-04-10 臼井国際産業株式会社 Connecting head structure of high-pressure fuel injection pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356091A (en) * 1980-10-06 1982-10-26 Caterpillar Tractor Co. Filtering and dampening apparatus
JP3503784B2 (en) 1995-10-13 2004-03-08 株式会社デンソー Accumulation type fuel injection device
JPH09303232A (en) * 1996-05-09 1997-11-25 Toyota Motor Corp Injection pipe connecting structure of common rail type diesel engine
JPH09317599A (en) * 1996-05-22 1997-12-09 Usui Internatl Ind Co Ltd Common rail and manufacture thereof

Also Published As

Publication number Publication date
EP1162364A1 (en) 2001-12-12
JP2001349261A (en) 2001-12-21
EP1162364B1 (en) 2002-09-25
DE60100030D1 (en) 2002-10-31
DE60100030T2 (en) 2003-02-06

Similar Documents

Publication Publication Date Title
US8014932B2 (en) Fuel injection controller for internal combustion engine
JP3885888B2 (en) Common rail system
US6729297B2 (en) Fuel injection control device
US6854445B2 (en) Common rail fuel injection apparatus
JP5282779B2 (en) Fuel supply device for internal combustion engine
JP3558008B2 (en) Fuel injection device
US6536413B2 (en) Accumulator fuel injection apparatus for internal combustion engines
US20060005816A1 (en) Fuel injection system
US7472689B2 (en) Fuel injection system
US20120298071A1 (en) Combustion system for internal combustion engine
JPH10505648A (en) Fuel injection rate formation control system
EP1304470B1 (en) Fuel pressure control apparatus
US6457453B1 (en) Accumulator fuel-injection apparatus
JP3542211B2 (en) Accumulation type fuel injection device
JP2008050988A (en) Fuel adding device
JP3845930B2 (en) Fuel injection system for diesel engine
JPH04232374A (en) Fuel injection device
JPH09112380A (en) Accumulator fuel injection device
JP4020048B2 (en) Fuel injection device for internal combustion engine
JP3212408B2 (en) Fuel / water injection device
JP4076685B2 (en) Engine fuel supply system
JP2006002698A (en) Fuel injection device
JP2003343329A (en) Fuel injection control device of internal combustion engine
JP3040610B2 (en) Pilot injection device
JP3896917B2 (en) Fuel injection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees