JP3502364B2 - Dioxin removal method from collected fly ash - Google Patents

Dioxin removal method from collected fly ash

Info

Publication number
JP3502364B2
JP3502364B2 JP2001166703A JP2001166703A JP3502364B2 JP 3502364 B2 JP3502364 B2 JP 3502364B2 JP 2001166703 A JP2001166703 A JP 2001166703A JP 2001166703 A JP2001166703 A JP 2001166703A JP 3502364 B2 JP3502364 B2 JP 3502364B2
Authority
JP
Japan
Prior art keywords
ash
heating
gas
fly ash
dioxins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001166703A
Other languages
Japanese (ja)
Other versions
JP2002361197A (en
Inventor
将人 山入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plantec Inc
Original Assignee
Plantec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plantec Inc filed Critical Plantec Inc
Priority to JP2001166703A priority Critical patent/JP3502364B2/en
Publication of JP2002361197A publication Critical patent/JP2002361197A/en
Application granted granted Critical
Publication of JP3502364B2 publication Critical patent/JP3502364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、一般廃棄物や産業
廃棄物を焼却するごみ焼却施設の排ガス処理設備で捕集
された捕集飛灰中のダイオキシン類を除去する除去方法
に関する。 【0002】 【従来の技術】捕集飛灰中のダイオキシン類を低減化す
る技術として、現在最も多く使用されているものは、図
4にその概略構造を示すパドル式電気熱分解装置であ
る。 【0003】図4において、図示しない集じん装置によ
って捕集された、粉じんと塩化物と未反応薬剤類及びダ
イオキシン類を含む捕集飛灰FAは、内外の温度差と圧
力差をシールする機能を有する定量供給機R1 を介し
て、電熱器EHで外周を囲繞され、温度制御器TICに
より350〜400℃程度に内部温度を制御された不銹
鋼やセラミック製の灰加熱ドラムHDに送入され、該灰
加熱ドラムHD内部に設置された独特なパドル形状を有
する加熱コンベアHPによって、攪拌されながら約1時
間をかけて灰冷却ドラムCD側に排出される。 【0004】この間、灰加熱ドラムHD内は、フランジ
1 から送入される空気または窒素ガスあるいはその混
合気体によって、低酸素濃度に保たれているため、電熱
器EHの加熱によって捕集飛灰FA中のダイオキシン類
の脱塩素化が加速され、塩素ガスを含む排気はフランジ
2 から図示しない再燃室に排出される。 【0005】上述の加熱処理により塩素分を遊離された
脱塩飛灰FBは、外周を冷却ジャケットCJで囲繞され
た灰冷却ドラムCDに送られ、温度制御器TCAによっ
て制御された冷却コンベアCPによって移送速度を調整
されながら、上述の定量供給器R1 と同様な機能を有す
る排出機R2 から処理灰TAとして外部に排出される。 【0006】この灰冷却ドラムCDによる脱塩飛灰FB
を短時間で急冷却することにより、300℃前後で最大
となるダイオキシン類の再合成現象が防止される。 【0007】 【発明が解決しようとする課題】しかし、上述したパド
ル式電気熱分解装置の場合は、複数箇所に分割設置され
ることが多い電熱器による外側だけからの加熱方式であ
るために、飛灰の温度が不均一になりがちであるが、飛
灰の温度が350℃以下になるとダイオキシン類の除去
率が低下するために、飛灰の平均温度を高めに維持する
必要があり、例えば200kg/h の飛灰処理に対して7
0〜80kw程度の加熱電力を消費して、運転経費が高騰
する。 【0008】また、捕集飛灰FAの処理は昼間のみの作
業として、夜間は操業休止することが多いために、操業
休止中に電気熱分解装置が冷却して、捕集飛灰FAから
遊離した塩素分が凝縮した塩酸により、灰加熱ドラムH
D内、特に加熱コンベアHPが激しく腐食するという問
題があった。 【0009】さらに、遊離した塩素分を再燃室側に返送
しているために、操業中においても、高温の塩素ガスに
よる配管の腐食が発生する。 【0010】 【課題を解決するための手段】請求項1に係る発明の捕
集飛灰からのダイオキシン類除去方法は、一般廃棄物や
産業廃棄物を焼却するごみ焼却施設に設置され、排ガス
処理設備によって捕集された飛灰中のダイオキシン類
を、灰加熱装置とこの灰加熱装置に連接された灰急冷装
置により、低酸素条件下において加熱・急冷処理して捕
集飛灰からのダイオキシン類を除去する方法であって、
灰加熱装置は、加熱用排ガスの一部が中空軸内を貫流す
る加熱移送手段と、該加熱移送手段を囲繞し捕集飛灰と
不活性ガスとの送入口と脱塩飛灰と分離ガスとの排出口
を備えた加熱内筒及び、該加熱内筒を囲繞し残余の加熱
用排ガスの送入口と降温ガスの排出口を備えた加熱外筒
とで主体が構成され、不活性ガス送入により低酸素雰囲
気となった加熱内筒に送入された上記捕集飛灰は、加熱
移送手段により撹排・移送されるとともに、バグフィル
タで清浄化された低温ガスが高温ガス加熱器での熱交換
により適温に調節された加熱用排ガスとなり上記中空軸
内及び加熱外筒に送入されることによって両面から加熱
されるために、各種反応助剤を添加することなく、含有
するダイオキシン類の大部分の脱塩素化が行われて脱塩
飛灰となり、後続する灰急冷装置において急冷却される
ことにより無害化された処理灰となって灰処理装置から
排出され、一方、上述の脱塩素化により遊離された少量
の塩素分は、大部分の不活性ガスと共に加熱内筒のガス
溜めに集積されて、連接された塩素吸収装置で中和薬剤
に吸収されたのち灰処理装置に送られ、また、上記脱塩
飛灰に同伴された残余の酸性有害ガスは、灰急冷装置に
おいて脱塩飛灰中に残留する未反応の中和薬剤によって
中和され、残留する微量のダイオキシン類と再合成する
ことなく、両者は無害な処理灰となって灰処理装置から
排出され、さらに、一連の作業終了後は、加熱用排ガス
または不活性ガスにより、装置内の残留物を灰急冷装置
に排出することを特徴とする。 【0011】 【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。 【0012】 図1は、本発明に係る捕集飛灰からのダ
イオキシン類除去方法を実施するための装置と関連設備
の概略構成を示す説明図であり、図2は、灰加熱装置の
構造の一例を示す断面図で、図3は、灰急冷装置の構造
の一例を示す断面図である。なお、図4で説明した物質
や部材と同一の物質や部材には同一の符号を付し、詳細
な説明は省略する。 【0013】図1において、ごみ焼却炉から排出された
高温の排ガスは、再燃室を経由して高温ガス加熱器HH
に導入されて後述の低温ガスLGと熱交換したあと、余
熱利用設備とガス冷却設備で更に冷却されたのち、排ガ
ス処理設備を構成する消石灰と活性炭等の薬剤供給設備
を備えたバグフィルタBFにおいて、排ガス中に含有す
る粉じんや酸性有害ガス及びダイオキシン類等を捕集・
除去されて清浄な低温ガスLGとなり、誘引通風機に吸
引されて煙突から大気中に放出される。 【0014】ここで、バグフィルタBFで捕集された捕
集飛灰FAは、上述の如く粉じんや、酸性有害ガスと消
石灰等とが化合した塩化物や、ダイオキシン類を吸着し
た活性炭のほか、未反応の薬剤等が含まれており、定量
供給機R1 を介して灰加熱装置AHに送入される。 【0015】上述の低温ガスLGは、誘引通風機後の煙
道から分流して高温ガス加熱器HHに送られて加熱され
た高温ガスHGとなり、混合用ダンパD1 で低温ガスL
Gと混合され適温に調節された加熱用排ガスG1 となっ
て灰加熱装置AHに送入され、捕集飛灰FAを加熱した
のち、降温ガスG2 となって調節用ダンパD2 を介して
ガス冷却設備の手前に還流される。 【0016】灰加熱装置AHで加熱された捕集飛灰FA
は、後述の脱塩素化によってダイオキシン類が分離され
た状態の脱塩飛灰FBとなって灰急冷装置ACに送ら
れ、冷却水CWによって急冷却された処理灰TAとなっ
て灰処理装置に排出され、脱塩飛灰FBからの分離ガス
SG中の塩素分は塩素吸収装置に入り、薬剤に吸収され
て同じく灰処理装置に排出される。 【0017】次に図2及び図3において、AHは灰加熱
装置であり、加熱移送手段1と加熱内筒2と加熱外筒3
及び支持機構等で構成され、灰急冷装置ACは、灰加熱
装置AHと相似する形状の冷却移送手段4と冷却内筒5
と冷却外筒6及び支持機構等で構成されている。 【0018】加熱移送手段1は、例えば、図示しない駆
動装置により鎖歯車11を介して回転される中空軸12
の外周にスクリュ13が備えられ、該中空軸12に取付
けられた軸受部14、14とロータリ継手15、15
と、例えば半量程度の加熱用排ガスG1 を導入する加熱
ガス導入口16と、降温ガスG2 を排出する降温ガス排
出口17とで構成されている。 【0019】加熱内筒2は、該加熱移送手段1の外部を
囲繞し、図示しない定量供給機につながる捕集飛灰FA
の捕集灰送入口21と、脱塩飛灰FBの脱塩灰排出口2
2と、例えば窒素ガスNGを用いた不活性ガス注入口2
3と、ガス溜24と、分離ガスSGのガス排出口25と
を配した筒体である。 【0020】加熱外筒3は、上記加熱内筒2の外周を囲
繞した筒状で、両端には残りの加熱用排ガスG1 の加熱
ガス導入口31と、降温ガスG2 の降温ガス排出口32
とがそれぞれ取付けられている。 【0021】次に冷却移送手段4は、図示しない駆動装
置により鎖歯車41等を介して回転される上述の加熱移
送手段1と相似する構造の中空軸42、スクリュ43、
軸受部44、44、ロータリ継手45、45と、例えば
半量程度の冷却水CWを導入する冷却水入口46と、昇
温水HWを排出する昇温水出口47とで構成されてい
る。 【0022】冷却内筒5は、上述の冷却移送手段4の外
部を囲繞し、前記脱塩灰排出口22に繋がり脱塩飛灰F
Bを送入する脱塩灰送入口51と、処理灰TAを排出す
る処理灰排出口52とを配した筒体である。 【0023】冷却外筒6は、上記冷却内筒5の外周を囲
繞し、冷却外筒冷却水CWの入口61と、昇温水HWの
出口62とが取付けられた筒体であり、灰急冷装置AC
の外部には、冷却水槽65と冷却水クーラ66とが、そ
れぞれポンプ等を備えて配置されている(図1参照)。 【0024】なお、灰加熱装置AH及びその他の高温部
の外面には、図示しない保温材等で保温工事が施されて
いる。 【0025】次に、このように構成された捕集飛灰から
のダイオキシン類除去装置の運転方法について説明す
る。 【0026】バグフィルタBFによって捕集されたダイ
オキシン類を含有する捕集飛灰FAは、定量供給機R1
を介して捕集灰送入口21から加熱内筒2内に送入さ
れ、加熱移送手段1によって攪拌されながら脱塩灰排出
口22側に約1時間をかけて移送される。 【0027】この間、該捕集飛灰FAは、ダンパD1
よって加熱内筒2内温度が350〜400°Cになるよ
うに調節された排ガスG1 によって中空軸12内及び加
熱外筒3の両側から間接加熱されるとともに、併せて加
熱内筒2内に注入される窒素ガスNG等の不活性ガスに
よって当該加熱内筒2内が低酸素状態(還元性雰囲気)
に保たれているために、捕集飛灰FA中のダイオキシン
類を構成する塩素の大部分が水素と置換する反応によ
り、脱塩素化が進行して脱塩飛灰FBとなる。 【0028】この遊離された塩素分は少量であり、不活
性ガスと共に分離ガスSGとなってガス溜24からガス
排出口25を通じて例えば消石灰を充填した塩素吸収装
置に排出されて塩化カルシウムとなって灰処理装置に排
出される。 【0029】前述の脱塩飛灰FBは、塩素吸収装置側に
排出されなかった残留ガスと共に灰急冷装置ACに送入
されて、冷却移送手段4及び冷却外筒6内を流れる冷却
水CWによって急冷却され、上述の残留ガス中の酸性有
害ガスは未反応の薬剤によって中和され、残留する微量
のダイオキシン類と再合成をすることなく、通常の処理
灰TAとなって、図示しない排出機等を経て、連接され
た灰処理装置に排出される。 【0030】この脱塩飛灰FBの冷却に伴い温度上昇し
た昇温水HWは冷却水槽65に入り、冷却水クーラ66
によって冷却され、冷却水CWとして再利用される。 【0031】一連の作業終了後は、捕集灰送入口21か
ら加熱用排ガスG1 、または不活性ガス注入口23から
窒素ガスNGを送入して、加熱移送手段1と加熱内筒2
及び冷却移送手段4と冷却内筒5内の残留物を灰急冷装
置ACを介して灰処理装置に排出して、休止時間中の腐
食事故を防止する(図1参照)。 【0032】なお、図1において、灰加熱装置AHと灰
急冷装置ACを縦位置で図示したが、横位置でもよく、
脱塩灰排出口22と脱塩灰送入口51との間に移送手段
を別途設けてもよい。 【0033】また、不活性ガスとして窒素ガスNGを例
示したが、酸素含有量が減少した加熱用排ガスG1 を使
用しても差し支えない。 【0034】 【発明の効果】以上述べたように、本発明の捕集飛灰か
らのダイオキシン類除去方法によれば、バグフィルタに
より清浄化された低温ガスを加熱して、清浄で高温の加
熱用排ガスとして有効利用しているために、従来技術の
如き電熱器の電力消費が不要になるだけでなく、各種反
応助剤を使用する必要がないために運転経費が大幅に削
減できる。 【0035】また、温度調節された加熱用排ガスによ
り、中空軸と加熱外筒の両方から、捕集飛灰をむらなく
加熱する方式であるために、移送される捕集飛灰の温度
上昇が均等であり、ダイオキシン類の完全分解が容易に
行える。 【0036】 さらに、低酸素条件下における加熱によ
り遊離した少量のダイオキシン類中の塩素分を、連接さ
れた塩素吸収装置で中和処理していることに加え、作業
終了後に装置内に加熱用排ガスまたは不活性ガスを送入
して当該装置内の残留物をパージすることで、作業中断
時に冷却・凝縮する塩酸による加熱移送手段を始めとす
る各装置の腐蝕が低減でき、補修費用が節減できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to dioxin in collected fly ash collected in an exhaust gas treatment facility of a refuse incineration facility for incinerating general waste and industrial waste. The present invention relates to a removing method for removing a kind. 2. Description of the Related Art The most widely used technique for reducing dioxins in collected fly ash is a paddle type electropyrolysis apparatus whose schematic structure is shown in FIG. In FIG. 4, a collected fly ash FA containing dust, chloride, unreacted chemicals and dioxins collected by a dust collecting device (not shown) has a function of sealing a temperature difference and a pressure difference between inside and outside. through the metering feeder R 1 having, it surrounded the outer periphery by an electric heater EH, is fed to the stainless steel and ceramic ash heating drum HD which is controlled to an internal temperature of about 350 to 400 ° C. by the temperature controller TIC By the heating conveyor HP having a unique paddle shape installed inside the ash heating drum HD, the ash is discharged to the ash cooling drum CD over about one hour while being stirred. [0004] During this time, the ash heating drum HD, since the air or nitrogen gas or a gas mixture is fed from the flange F 1, is maintained at a low oxygen concentration, collected by heating the electric heater EH fly ash dechlorination of dioxins in the FA is accelerated, the exhaust gas containing chlorine gas is discharged to relapse chamber (not shown) from the flange F 2. [0005] The desalted fly ash FB from which the chlorine content has been liberated by the above-mentioned heat treatment is sent to an ash cooling drum CD whose outer periphery is surrounded by a cooling jacket CJ, and is cooled by a cooling conveyor CP controlled by a temperature controller TCA. while it is adjusted the transfer speed, and is discharged to the outside as the processing ash TA from discharger R 2 having the same function as quantity feeder R 1 described above. [0006] Desalted fly ash FB by the ash cooling drum CD
Is rapidly cooled in a short time to prevent a re-synthesis phenomenon of dioxins which becomes maximum at around 300 ° C. [0007] However, in the case of the above-mentioned paddle type electro-pyrolysis apparatus, since it is a heating system from the outside only by an electric heater which is often divided and installed at a plurality of locations, The temperature of the fly ash tends to be non-uniform, but if the temperature of the fly ash becomes 350 ° C. or less, the removal rate of dioxins decreases, so it is necessary to maintain the average temperature of the fly ash high, for example, 7 for 200kg / h fly ash processing
The consumption of heating power of about 0 to 80 kw increases the operating cost. Further, since the processing of the collected fly ash FA is a work only during the daytime and the operation is often suspended at night, the electrothermal decomposition apparatus is cooled during the suspension of the operation and is released from the collected fly ash FA. Ash heating drum H
There was a problem that the inside of D, especially the heating conveyor HP corroded severely. Further, since the released chlorine is returned to the reburning chamber side, even during operation, corrosion of the piping due to high-temperature chlorine gas occurs. [0010] The method for removing dioxins from collected fly ash according to the first aspect of the present invention is installed in a refuse incineration facility for incinerating general waste and industrial waste, and treating exhaust gas. The dioxins in the fly ash collected by the facility are heated and quenched under low oxygen conditions by an ash heating device and an ash quenching device connected to the ash heating device, and the dioxins from the collected fly ash are treated. A method of removing
The ash heating device is provided with a heating and transferring means through which a part of the exhaust gas for heating flows through the hollow shaft, an inlet for the collected fly ash and the inert gas surrounding the heating and transferring means, a desalted fly ash, and a separated gas. And a heating outer cylinder surrounding the heating inner cylinder and having an inlet for the remaining exhaust gas for heating and an outlet for cooling gas. The collected fly ash sent into the heating inner cylinder, which has become a low oxygen atmosphere by the injection, is stirred and transferred by the heating transfer means, and the low-temperature gas purified by the bag filter is converted by the high-temperature gas heater. Dioxins contained without adding various reaction auxiliaries because the exhaust gas for heating is adjusted to an appropriate temperature by heat exchange and is heated from both sides by being sent into the hollow shaft and the heating outer cylinder. Dechlorination of most of the ash is carried out, resulting in desalted fly ash. The ash is rapidly quenched in the ash quenching device and is discharged as harmless treated ash from the ash treatment device.On the other hand, a small amount of chlorine liberated by the above-described dechlorination is mostly inert gas. And accumulated in the gas reservoir of the heating inner cylinder, absorbed by the neutralizing agent in the connected chlorine absorption device, and then sent to the ash treatment device.The remaining acidic harmful gas accompanying the desalted fly ash Is neutralized by unreacted neutralizing chemicals remaining in the desalted fly ash in the ash quenching device, and both are converted into harmless treated ash without re-synthesizing with the remaining trace amount of dioxins. After the end of a series of operations, the residue in the apparatus is discharged to the ash quenching apparatus by a heating exhaust gas or an inert gas. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of an apparatus for implementing a method for removing dioxins from collected fly ash according to the present invention and related equipment, and FIG. 2 is a diagram showing a structure of an ash heating apparatus. FIG. 3 is a sectional view showing an example of the structure of the ash quenching apparatus. Note that the same reference numerals are given to the same substances and members as those described with reference to FIG. 4, and detailed description will be omitted. In FIG. 1, a high-temperature exhaust gas discharged from a refuse incinerator passes through a reburning chamber and is supplied to a high-temperature gas heater HH.
After being exchanged with a low-temperature gas LG to be described later, and further cooled by a residual heat utilization facility and a gas cooling facility, a bag filter BF provided with a chemical supply facility such as slaked lime and activated carbon constituting an exhaust gas treatment facility. , Collecting dust and acidic harmful gas and dioxins contained in exhaust gas
The gas is removed to become a clean low-temperature gas LG, which is sucked into the draft fan and released from the chimney into the atmosphere. Here, the collected fly ash FA collected by the bag filter BF includes, as described above, besides dust, chloride obtained by combining acidic harmful gas and slaked lime, and activated carbon adsorbing dioxins, It includes a drug or the like of unreacted fed into the ash heating device AH via the metering feeder R 1. The cold gas LG above is diverted from the flue the hot gas heater HH to sent by heated hot gas HG next after the induced draft fan, cold gas L by mixing damper D 1
Is fed to the ash heating device AH become heating the exhaust gas G 1, which is adjusted to an appropriate temperature is mixed with G, then heating the collected fly ash FA, through the adjusting damper D 2 becomes cooling gas G 2 Refluxed before the gas cooling equipment. Collection fly ash FA heated by ash heating device AH
Is converted into desalted fly ash FB in a state in which dioxins are separated by dechlorination described later, sent to an ash quenching device AC, and treated ash TA rapidly cooled by cooling water CW to an ash treatment device. The chlorine contained in the separated gas SG discharged from the desalted fly ash FB enters the chlorine absorbing device, is absorbed by the chemical, and is similarly discharged to the ash processing device. Next, in FIGS. 2 and 3, AH is an ash heating device, which includes a heating transfer means 1, a heating inner cylinder 2, and a heating outer cylinder 3;
The ash quenching device AC includes a cooling transfer unit 4 and a cooling inner cylinder 5 having a shape similar to that of the ash heating device AH.
And a cooling outer cylinder 6 and a support mechanism. The heating and transferring means 1 includes, for example, a hollow shaft 12 which is rotated via a chain gear 11 by a driving device (not shown).
A screw 13 is provided on the outer periphery of the shaft, and bearings 14 and 14 attached to the hollow shaft 12 and rotary joints 15 and 15 are provided.
If, for example, the heating gas inlet 16 for introducing the heated exhaust gas G 1 of about half, and a cooling gas outlet 17 for discharging the cooling gas G 2. The heating inner cylinder 2 surrounds the outside of the heating and transferring means 1 and collects fly ash FA which is connected to a not-shown quantitative feeder.
Ash inlet 21 and desalted ash outlet 2 for desalted fly ash FB
2 and an inert gas inlet 2 using, for example, nitrogen gas NG
3, a gas reservoir 24, and a gas outlet 25 for the separation gas SG. The heating outer cylinder 3 has a cylindrical shape surrounding the outer periphery of the heating inner cylinder 2, and has a heating gas inlet 31 for the remaining heating exhaust gas G 1 and a cooling gas outlet for the cooling gas G 2 at both ends. 32
And are respectively attached. Next, the cooling / transporting means 4 includes a hollow shaft 42, a screw 43, and a structure similar to the above-described heating / transporting means 1, which are rotated by a driving device (not shown) via a chain gear 41 and the like.
It comprises bearings 44, 44, rotary joints 45, 45, a cooling water inlet 46 for introducing, for example, about half the amount of cooling water CW, and a heated water outlet 47 for discharging heated water HW. The cooling inner cylinder 5 surrounds the outside of the cooling transfer means 4 and is connected to the desalted ash discharge port 22 to connect the desalted fly ash F.
It is a tubular body provided with a desalted ash inlet 51 for feeding B and a treated ash outlet 52 for discharging treated ash TA. The cooling outer cylinder 6 is a cylinder surrounding the outer periphery of the cooling inner cylinder 5 and having an inlet 61 for cooling outer cylinder cooling water CW and an outlet 62 for heating water HW attached thereto. AC
A cooling water tank 65 and a cooling water cooler 66 are respectively provided with pumps and the like outside (see FIG. 1). The outer surfaces of the ash heating device AH and other high-temperature portions are subjected to heat insulation using a heat insulation material (not shown). Next, an operation method of the thus configured apparatus for removing dioxins from collected fly ash will be described. The collected fly ash FA containing dioxins collected by the bag filter BF is supplied to the quantitative feeder R 1.
Through the trapping ash inlet 21 into the heating inner cylinder 2 and transferred to the desalting ash outlet 22 side for about one hour while being stirred by the heating transfer means 1. [0027] During this time, the collecting fly ash FA is hollow shaft 12 and of the heating outer tube 3 by the regulated exhaust gas G 1 to 2 in the temperature heating the tube becomes 350 to 400 ° C by the damper D 1 While being heated indirectly from both sides, the inside of the heating inner cylinder 2 is in a low oxygen state (reducing atmosphere) by an inert gas such as nitrogen gas NG injected into the heating inner cylinder 2 together.
Therefore, the dechlorination proceeds to form a desalted fly ash FB by a reaction in which most of the chlorine constituting the dioxins in the collected fly ash FA is replaced with hydrogen. The liberated chlorine is a small amount, becomes a separation gas SG together with the inert gas, and is discharged from the gas reservoir 24 through the gas discharge port 25 to, for example, a chlorine absorbing device filled with slaked lime to become calcium chloride. It is discharged to an ash treatment device. The above-mentioned desalted fly ash FB is sent to the ash quenching device AC together with the residual gas not discharged to the chlorine absorbing device side, and is cooled by the cooling water CW flowing through the cooling transfer means 4 and the cooling outer cylinder 6. It is rapidly cooled, and the acidic harmful gas in the above-mentioned residual gas is neutralized by unreacted chemicals, and becomes ordinary treated ash TA without resynthesizing with the remaining trace amount of dioxins. After that, it is discharged to the connected ash processing device. The temperature-raised water HW, whose temperature has risen with the cooling of the desalted fly ash FB, enters a cooling water tank 65 and a cooling water cooler 66.
And is reused as cooling water CW. After the end of a series of operations, the exhaust gas G 1 for heating or the nitrogen gas NG is fed from the trapping ash inlet 21 or the inert gas inlet 23, and the heating transfer means 1 and the heating inner cylinder 2 are fed.
Further, the residue in the cooling transfer means 4 and the cooling inner cylinder 5 is discharged to the ash treatment device via the ash quenching device AC to prevent a corrosion accident during the downtime (see FIG. 1). In FIG. 1, the ash heating device AH and the ash quenching device AC are shown in the vertical position, but may be in the horizontal position.
A transfer means may be separately provided between the desalted ash outlet 22 and the desalted ash inlet 51. Further, although an example nitrogen gas NG as an inert gas, no problem even using a heating exhaust gas G 1 to the oxygen content is reduced. As described above, according to the method for removing dioxins from collected fly ash according to the present invention, the low-temperature gas cleaned by the bag filter is heated to provide a clean and high-temperature heating. Since the exhaust gas is effectively used as a waste gas, not only the power consumption of the electric heater as in the prior art is not required, but also the operation cost can be greatly reduced because there is no need to use various reaction aids. In addition, since the collected fly ash is uniformly heated from both the hollow shaft and the heated outer cylinder by the heating exhaust gas whose temperature is adjusted, the temperature of the collected fly ash to be transferred is increased. Evenly, complete decomposition of dioxins can be easily performed. Further, in addition to neutralizing chlorine in a small amount of dioxins liberated by heating under low-oxygen conditions with a connected chlorine absorbing device, the exhaust gas for heating is placed in the device after the operation is completed. Alternatively, by purging the residue in the apparatus by supplying an inert gas, corrosion of each apparatus such as a heating and transferring means by hydrochloric acid which is cooled and condensed when the operation is interrupted can be reduced, and the repair cost can be reduced. .

【図面の簡単な説明】 【図1】本発明に係る捕集飛灰からのダイオキシン類除
去方法を実施するための装置と関連設備の概略構成を示
す説明図である。 【図2】灰加熱装置の構造の一例を示す断面図である。 【図3】灰急冷装置の構造の一例を示す断面図である。 【図4】パドル式電気熱分解装置の概略構成を示す説明
図である。 【符号の説明】 1 加熱移送手段 2 加熱内筒 3 加熱外筒 4 冷却移送手段 5 冷却内筒 6 冷却外筒 AH 灰加熱装置 AC 灰急冷装置 FA 捕集飛灰 FB 脱塩飛灰
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a schematic configuration of an apparatus and related equipment for implementing a method for removing dioxins from collected fly ash according to the present invention. FIG. 2 is a sectional view showing an example of the structure of the ash heating device. FIG. 3 is a sectional view showing an example of the structure of the ash quenching device. FIG. 4 is an explanatory diagram showing a schematic configuration of a paddle type electrothermal decomposition apparatus. [Description of Signs] 1 Heat transfer means 2 Heating inner cylinder 3 Heating outer cylinder 4 Cooling transfer means 5 Cooling inner cylinder 6 Cooling outer cylinder AH Ash heating device AC Ash quenching device FA Collecting fly ash FB Desalting fly ash

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B09B 3/00 B08B 5/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B09B 3/00 B08B 5/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 一般廃棄物や産業廃棄物を焼却するごみ
焼却施設に設置され、排ガス処理設備によって捕集され
た飛灰中のダイオキシン類を、灰加熱装置とこの灰加熱
装置に連接された灰急冷装置により、低酸素条件下にお
いて加熱・急冷処理して捕集飛灰からのダイオキシン類
を除去する方法であって、 灰加熱装置は、加熱用排ガスの一部が中空軸内を貫流す
加熱移送手段と、該加熱移送手段を囲繞し捕集飛灰と
不活性ガスとの送入口と脱塩飛灰と分離ガスとの排出口
を備えた加熱内筒及び、該加熱内筒を囲繞し残余の加熱
用排ガスの送入口と降温ガスの排出口を備えた加熱外筒
とで主体が構成され、不活性ガス送入により低酸素雰囲
気となった加熱内筒に送入された上記捕集飛灰は、加熱
移送手段により撹排・移送されるとともに、バグフィル
タで清浄化された低温ガスが高温ガス加熱器での熱交換
により適温に調節された加熱用排ガスとなり上記中空軸
内及び加熱外筒に送入されることによって両面から加熱
されるために、各種反応助剤を添加することなく、含有
するダイオキシン類の大部分の脱塩素化が行われて脱塩
飛灰となり、後続する灰急冷装置において急冷却される
ことにより無害化された処理灰となって灰処理装置から
排出され、 一方、上述の脱塩素化により遊離された少量の塩素分
は、大部分の不活性ガスと共に加熱内筒のガス溜めに集
積されて、連接された塩素吸収装置で中和薬剤に吸収さ
れたのち灰処理装置に送られ、また、上記脱塩飛灰に同
伴された残余の酸性有害ガスは、灰急冷装置において脱
塩飛灰中に残留する未反応の中和薬剤によって中和さ
れ、残留する微量のダイオキシン類と再合成することな
く、両者は無害な処理灰となって灰処理装置から排出さ
れ、 さらに、一連の作業終了後は、加熱用排ガスまたは不活
性ガスにより、装置内の残留物を灰急冷装置に排出する
ことを特徴とする捕集飛灰からのダイオキシン類除去方
法。
(57) [Claims] [Claim 1] An ash heating device installed in a refuse incineration facility that incinerates general waste and industrial waste and collects dioxins in fly ash collected by an exhaust gas treatment facility more ash quenching equipment which is connected to the ash heating device, a method of removing dioxins from Atsumarihi ashes capturing by heating and quenching treatment in a low oxygen conditions, the ash heating device for heating Part of the exhaust gas flows through the hollow shaft
A heating transfer means that, the collecting fly ash surrounds the heating transfer means
Inlet for inert gas and outlet for desalted fly ash and separated gas
And the remaining heating surrounding the heating inner cylinder
A feed inlet of use the exhaust gas and the heating barrel having a discharge port of the cooling gas mainly is composed of, hypoxia Kiri囲by inert gas fed
The collected fly ash sent into the heated inner cylinder
It is agitated and transported by the transport means,
Of low-temperature gas that has been cleaned by a heat exchanger in a high-temperature gas heater
It becomes the exhaust gas for heating adjusted to the appropriate temperature by the above hollow shaft
Heated from both sides by being sent to the inner and heated outer cylinders
Content without adding various reaction aids
Most of the dioxins are dechlorinated due to dechlorination
It becomes fly ash and is rapidly cooled in the subsequent ash quenching device
From the ash treatment equipment
And a small amount of chlorine released by the above-mentioned dechlorination
Is collected in the gas reservoir of the heated inner cylinder together with most of the inert gas.
Stacked and absorbed by the neutralizing agent with a connected chlorine absorber.
After that, it is sent to the ash treatment device, and
The entrained residual acid harmful gas is removed in the ash quenching device.
Neutralized by unreacted neutralizing agent remaining in salt fly ash
Do not re-synthesize with the remaining traces of dioxins.
Both are converted into harmless treated ash and discharged from the ash treatment equipment.
It is further after a series of operations ends, heating the exhaust gas or inert
Discharge residue in the device to ash quenching device by neutral gas
For removing dioxins from collected fly ash
Law.
JP2001166703A 2001-06-01 2001-06-01 Dioxin removal method from collected fly ash Expired - Fee Related JP3502364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001166703A JP3502364B2 (en) 2001-06-01 2001-06-01 Dioxin removal method from collected fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001166703A JP3502364B2 (en) 2001-06-01 2001-06-01 Dioxin removal method from collected fly ash

Publications (2)

Publication Number Publication Date
JP2002361197A JP2002361197A (en) 2002-12-17
JP3502364B2 true JP3502364B2 (en) 2004-03-02

Family

ID=19009204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001166703A Expired - Fee Related JP3502364B2 (en) 2001-06-01 2001-06-01 Dioxin removal method from collected fly ash

Country Status (1)

Country Link
JP (1) JP3502364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317626B1 (en) * 2011-09-09 2013-10-10 (주)제이오션 Gathering apparatus for exhaust gas

Also Published As

Publication number Publication date
JP2002361197A (en) 2002-12-17

Similar Documents

Publication Publication Date Title
RU2095131C1 (en) Method for rendering harmless of effluent gases of waste burning units and device for its embodiment
EP0155022B1 (en) Process and apparatus for cleansing soil polluted with toxic substances
JP3626459B2 (en) Organohalogen compound processing apparatus and processing method thereof
SK299492A3 (en) Method and device for changing of dangerous wastes for harmless and insoluble products
JP3502364B2 (en) Dioxin removal method from collected fly ash
JP3586451B2 (en) Device for dechlorination of collected fly ash and its dechlorination method
JP3726779B2 (en) Heat treatment method and facilities for sludge
KR101179523B1 (en) Manufacture device of activation matter using sewage sludges
JP2008272599A (en) Method and device for treating fly ash, and method and device for treating waste substances from waste incinerator using the same
JP2004283784A (en) Heat treatment method for sludge and its facility
JP2004174372A (en) Detoxifying processing method for organic chlorine compound
JP3864553B2 (en) Equipment for processing harmful substances
JP2002273164A (en) Treatment method for defusing exhaust gas in refuse incinerator and system therefor
JP2005098585A (en) Method of collecting incineration ash and incineration exhaust gas treatment system
JP3921886B2 (en) Heat processing equipment for workpieces
JPH11349956A (en) Carbonization of waste and carbonization equipment
JP2003064373A (en) Device for thermally treating material to be treated
JP2000226586A (en) Method and apparatus for carbonization
JP2001164260A (en) Method for heat-treating material to be treated, treating apparatus and heat-treating facility therefor
JP2000301098A (en) Decomposition device for dioxins
JP2000241079A (en) Method and system for heating material to be treated
JP2002267125A (en) Thermal decomposition treatment facility having gas engine power generation facility and thermal decomposition treatment method
JPH11207295A (en) Method and apparatus for treating halogen-containing matter
JP2001246400A (en) Treatment method and treatment facility for hydrous material to be treated
JPH11277028A (en) Method and device for treating harmful chlorine compound in ash

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

LAPS Cancellation because of no payment of annual fees