JP3537156B2 - Fine particle dispersion and cosmetics - Google Patents

Fine particle dispersion and cosmetics

Info

Publication number
JP3537156B2
JP3537156B2 JP14849393A JP14849393A JP3537156B2 JP 3537156 B2 JP3537156 B2 JP 3537156B2 JP 14849393 A JP14849393 A JP 14849393A JP 14849393 A JP14849393 A JP 14849393A JP 3537156 B2 JP3537156 B2 JP 3537156B2
Authority
JP
Japan
Prior art keywords
dispersion
particles
color
water
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14849393A
Other languages
Japanese (ja)
Other versions
JPH06100432A (en
Inventor
恒夫 大久保
正文 平井
博和 田中
通郎 小松
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP14849393A priority Critical patent/JP3537156B2/en
Publication of JPH06100432A publication Critical patent/JPH06100432A/en
Application granted granted Critical
Publication of JP3537156B2 publication Critical patent/JP3537156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はオパール様の遊色を呈す
る微粒子分散液および化粧料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine particle dispersion having opal-like play color and a cosmetic.

【0002】[0002]

【従来の技術】最近になって、水または有機溶媒を分散
媒とし、光彩色を呈する分散液が知られるようになって
きた。例えば、特公平1−23411号公報には、光彩
色を呈する透明で、かつ、安定なシリカ質ゾルの製造法
が開示されている。この製造法によれば、0.2〜1μ
mの粒径で、粒径が揃った無定形シリカ球を用いてチン
ダル散光を呈するアルコール類分散液を作り、このアル
コール類分散媒を無極性溶媒で置換することにより前記
シリカ質ゾルを製造するものである。更に、同公報は光
彩色を呈する原理に関して、粒子が溶媒中で面心立方配
列をとり、配列面の重なりの間隔が光の波長程度に小さ
いため、その面に対してある角度で入射した白色光は分
光され、特定方向に特定の波長の光が回折する結果、特
定の単色光が見られ、目の位置を変えることにより、そ
の色が連続的に変化する旨説明する。
2. Description of the Related Art Recently, a dispersion liquid having a glow color using water or an organic solvent as a dispersion medium has come to be known. For example, Japanese Patent Publication No. 23411/1990 discloses a method for producing a transparent and stable siliceous sol exhibiting brilliant colors. According to this manufacturing method, 0.2 to 1 μm
The above silica-based sol is manufactured by preparing an alcohol dispersion liquid exhibiting Tyndall scattering using amorphous silica spheres having a particle diameter of m and having a uniform particle diameter, and replacing the alcohol dispersion medium with a nonpolar solvent. Things. Furthermore, the same publication describes the principle of exhibiting glowing color, because particles take a face-centered cubic arrangement in a solvent, and the interval between overlapping arrangement planes is as small as the wavelength of light. The light is split, and light of a specific wavelength is diffracted in a specific direction. As a result, a specific monochromatic light is seen, and the color changes continuously by changing the position of the eyes.

【0003】また、従来よりパール光沢をもつ化粧料が
知られている。この化粧料はパール光沢源として、雲母
や魚鱗箔などの無機物、または高級脂肪酸やその金属塩
の板状結晶など、本来パール光沢を呈する物質が配合さ
れたものであり、体質顔料としての過度の光沢を抑制し
たり、滑り性の向上を図るものである。更に、コレステ
リック液晶を配合したオパール状の光沢を呈する化粧料
も知られているが、この化粧料は使用時にべとついた
り、また、耐光性に劣るという問題点を有している。
[0003] Cosmetics having a pearly luster have been conventionally known. This cosmetic contains pearl luster as a source of inorganic substances such as mica and fish scales, or substances that originally exhibit pearl luster, such as plate crystals of higher fatty acids or metal salts thereof. The purpose is to suppress gloss and improve slipperiness. Furthermore, cosmetics exhibiting opal-like luster mixed with cholesteric liquid crystal are also known, but these cosmetics have a problem that they are sticky at the time of use and are inferior in light resistance.

【0004】[0004]

【発明の目的】本発明は、前記光彩色を呈するシリカゾ
ルではなく、全く新しいオパール様の遊色を呈する微粒
子分散液を提供することを目的とする。また、本発明は
上記したパール光沢を呈する化粧料とは異なった発色機
能により、オパール様の遊色を呈する化粧料を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fine particle dispersion exhibiting a completely new opal-like free color instead of the silica sol exhibiting the brilliant color. Another object of the present invention is to provide a cosmetic exhibiting an opal-like free color by a coloring function different from that of the cosmetic exhibiting the pearl luster described above.

【0005】[0005]

【発明の構成】本発明に係る微粒子分散液は、有機高分
子微粒子またはこれに加えて無機化合物微粒子が水およ
び/または有機溶媒中に分散したものであり、その電気
伝導度が560μS/cm以下であることを特徴とする。
前記微粒子の平均粒径は700nm以下であることが好
ましく、更に、該微粒子の粒径の変動係数が30%以下
であることが好ましい。
The fine particle dispersion according to the present invention comprises organic polymer fine particles or inorganic compound fine particles dispersed in water and / or an organic solvent, and has an electric conductivity of 560 μS / cm or less. It is characterized by being.
The average particle diameter of the fine particles is preferably 700 nm or less, and the coefficient of variation of the particle diameter of the fine particles is preferably 30% or less.

【0006】本発明に係る化粧料には前記した微粒子分
散液が配合され、オパール様の遊色を呈することを特徴
とする。
[0006] The cosmetic according to the present invention is characterized by being mixed with the fine particle dispersion described above and exhibiting an opal-like play color.

【0007】[0007]

【発明の具体的な説明】本発明の微粒子分散液は、合成
樹脂等の有機高分子の微粒子やシリカ等の無機化合物微
粒子が、水、有機溶媒、またはこれらの混合溶媒に単分
散状態で分散したものである。
DETAILED DESCRIPTION OF THE INVENTION The fine particle dispersion of the present invention is obtained by dispersing organic polymer fine particles such as synthetic resin and inorganic compound fine particles such as silica in a monodispersed state in water, an organic solvent, or a mixed solvent thereof. It was done.

【0008】有機高分子微粒子を構成する合成樹脂とし
ては、ポリスチレン、ポリエチレン、ポリ塩化ビニル、
ポリプロピレン、メタクリル樹脂、ポリカーボネート、
ポリアミド、ポリアセタール、フッ素樹脂などの熱可塑
性樹脂、または、尿素樹脂、フェノール樹脂、不飽和ポ
リエステル樹脂、ポリウレタン、アルキド樹脂、エポキ
シ樹脂、メラミン樹脂などの熱硬化性樹脂を挙げること
ができる。
As the synthetic resin constituting the organic polymer fine particles, polystyrene, polyethylene, polyvinyl chloride,
Polypropylene, methacrylic resin, polycarbonate,
Examples thereof include thermoplastic resins such as polyamide, polyacetal, and fluororesin, and thermosetting resins such as urea resin, phenol resin, unsaturated polyester resin, polyurethane, alkyd resin, epoxy resin, and melamine resin.

【0009】一方、無機化合物微粒子としては、シリ
カ、チタニア、アルミナ、ジルコニアまたはフッ化マグ
ネシウム等を挙げることができ、これらの微粒子は、粉
末や種々のゾルを出発原料として製造することもできる
が、水分散ゾルやオルガノゾルなどの微粒子分散ゾルを
用いるのが好適である。本発明の微粒子分散液は、上記
有機高分子微粒子および無機化合物微粒子が、単独で
も、2種以上の微粒子が混合されたものであってもよ
い。
On the other hand, examples of the inorganic compound fine particles include silica, titania, alumina, zirconia, and magnesium fluoride. These fine particles can be produced using powder or various sols as starting materials. It is preferable to use a fine particle dispersion sol such as an aqueous dispersion sol or an organosol. In the fine particle dispersion of the present invention, the organic polymer fine particles and the inorganic compound fine particles may be used alone or as a mixture of two or more kinds of fine particles.

【0010】微粒子の平均粒径は700nm以下、特
に、10〜550nmの範囲が好ましい。700nmよ
り大きいと後述する遊色現象が目視できず、また、時間
の経過により粒子が沈降し易く、安定な分散液が得られ
にくい。他方、10nmより小さいと、明瞭な遊色が発
現しない。
The average particle size of the fine particles is preferably 700 nm or less, particularly preferably in the range of 10 to 550 nm. If it is larger than 700 nm, the color phenomena which will be described later cannot be visually observed, and the particles tend to settle with the passage of time, making it difficult to obtain a stable dispersion. On the other hand, if it is smaller than 10 nm, clear play does not appear.

【0011】微粒子の粒径は、均一であることが望まし
く、次式で示される変動係数(CV値)が30%以下で
あることが好ましい。 CV=(σ/D)×100〔%〕 ただし、上式において、σ;標準偏差、D;平均粒径で
ある。更に、個々の粒子は単分散しており、凝集粒子の
割合は全粒子数の10%以下であることが好ましい。
The particle diameter of the fine particles is desirably uniform, and the coefficient of variation (CV value) represented by the following equation is preferably 30% or less. CV = (σ / D) × 100 [%] In the above equation, σ: standard deviation, D: average particle diameter. Further, the individual particles are monodispersed, and the ratio of the aggregated particles is preferably 10% or less of the total number of particles.

【0012】分散媒としては、水、メタノール、エタノ
ール等のアルコール、エチレングリコール等の多価アル
コール、または、その他の極性を有する有機溶媒を、単
独で、或いは、1種または2種以上の混合溶媒として用
いることができる。
As the dispersion medium, water, alcohols such as methanol and ethanol, polyhydric alcohols such as ethylene glycol, and other organic solvents having polarity may be used alone or as a mixture of one or more solvents. Can be used as

【0013】本発明の微粒子分散液を製造するには、上
記の微粒子分散液から夾雑イオン(陽イオン、陰イオ
ン)を取り除き、高度に脱イオン化する。脱イオン化に
より、粒子表面の電気二重層が膨張し、粒子間に相互反
発力が作用する結果、微粒子の分散状態が安定化し、微
粒子は沈降することなく、分散液全体において一様に規
則的配列をとるようになる。
To produce the fine particle dispersion of the present invention, contaminant ions (cations and anions) are removed from the fine particle dispersion and highly deionized. By deionization, the electric double layer on the particle surface expands, and mutual repulsion acts between the particles. As a result, the dispersion state of the fine particles is stabilized, and the fine particles do not settle and are uniformly arranged in the entire dispersion. Will be taken.

【0014】一般に、このような微粒子は低pH域では
表面のOH基、SO3 H基またはCOOH基が解離して
おらず不安定であり、高pH域で安定な微粒子分散液と
なる。これに対して、本発明は比較的低pH域で前記官
能基の解離が小さくても、高度に脱イオン化することに
より、微粒子を安定化させるものである。
In general, such fine particles are unstable because the OH group, SO 3 H group or COOH group on the surface are not dissociated in a low pH range, and become a stable fine particle dispersion in a high pH range. On the other hand, the present invention stabilizes fine particles by highly deionizing even if the dissociation of the functional group is small in a relatively low pH range.

【0015】脱イオン化は、微粒子分散液を陽イオン交
換樹脂および陰イオン交換樹脂を用いてイオン交換処理
することにより行うことができる。具体的には、陽イオ
ン交換樹脂と陰イオン交換樹脂を充填したカラムに微粒
子分散液を通したり、あるいは、該分散液中にイオン交
換樹脂を混合して撹拌した後、同樹脂を分離するなどの
適宜の方法を採用する。脱イオン化の程度は電気伝導度
を測定することによって確認することができ、微粒子分
散液の電気伝導度を560μS/cm以下とすることが必
要である。
The deionization can be performed by subjecting the fine particle dispersion to an ion exchange treatment using a cation exchange resin and an anion exchange resin. Specifically, a fine particle dispersion is passed through a column filled with a cation exchange resin and an anion exchange resin, or an ion exchange resin is mixed into the dispersion and stirred, and then the resin is separated. Is adopted. The degree of deionization can be confirmed by measuring the electric conductivity, and the electric conductivity of the fine particle dispersion needs to be 560 μS / cm or less.

【0016】脱イオン化された分散液は、前述したよう
に微粒子が液中で規則性のある配列をとる結果、微結晶
(クリスタリット)の集合体に似た構造をとり、このた
めに、オパールに固有の遊色と呼ばれる現象が発現す
る。オパールにおける遊色とは、鉱物の内部または表面
において虹色が観察される現象をいい、これは主として
鉱物の内部で、面に平行ないくつかのへき開が生じ、そ
の面で反射した光が互いに干渉し合うことにより生じる
ものである。
As described above, the deionized dispersion liquid has a structure similar to an aggregate of microcrystals (crystallites) as a result of the particles having a regular arrangement in the liquid. A phenomenon called play color, which is unique to, appears. Opal play refers to the phenomenon in which iridescence is observed inside or on the surface of a mineral, mainly due to some cleavages parallel to the surface inside the mineral, and the light reflected on the surface is mutually reflected. This is caused by interference.

【0017】本発明では、前記脱イオン化した分散液に
白色光が入射すると、前記の微結晶類似構造の面により
光が分光され、特定方向に特定波長の光が回折されて単
色光が観察される。この分散液は微結晶間の粒界と同様
な不連続面が存在するので、個々の微結晶類似構造面で
の回折光が異なり、種々の色の光彩が観察され、オパー
ルに似た光学現象が現れる。
In the present invention, when white light is incident on the deionized dispersion liquid, the light is dispersed by the surface of the microcrystal-like structure, light of a specific wavelength is diffracted in a specific direction, and monochromatic light is observed. You. Since this dispersion has discontinuous planes similar to grain boundaries between microcrystals, diffracted light on individual microcrystal-like structures is different, and various colors of light are observed. Appears.

【0018】また、この遊色を発する微結晶類似構造の
大きさ、即ち、クリスタリットの大きさは粒子の大き
さ、粒度分布、濃度、夾雑イオン濃度、表面電荷密度な
どによって変化するが、通常は約0.1〜10mmであ
る。
The size of the microcrystal-like structure that emits a playful color, that is, the size of the crystallite, varies depending on the particle size, particle size distribution, concentration, impurity ion concentration, surface charge density, and the like. Is about 0.1 to 10 mm.

【0019】分散液中の粒子濃度が高くなると、粒子間
距離が次第に短くなり、クリスタリットが小さくなる。
粒子濃度として約90容量%程度でも、一応遊色現象は
発現するが、明瞭で鮮やかな遊色は発現し難くなる。従
って、美観的には約20容量%以下が好ましい。また、
0.01容量%より低くなると粒子間距離が長くなっ
て、相互反発力が作用しなくなり、やはり遊色現象が発
現しなくなる。
As the particle concentration in the dispersion increases, the distance between the particles gradually decreases, and the crystallite decreases.
Even if the particle concentration is about 90% by volume, the play phenomenon appears temporarily, but clear and vivid play color hardly appears. Therefore, from an aesthetic point of view, the content is preferably about 20% by volume or less. Also,
When the content is lower than 0.01% by volume, the distance between the particles becomes longer, the mutual repulsion does not work, and again the play-color phenomenon does not appear.

【0020】この遊色現象が発現する最低濃度、すなわ
ち、クリスタリットが生成しなくなる限界濃度は、粒径
が小さくなる程高くなり、約100nm以上では約0.
01容量%程度であるが、例えば、80nm程度または
それ以下の粒径になると、約0.1容量%以上と高くな
る。
The minimum concentration at which the play-color phenomenon occurs, that is, the critical concentration at which crystallites are not generated, increases as the particle size decreases.
Although it is about 01% by volume, for example, when the particle size is about 80 nm or less, it becomes as high as about 0.1% by volume or more.

【0021】大きなクリスタリットは、分散液中の粒子
濃度が低い方が生成し易い。また、この粒子濃度依存性
は、粒径が大きい程大きい。例えば、平均粒径が80〜
90nmでは、粒子濃度が約0.5容量%以下で3mm
以上の大きなクリスタリットが生成するが、約150n
m以上では約0.05容量%以下にならないと、3mm
またはそれ以上の大きなクリスタリットは生成しない。
Large crystallites are more likely to be formed when the particle concentration in the dispersion is lower. The particle concentration dependency increases as the particle size increases. For example, the average particle size is 80 to
At 90 nm, the particle concentration is 3 mm
The above large crystallites are generated, but about 150n
3mm if the volume is not less than about 0.05% by volume
It does not produce larger crystallites or larger.

【0022】更に、大きなクリスタリットを得るために
は、前記したように粒子の大きさが揃っている程、ま
た、分散性が良く、凝集粒子が少ない程、大きなクリス
タリットが得られる粒子濃度は低くなる。また、分散液
中にポリアクリル酸ソーダ、ラウリル硫酸ソーダ、アル
ギン酸ソーダなどの有機高分子電解質を添加することに
より、クリスタリットを得ることができる。
Further, in order to obtain a large crystallite, as described above, as the size of the particles is uniform, and as the dispersibility is good and the agglomerated particles are small, the particle concentration at which a large crystallite can be obtained is as follows. Lower. Crystallite can be obtained by adding an organic polymer electrolyte such as sodium polyacrylate, sodium lauryl sulfate, and sodium alginate to the dispersion.

【0023】なお、粒子の表面電荷密度は0.6μC/
cm2 以上が好ましく、これより小さいと、分散液中で
結晶構造をとる粒子濃度が高くなり過ぎ、結果として大
きなクリスタリットが生成しない。また、分散液の脱イ
オン操作は、できるだけ長時間かけて行う方が大きなク
リスタリットが生成し、3mm以上のクリスタリットの
場合は、20日以上が好ましい。
The surface charge density of the particles is 0.6 μC /
cm 2 or more is preferable, and when it is smaller than this, the concentration of particles having a crystal structure in the dispersion becomes too high, and as a result, large crystallites are not formed. In addition, when the operation of deionizing the dispersion is performed for as long a time as possible, a large crystallite is generated. In the case of a crystallite having a diameter of 3 mm or more, it is preferably 20 days or more.

【0024】前記遊色現象は、分散液に振動が与えられ
ると消滅する。しかし、分散液を静置すれば、短時間で
再び遊色現象が現れる。また、静置状態において、前記
遊色現象は、分散液の性状によっては、連続的に発現す
る場合と、光彩が明滅する場合がある。即ち、粒子間の
相互反発力が弱い領域、具体的には粒子濃度が低いか、
または、所定量の塩を含む水−有機溶媒の混合溶媒系な
どでは光彩が明滅する場合がある。
[0024] The play-color phenomenon disappears when vibration is applied to the dispersion. However, if the dispersion is allowed to stand still, the color phenomena appear again in a short time. Further, in the stationary state, depending on the properties of the dispersion, the play-color phenomenon may occur continuously or may cause flickering. That is, the region where the mutual repulsion between the particles is weak, specifically, the particle concentration is low,
Alternatively, in a mixed solvent system of a water-organic solvent containing a predetermined amount of a salt or the like, the glow may sometimes flicker.

【0025】続いて、本発明に係る化粧料について詳述
する。本発明の化粧料には上述したオパール様の遊色を
呈する微粒子分散液が配合される。
Next, the cosmetic according to the present invention will be described in detail. The cosmetic of the present invention is blended with the fine particle dispersion having an opal-like play color described above.

【0026】即ち、上記方法で調製した微粒子分散液
を、水、アルコール、グリセリンなどからなる化粧料組
成物中に配合する。このとき、この化粧料組成物を予め
当該微粒子分散液と同程度まで脱イオン処理しておくこ
とが好ましい。
That is, the fine particle dispersion prepared by the above method is blended into a cosmetic composition comprising water, alcohol, glycerin and the like. At this time, it is preferable that the cosmetic composition is previously deionized to the same degree as the fine particle dispersion.

【0027】化粧料中に配合される微粒子の濃度に関し
ては、その濃度が高くなると、粒子間距離が次第に短く
なり、遊色の大きさが小さくなるので、明瞭で鮮やかな
遊色現象が発現し難くなる。また、化粧料の透明感も欠
けてくる。従って、前記したように分散液の濃度として
は、約90容量%程度でも一応遊色現象は発現するが、
化粧料としては20容量%以下が美観的には好ましい。
With respect to the concentration of the fine particles blended in the cosmetic, the higher the concentration, the shorter the distance between the particles and the smaller the size of the play color, so that a clear and vivid play phenomenon occurs. It becomes difficult. In addition, the transparency of the cosmetic is also lacking. Therefore, as described above, even when the concentration of the dispersion liquid is about 90% by volume, the color phenomena are tentatively exhibited,
As a cosmetic, 20% by volume or less is aesthetically preferable.

【0028】更に、分散液の濃度が高くなると、肌に対
する感触が悪くなり、乾燥した時につっぱり感が生じた
り、肌荒れの原因ともなる。また、0.01容量%より
低くなると粒子間距離が長くなって相互反発力が作用し
なくなり、やはり遊色現象が発現しなくなる。
Further, when the concentration of the dispersion liquid is high, the feel to the skin is deteriorated, and when the dispersion is dried, a tactile sensation is caused and the skin becomes rough. On the other hand, when the content is lower than 0.01% by volume, the distance between the particles becomes longer, and the mutual repulsion does not act, so that the play-color phenomenon does not appear.

【0029】また、本発明の化粧料の製造法としては、
前記のようなオパール様の遊色を呈する分散液を配合す
る以外に、前記の如き平均粒径および変動係数を有する
微粒子、または、脱イオン前の分散液を化粧料組成物中
に配合した後、この化粧料の電気伝導度を560μS/
cm以下に脱イオン処理しても目的とする化粧料を得るこ
とができる。
Further, the method for producing the cosmetic of the present invention includes:
In addition to blending a dispersion exhibiting an opal-like play color as described above, fine particles having an average particle size and a variation coefficient as described above, or after blending the dispersion before deionization into a cosmetic composition The electric conductivity of this cosmetic is 560 μS /
The desired cosmetic can be obtained even if the deionization treatment is performed to a depth of less than cm.

【0030】本発明の化粧料としては、特に化粧水や乳
液を挙げることができる。これらの化粧料はオパール様
の遊色を呈し、その光彩が美しく特異的である。また、
前述のオパール様遊色を呈する分散液を、透明または半
透明のゼリー状物質に混合すれば、この分散液の小滴が
ゼリー状物質中に分散した化粧料組成物を得ることがで
きる。
The cosmetics of the present invention include, for example, lotions and emulsions. These cosmetics exhibit opal-like play colors, and their glow is beautiful and specific. Also,
By mixing the above-mentioned dispersion having an opal-like play color with a transparent or translucent jelly-like substance, a cosmetic composition in which small droplets of this dispersion are dispersed in the jelly-like substance can be obtained.

【0031】[0031]

【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。 〔微粒子分散液の製造〕
The present invention will be described more specifically with reference to the following examples. (Production of fine particle dispersion)

【0032】実施例1 平均粒径85nmのポリスチレン粒子の水分散液(濃度
7重量%)に、陽イオン交換樹脂を加えて撹拌し、pH
が3以下になった後、陽イオン交換樹脂を濾別した。次
いで、陰イオン交換樹脂を加えて撹拌し、pHが7にな
った後、陰イオン交換樹脂を濾別し、再び、陽イオン交
換樹脂を加えてpHを2.8とした後、陽イオン交換樹
脂を濾別した。
Example 1 A cation exchange resin was added to an aqueous dispersion of polystyrene particles having an average particle size of 85 nm (concentration: 7% by weight), and the mixture was stirred.
After the value became 3 or less, the cation exchange resin was separated by filtration. Next, an anion exchange resin was added and stirred. After the pH reached 7, the anion exchange resin was separated by filtration, and the pH was again adjusted to 2.8 by adding a cation exchange resin. The resin was filtered off.

【0033】この分散液を純水で希釈して、微粒子の濃
度を0.39容量%にすると、3〜10mmの巨大なク
リスタリットが得られ、遊色を発した。また、濃度を
0.55容量%にすると、1mm以下の小さなクリスタ
リットが得られ、遊色を発した。これらの遊色は分散液
に振動を与えるとが消えるが、静置するとすぐ遊色が発
現した。更に、この分散液を純水で希釈していき、遊色
が観察される限界濃度を測定したところ、0.14容量
%であった。
When this dispersion was diluted with pure water to make the concentration of the fine particles 0.39% by volume, a huge crystallite of 3 to 10 mm was obtained, and a free color was emitted. Further, when the concentration was 0.55% by volume, a small crystallite of 1 mm or less was obtained, and a loose color was emitted. These play colors disappear when the dispersion is vibrated, but play immediately after standing. Further, the dispersion was diluted with pure water, and the critical concentration at which free color was observed was measured. As a result, it was 0.14% by volume.

【0034】この実験結果を分散液の電気伝導度、粒子
の表面電荷密度ρ(μC/cm2 )と共に、表1にまと
めて示す。電気伝導度は伝導度計(東亜電波工業(株)
製、CM−11P)により測定し、表面電荷密度につい
ては、表面電位測定装置(ミューテック社製、PCD−
02)により測定した。
The experimental results are shown in Table 1 together with the electric conductivity of the dispersion and the surface charge density ρ (μC / cm 2 ) of the particles. Electric conductivity is measured by a conductivity meter (Toa Denpa Kogyo Co., Ltd.)
And CM-11P (manufactured by Mutech Co., Ltd., PCD-).
02).

【0035】実施例2〜実施例6 実施例1で用いたポリスチレン粒子の平均粒径を変え
て、実施例1と同様の実験を行った。
Examples 2 to 6 The same experiment as in Example 1 was performed, except that the average particle size of the polystyrene particles used in Example 1 was changed.

【0036】実施例7 実施例1で用いたポリスチレン粒子の分散液に代え、平
均粒径137nmのポリエチレン粒子の分散液を用い
て、実施例1と同様の実験を行った。
Example 7 An experiment similar to that of Example 1 was performed using a dispersion of polyethylene particles having an average particle diameter of 137 nm instead of the dispersion of polystyrene particles used in Example 1.

【0037】実施例8 実施例1で用いたポリスチレン粒子の分散液に代え、平
均粒径173nmのポリプロピレン粒子の分散液を用い
て、実施例1と同様の実験を行った。
Example 8 The same experiment as in Example 1 was performed, except that the dispersion of polystyrene particles used in Example 1 was replaced with a dispersion of polypropylene particles having an average particle size of 173 nm.

【0038】実施例9 実施例1において、脱イオン処理して得られた分散液を
純水とエタノールの混合溶媒(混合比1:1)で希釈し
て、実施例1と同様の実験を行った。
Example 9 The same experiment as in Example 1 was carried out except that the dispersion obtained by the deionization treatment was diluted with a mixed solvent of pure water and ethanol (mixing ratio: 1: 1). Was.

【0039】実施例10 実施例6において、脱イオン処理して得られた分散液を
純水とメタノールの混合溶媒(混合比1:1)で希釈し
て、実施例6と同様の実験を行った。
Example 10 The same experiment as in Example 6 was carried out except that the dispersion obtained by the deionization treatment was diluted with a mixed solvent of pure water and methanol (mixing ratio: 1: 1). Was.

【0040】実施例11 実施例7において、脱イオン処理して得られた分散液を
純水とエチレングリコールの混合溶媒(混合比1:0.
3)で希釈して、実施例7と同様の実験を行った。
Example 11 A dispersion obtained by deionizing in Example 7 was mixed with a mixed solvent of pure water and ethylene glycol (mixing ratio: 1: 0.
The same experiment as in Example 7 was performed by diluting in 3).

【0041】実施例12 実施例3において、脱イオン処理して得られた水分散液
5gと、脱塩したエチレングリコールとエチルセロソル
ブとの混合溶媒88.35g(混合比89.5:10.5)とを
混合して、実施例3と同様の実験を行った。
Example 12 In Example 3, 5 g of an aqueous dispersion obtained by deionization treatment was mixed with 88.35 g of a mixed solvent of desalted ethylene glycol and ethyl cellosolve (mixing ratio: 89.5: 10.5). Then, the same experiment as in Example 3 was performed.

【0042】実施例13 実施例1で用いたポリスチレン粒子の分散液に代え、平
均粒径100nmのポリスチレン粒子の分散液を用い
て、実施例1と同様の脱イオン処理を行った。一方、平
均粒径100nmのシリカ粒子の水分散液(濃度7重量
%)に対して、陽イオン交換樹脂を加えて撹拌し、pH
が3以下になった後樹脂を濾別した。次いで陰イオン交
換樹脂を加えて撹拌しpHが7になった後、樹脂を濾別
し、再び陽イオン交換樹脂を加えてpHを2.8とした
後、樹脂を濾別した。これらの脱イオン処理した分散液
を1:1の割合で混合したものを、純水とメタノールの
混合溶媒(混合比3:7)で希釈して、実施例1と同様
の実験を行った。
Example 13 The same deionization treatment as in Example 1 was performed using a dispersion of polystyrene particles having an average particle diameter of 100 nm instead of the dispersion of polystyrene particles used in Example 1. On the other hand, a cation exchange resin was added to an aqueous dispersion of silica particles having an average particle diameter of 100 nm (concentration: 7% by weight), and the mixture was stirred and adjusted to pH
After the content became 3 or less, the resin was separated by filtration. Next, an anion exchange resin was added and the mixture was stirred to reach a pH of 7, and then the resin was separated by filtration. A cation exchange resin was added again to adjust the pH to 2.8, and the resin was separated by filtration. The same experiment as in Example 1 was performed by diluting a mixture of these deionized dispersions at a ratio of 1: 1 with a mixed solvent of pure water and methanol (mixing ratio of 3: 7).

【0043】実施例14 実施例1で用いたポリスチレン粒子の分散液に代え、平
均粒径90nmのポリスチレン粒子の分散液を用いて、
実施例1と同様の脱イオン処理した分散液と、実施例1
3で調製したシリカ粒子の水分散液とを1:1の割合で
混合した。この混合分散粒子4.2gにエタノール9
9.7gを加え、さらに液中の水分を除去するためにモ
レキュラーシーブ3A型50gと陰イオン交換樹脂およ
び陽イオン交換樹脂の混合物10ccとを加え、ときど
き撹拌しながら1日放置した。その後、モレキュラーシ
ーブとイオン交換樹脂を濾別し、実施例1と同様の実験
を行った。なお、この分散液の中の水分は0.0%であ
った。
Example 14 Instead of the dispersion of polystyrene particles used in Example 1, a dispersion of polystyrene particles having an average particle size of 90 nm was used.
The same deionized dispersion as in Example 1 and Example 1
The aqueous dispersion of silica particles prepared in 3 was mixed at a ratio of 1: 1. Ethanol 9 was added to 4.2 g of the mixed dispersed particles.
9.7 g was added, and 50 g of molecular sieve type 3A and 10 cc of a mixture of an anion exchange resin and a cation exchange resin were added to remove water in the liquid, and the mixture was left for 1 day with occasional stirring. Thereafter, the molecular sieve and the ion exchange resin were separated by filtration, and the same experiment as in Example 1 was performed. The water content in this dispersion was 0.0%.

【0044】[0044]

【0045】実施例16 実施例1で脱イオン処理して得られた水分散液を、純水
で希釈し、粒子濃度を3.0容量%にして静置すると、
1mm以下の小さなクリスタリットが得られ遊色を発し
た。この水分散液にポリアクリル酸ソーダを1×10-6
モル/リットル添加して静置すると、5〜10mmの巨
大なクリスタリットが得られ遊色を発した。
Example 16 The aqueous dispersion obtained by the deionization treatment in Example 1 was diluted with pure water to set the particle concentration at 3.0% by volume and allowed to stand.
A small crystallite of 1 mm or less was obtained, and a free color was emitted. Sodium polyacrylate was added to this aqueous dispersion at 1 × 10 −6.
When mol / liter was added and allowed to stand, a large crystallite of 5 to 10 mm was obtained, and a free color was emitted.

【0046】実施例17 実施例16で調製した粒子濃度3.0容量%の水分散液
に、ラウリル硫酸ソーダを1×10-6モル/リットル添
加して静置すると、5〜10mmの巨大なクリスタリッ
トが得られ遊色を発した。
Example 17 To the aqueous dispersion having a particle concentration of 3.0% by volume prepared in Example 16 was added 1 × 10 -6 mol / l of sodium lauryl sulfate, and the mixture was allowed to stand. A crystallite was obtained, giving a playful color.

【0047】[0047]

【0048】[0048]

【0049】[0049]

【表1】 微粒子 電気 粒径 CV 凝集率 濃度 伝導度 溶媒 ρ nm)()()(容量%)(μS/cm) 実施例1 85 7.1 1.6 0.39 5 水 1.5 ◎ 85 7.1 1.6 0.55 6 水 1.5 ○ 85 7.1 1.6 0.14 7 水 1.5 △ 実施例2 91 6.6 − 0.036 6 水 2.0 ◎ 91 6.6 − 0.6 10 水 2.0 ○ 91 6.6 − 0.03 10 水 2.0 △ 実施例3 109 2.75 − 0.023 40 水 2.1 ◎ 109 2.75 − 0.03 45 水 2.1 ○ 109 2.75 − 0.016 45 水 2.1 △ 実施例4 109 25.5 1.8 0.055 3.2 水 0.6 ◎ 109 25.5 1.8 0.044 3.2 水 0.6 △ 実施例5 212 1.4 0.2 0.038 20 水 1.29 ◎ 212 1.4 0.2 0.035 20 水 1.29 △ 実施例6 192 3.1 − 0.021 28.9 水 − ◎ 192 3.1 − 0.018 28.9 水 − △ 実施例7 137 11.7 0.2 0.053 1.2 水 0.58 ◎ 137 11.7 0.2 0.037 1.2 水 0.58 △ 実施例8 173 4.0 0.2 0.051 14.2 水 1.0 ◎ 173 4.0 0.2 0.038 14.2 水 1.0 △ 実施例9 85 7.1 1.6 0.49 3 水/Et 1.5 ◎ 実施例10 192 3.1 − 0.03 3 水/Me − ◎ 実施例11 137 11.7 0.2 0.041 4 水/Eg 0.58 ◎ 実施例12 109 2.75 1.8 0.50 3.0 水/Eg/Ec 4.2 ◎ 実施例13 100 3.50 − 0.10 2.4 水/Me 2.1 ◎ [100] [4.90] [4.9] 実施例14 90 6.60 − 0.3 1.8 Et 2.0 ◎ [100] [4.90] [1.8] 実施例16 85 7.1 1.6 3.0 42.0 水 1.5 ◇ 実施例17 85 7.1 1.6 3.0 48.7 水 1.5 ◇TABLE 1 Particulate electric grain size CV aggregation rate concentration conductivity solvent ρ C (nm) (%) (%) ( volume%) (μS / cm) Example 1 85 7.1 1.6 0.39 5 Water 1.5 ◎ 85 7.1 1.6 0.55 6 Water 1.5 ○ 85 7.1 1.6 0.14 7 Water 1.5 △ Example 2 91 6.6-0.036 6 Water 2.0 ◎ 91 6.6-0.6 10 Water 2.0 ○ 91 6.6-0.03 10 Water 2.0 △ Example 3 109 2.75-0.023 40 Water 2.1 ◎ 109 2.75-0.03 45 Water 2.1 ○ 109 2.75-0.016 45 Water 2.1 △ Example 4 109 25.5 1.8 0.055 3.2 Water 0.6 ◎ 109 25.5 1.8 0.044 3.2 Water 0.6 △ Example 5 212 1.4 0.2 0.038 20 Water 1.29 ◎ 212 1.4 0.2 0.035 20 Water 1.29 △ Example 6 192 3.1 − 0.021 28.9 Water − ◎ 192 3.1 − 0.018 28.9 Water − △ Example 7 137 11.7 0.2 0.053 1.2 Water 0.58 ◎ 137 11.7 0.2 0.037 1.2 Water 0.58 △ Example 8 173 4.0 0.2 0.051 14.2 Water 1.0 ◎ 173 4.0 0.2 0.038 14.2 Water 1.0 △ Example 9 85 7.1 1.6 0.49 3 Water / Et 1.5 ◎ Example 10 192 3.1 − 0.03 3 Water / Me − ◎ Example 11 137 11.7 0.2 0.0 41 4 Water / Eg 0.58 ◎ Example 12 109 2.75 1.8 0.50 3.0 Water / Eg / Ec 4.2 ◎ Example 13 100 3.50 − 0.10 2.4 Water / Me 2.1 ◎ [100] [4.90] [4.9] Example 14 90 6.60 − 0.3 1.8 Et 2.0 ◎ [100] [4.90] [1.8] Example 16 85 7.1 1.6 3.0 42.0 Water 1.5 ◇ Example 17 85 7.1 1.6 3.0 48.7 Water 1.5 ◇

【0050】上記表1の最右列欄は、生成したクリスタ
リットの大きさCを記号により表したものであり、◎は
3〜10mm、○は0.1〜1mmのクリスタリットが
それぞれ得られたことを示し、△はクリスタリット生成
の限界濃度を示す。また、◇は有機高分子電解質の添加
により5〜10mmのクリスタリットが得られたことを
示す。表1の「溶媒」の欄において、Etはエタノール、
Meはメタノール、Egはエチレングリコール、Ecはエチル
セロソルブをそれぞれ表す。また、実施例13と実施例
14において、 [ ] 内の数値はシリカ微粒子のもので
ある。
The rightmost column in Table 1 shows the size C of the generated crystallites by symbols. ◎: 3 to 10 mm, ○: 0.1 to 1 mm, respectively. Indicates the critical concentration for crystallite formation. ◇ indicates that a crystallite of 5 to 10 mm was obtained by the addition of the organic polymer electrolyte. In the column of "solvent" in Table 1, Et represents ethanol,
Me represents methanol, Eg represents ethylene glycol, and Ec represents ethyl cellosolve. In Examples 13 and 14, numerical values in brackets [] are for silica fine particles.

【0051】〔化粧料の製造〕実施例21 平均粒径85nmのポリスチレン粒子の水分散液に、実
施例1と同様に陽イオン交換樹脂と陰イオン交換樹脂を
加えて脱イオン処理し、両イオン交換樹脂を濾別した。
別に、陽イオン交換樹脂と陰イオン交換樹脂で脱イオン
した、エタノール、グリセリン、1,3−ブチレングリ
コール、水を1.5:2.5:2.5:93.5の重量
比で混合した化粧水組成溶液中に上記で調製した分散液
を混合した。
[Production of Cosmetic] Example 21 A cation exchange resin and an anion exchange resin were added to an aqueous dispersion of polystyrene particles having an average particle diameter of 85 nm in the same manner as in Example 1, and deionized. The exchange resin was filtered off.
Separately, ethanol, glycerin, 1,3-butylene glycol and water deionized with a cation exchange resin and an anion exchange resin were mixed at a weight ratio of 1.5: 2.5: 2.5: 93.5. The dispersion prepared above was mixed into the lotion composition solution.

【0052】この化粧水はポリスチレン粒子を0.39
容量%含有し、静置すると、オパール様の遊色を発し
た。また、この化粧水に振動を与えるとこのオパール様
の遊色は消えるが、静置すればまた直ちに遊色が発現し
た。
This lotion contained 0.39 polystyrene particles.
%, And when left to stand, an opal-like play color was emitted. Further, when the lotion is vibrated, the opal-like play color disappears, but the play color appears immediately after standing still.

【0053】実施例22 平均粒径109nmのポリスチレン粒子の水分散液に、
実施例1と同様に陽イオン交換樹脂と陰イオン交換樹脂
を加えて脱イオン処理したものを、ポリスチレン粒子と
して0.055容量%となるように、実施例21で用い
たものと同じ脱イオン処理した化粧水組成溶液に混合し
た。この化粧水は静置すると直ちに遊色を発した。ま
た、この化粧水に振動を与えるとこの遊色は消えるが、
静置するとすぐに遊色が発現した。
Example 22 An aqueous dispersion of polystyrene particles having an average particle diameter of 109 nm was added to
The same deionization treatment as that used in Example 21 was performed by adding the cation exchange resin and the anion exchange resin and deionizing the same as in Example 1 so that the polystyrene particles became 0.055% by volume. And mixed with the prepared lotion composition solution. This lotion gave off a color immediately upon standing. Also, if you apply vibration to this lotion, this play color will disappear,
Free color developed immediately upon standing.

【0054】実施例23 平均粒径85nmのポリスチレン粒子の水分散液に、実
施例1と同様に陽イオン交換樹脂と陰イオン交換樹脂を
加えて脱イオン処理し、両イオン交換樹脂を濾別した。
別に、ミツロウ16重量%、流動パラフィン82重量
%、12−ヒドロキシステアリン酸2重量%を容器にと
り、70℃に加温して充分に混合した後冷却し、ゼリー
状の混合物とした。この混合物に先に調製した分散液を
添加し、ゆっくり撹拌すると、ゼリーの中にオパール様
の遊色を発する浮遊液滴が生成した。
Example 23 A cation-exchange resin and an anion-exchange resin were added to an aqueous dispersion of polystyrene particles having an average particle size of 85 nm in the same manner as in Example 1, followed by deionization, and both ion-exchange resins were separated by filtration. .
Separately, 16% by weight of beeswax, 82% by weight of liquid paraffin, and 2% by weight of 12-hydroxystearic acid were placed in a container, heated to 70 ° C., mixed well, and then cooled to obtain a jelly-like mixture. The previously prepared dispersion was added to this mixture, and the mixture was stirred slowly, so that floating droplets generating an opal-like free color were formed in the jelly.

【0055】[0055]

【発明の効果】本発明の微粒子分散液は、全く新しいオ
パール様の遊色を呈し、その光彩が美しく特異的であ
る。また、このオパール様の遊色は光学的に安定してい
るだけでなく、分散液自体も化学的安定性が高い。従っ
て、この分散液は、化粧料配合剤、塗料、染料、顔料用
の添加剤、表示装置用ディスプレイ、各種内装材、外装
材の添加材として利用可能である。特に、上記微粒子分
散液が配合された化粧料は、オパール様の遊色を呈し、
外観上高級感を醸しだすので、化粧水、乳液などの化粧
品として好適である。
The fine particle dispersion of the present invention exhibits a completely new opal-like play color, and its glow is beautiful and specific. The opal-like play color is not only optically stable, but also the dispersion itself has high chemical stability. Therefore, this dispersion can be used as an additive for cosmetic compounding agents, paints, dyes, pigments, displays for display devices, various interior materials, and exterior materials. In particular, the cosmetics in which the fine particle dispersion is blended exhibit an opal-like play color,
Since it gives rise to a high-grade appearance, it is suitable as cosmetics such as lotions and emulsions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 13/00 B01J 13/00 B C09B 67/46 C09B 67/46 Z (72)発明者 小松 通郎 福岡県北九州市若松区北湊町13−2 触 媒化成工業株式会社 若松工場内 (56)参考文献 特開 昭59−118704(JP,A) 特開 昭58−177911(JP,A) 特開 平1−176445(JP,A) 特開 平1−293133(JP,A) 特開 平5−320022(JP,A) 特表 平6−506488(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61K 7/00 - 7/50 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI B01J 13/00 B01J 13/00 B C09B 67/46 C09B 67/46 Z (72) Inventor Toshiro Komatsu 13-2 Kitaminatomachi Inside the Wakamatsu Plant of Catalyst Chemicals Co., Ltd. (56) References JP-A-59-118704 (JP, A) JP-A-58-177911 (JP, A) JP-A-1-176445 (JP, A) A) JP-A-1-293133 (JP, A) JP-A-5-320022 (JP, A) JP-A-6-506488 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) A61K 7/00-7/50

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径が700nm以下で粒径の変動
係数が30%以下の有機高分子微粒子が水および/また
は有機溶媒に分散してなり、電気伝導度が560μS/
cm以下であることを特徴とする微粒子分散液。
1. Variation in particle size when average particle size is 700 nm or less
Organic polymer fine particles having a coefficient of 30% or less contain water and / or
Is dispersed in an organic solvent and has an electric conductivity of 560 μS /
Fine particle dispersion you wherein a cm or less.
【請求項2】 前記有機高分子微粒子に加えて平均粒径
が700nm以下で粒径の変動係数が30%以下の無機
化合物微粒子が分散してなる請求項1記載の分散液。
2. An average particle size in addition to the organic polymer fine particles.
2. The dispersion according to claim 1 , wherein inorganic compound fine particles having a particle size variation coefficient of not more than 700 nm and a particle size variation of not more than 30% are dispersed.
【請求項3】 前記有機溶媒がメタノール、エタノール
等の一価アルコール、エチレングリコール等の多価アル
コール、または極性を有する有機溶媒のうちの1種また
は2種以上である請求項1または請求項2記載の分散
液。
3. The method according to claim 1, wherein the organic solvent is methanol or ethanol.
Polyhydric alcohols such as monohydric alcohols and ethylene glycol
Or one of polar organic solvents or
3. The dispersion according to claim 1, wherein the dispersion is at least two kinds .
【請求項4】 請求項1〜請求項3記載の分散液が配合
されたオパール様の遊色を呈する化粧料。
4. A cosmetic exhibiting an opal-like play color, to which the dispersion according to claim 1 is blended.
JP14849393A 1992-08-05 1993-05-27 Fine particle dispersion and cosmetics Expired - Lifetime JP3537156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14849393A JP3537156B2 (en) 1992-08-05 1993-05-27 Fine particle dispersion and cosmetics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22922492 1992-08-05
JP4-229224 1992-08-05
JP14849393A JP3537156B2 (en) 1992-08-05 1993-05-27 Fine particle dispersion and cosmetics

Publications (2)

Publication Number Publication Date
JPH06100432A JPH06100432A (en) 1994-04-12
JP3537156B2 true JP3537156B2 (en) 2004-06-14

Family

ID=26478674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14849393A Expired - Lifetime JP3537156B2 (en) 1992-08-05 1993-05-27 Fine particle dispersion and cosmetics

Country Status (1)

Country Link
JP (1) JP3537156B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217295B2 (en) 2002-01-31 2007-05-15 L'oreal S.A. Use of soluble conductive polymers for treating human keratin fibers
FR2835181B1 (en) * 2002-01-31 2006-02-17 Oreal USE OF CONDUCTIVE POLYMERS FOR THE TREATMENT OF HUMAN KERATIN FIBERS
FR2857583A1 (en) * 2003-07-16 2005-01-21 Oreal COMPOSITION COMPRISING A CONDUCTIVE POLYMER AND AT LEAST ONE FILMABLE POLYMER, PROCESS FOR CARRYING OUT AND USING THE SAME
FR2857584A1 (en) * 2003-07-16 2005-01-21 Oreal COMPOSITION COMPRISING AT LEAST ONE CONDUCTIVE POLYMER AND NON-FILMOGENIC RIGID PARTICLES, PROCESS FOR CARRYING OUT AND USING THE SAME
JP2007126646A (en) * 2005-10-04 2007-05-24 Soken Chem & Eng Co Ltd Aqueous suspension-type particle dispersion for formation of continuous phase of three-dimensionally ordered particle association
JP4937827B2 (en) * 2006-05-11 2012-05-23 エスケー化研株式会社 Method for producing coloring structure
JP4386098B2 (en) 2007-06-06 2009-12-16 株式会社豊田中央研究所 Method for producing colloidal crystal immobilized with polymer and colloidal crystal immobilized with polymer
JP5274164B2 (en) * 2008-09-05 2013-08-28 株式会社豊田中央研究所 Fine particle dispersion
JP5622327B2 (en) * 2009-08-24 2014-11-12 富士化学株式会社 Acrylic resin composition and method for producing the same, and building material, jewelry and optical material formed using the same
JP5708647B2 (en) 2010-06-25 2015-04-30 日油株式会社 Composition for colloidal crystals

Also Published As

Publication number Publication date
JPH06100432A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
DE69723347T2 (en) Coated SiO2 particles
JP3537156B2 (en) Fine particle dispersion and cosmetics
CN1980761B (en) Metal fine particle, method for producing metal fine particle, composition containing same, optical absorbing material and application thereof
Takeoka Angle-independent structural coloured amorphous arrays
CN102702794B (en) Perlglanz pigmente
KR102090986B1 (en) Silica-encapsulated microcapsule resin particles, manufacturing method and use thereof
Niitsoo et al. Facile synthesis of silver core–silica shell composite nanoparticles
JP4105971B2 (en) Porous titanium oxide powder and method for producing the same
CN109069441A (en) Utilize the optical property and structural stability of ionic species control photon structure
CN100548261C (en) Cosmetics
JPH07500366A (en) colored and coated flake pigments
JPH11193354A (en) Silica-coated zinc oxide particle, its preparation, and composition containing it
EP0803550B1 (en) Coated SiO2 particles
WO1995016637A1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JPH0345660A (en) Fine flaky base material
JP2007023127A (en) Method for producing silica-coated zinc oxide, silica-coated zinc oxide, and cosmetic containing the same
WO2000047167A1 (en) Cosmetic and pharmaceutical compositions containing crystalline color system and method of preparing same
CN103249782B (en) Brilliant black pigments
Fairhurst et al. Particulate sun blocks: general principles
JP3848458B2 (en) Method for producing UV blocker
Okubo et al. Static and dynamic light-scattering of colloidal gases, liquids and crystals
JP3390458B2 (en) Silica sol
JP2003313506A (en) Metal nanorod-containing composition
JPH06335629A (en) Fine particle dispersion
JP3183708B2 (en) Cosmetics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term