JP3495515B2 - Method for correcting balance of rotating shaft supported by hydrostatic bearing - Google Patents

Method for correcting balance of rotating shaft supported by hydrostatic bearing

Info

Publication number
JP3495515B2
JP3495515B2 JP20238896A JP20238896A JP3495515B2 JP 3495515 B2 JP3495515 B2 JP 3495515B2 JP 20238896 A JP20238896 A JP 20238896A JP 20238896 A JP20238896 A JP 20238896A JP 3495515 B2 JP3495515 B2 JP 3495515B2
Authority
JP
Japan
Prior art keywords
bearing
rotary shaft
bearing rigidity
supply pressure
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20238896A
Other languages
Japanese (ja)
Other versions
JPH1043987A (en
Inventor
井 史 朗 村
山 達 臣 中
優 大和田
学 和久田
谷 利 一 大
田 稔 太
原 克 敏 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20238896A priority Critical patent/JP3495515B2/en
Publication of JPH1043987A publication Critical patent/JPH1043987A/en
Application granted granted Critical
Publication of JP3495515B2 publication Critical patent/JP3495515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ラジアル
静圧軸受を介して支持される回転軸を備えた研磨装置に
おいて、砥石を交換する際などの砥石取付け時に用いる
静圧軸受に支持される回転軸のバランス修正方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, for example, in a polishing apparatus having a rotary shaft supported through a radial static pressure bearing, is supported by a static pressure bearing used when the grindstone is attached when exchanging the grindstone. The present invention relates to a method for correcting the balance of a rotating shaft.

【0002】[0002]

【従来の技術】従来、例えば、ハウジングにラジアル静
圧軸受を介して支持される回転軸を備えた研磨装置にお
いて、回転軸に砥石を取り付けてバランスを修正するに
際しては、図4に示すように、変位センサ51を軸受中
心Oに向けて設置し、さらに、回転軸50にバランス修
正時の位相の基準となる目印Mを付けることにより、不
釣合に伴う回転軸50の振れEと目印Mの位相を検出す
るようにしていた。
2. Description of the Related Art Conventionally, for example, in a polishing apparatus having a rotary shaft supported by a housing via radial static pressure bearings, when a grindstone is attached to the rotary shaft to correct the balance, as shown in FIG. , The displacement sensor 51 is installed toward the bearing center O, and the mark M that serves as a reference of the phase at the time of balance correction is attached to the rotary shaft 50, so that the runout E of the rotary shaft 50 and the phase of the mark M due to imbalance I was trying to detect.

【0003】そして、偏芯方向あるいは偏芯方向とは1
80゜反対方向の任意位置に既知の試しおもりWを取り
付けて回転軸50を回転させ、このとき変位センサ51
により検出される回転軸50の振れEと試しおもりWを
取り付けていないときの回転軸の振れEとを比較して、
修正おもりの質量を決定するようにしていた。
The eccentric direction or the eccentric direction is 1
A known trial weight W is attached to an arbitrary position in the opposite direction of 80 ° to rotate the rotary shaft 50, and at this time, the displacement sensor 51
The runout E of the rotary shaft 50 detected by the above is compared with the runout E of the rotary shaft when the trial weight W is not attached,
I was trying to determine the mass of the modified weight.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記した従
来における静圧軸受に支持される回転軸のバランス修正
方法において、回転軸50を回転させた場合には、静止
時軸受剛性に加えて動圧による回転時軸受剛性(図4
(a)にハッチングで示した部分)が発生するため、回
転軸50は偏芯方向とある角度Θをもった位相へ偏芯す
る。さらに、この偏芯角Θが不釣合量の大きさによって
変化するといった理由から、偏芯方向が必ずしも正確で
あるとは言い難く、加えて、試しおもりWにより回転軸
50の不釣合量を求めていることから、偏芯方向を定め
ても、回転軸50の振れEをほとんどなくすまでには、
偏芯方向ないしはその近傍において試しおもりWの付け
替えを何度となく行わなくてはならず、その結果、バラ
ンスの修正が面倒でかつ困難であり、多くの時間を費や
してしまうという問題を有しており、この問題を解決す
ることが従来の課題であった。
However, in the above-described conventional method for correcting the balance of the rotary shaft supported by the hydrostatic bearing, when the rotary shaft 50 is rotated, the dynamic pressure is added to the static bearing rigidity at rest. Bearing rigidity during rotation (Fig. 4
Since the hatched portion in (a) occurs, the rotating shaft 50 is eccentric to a phase having an angle Θ with the eccentric direction. Further, since the eccentricity angle Θ changes depending on the magnitude of the unbalance amount, it cannot be said that the eccentric direction is always accurate, and in addition, the trial weight W is used to obtain the unbalance amount of the rotating shaft 50. Therefore, even if the eccentric direction is determined, until the runout E of the rotary shaft 50 is almost eliminated,
The trial weight W must be repeatedly replaced in the eccentric direction or in the vicinity of the eccentric direction, and as a result, it is troublesome and difficult to correct the balance, and a lot of time is spent. Therefore, it has been a conventional problem to solve this problem.

【0005】[0005]

【発明の目的】本発明は、上記した従来の課題に着目し
てなされたもので、修正作業性の向上および修正時間の
短縮を実現したうえで、回転軸の精密なバランス修正を
行うことが可能である静圧軸受に支持される回転軸のバ
ランス修正方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art. It is possible to improve the workability of correction and to shorten the correction time, and also to perform precise balance correction of the rotary shaft. It is an object of the present invention to provide a method for correcting the balance of a rotary shaft supported by a hydrostatic bearing that is possible.

【0006】[0006]

【課題を解決するための手段】ラジアル静圧軸受に支持
される回転軸を回転させた場合、図1に示すように、静
圧力による静止時軸受剛性ksに加えて、動圧力による
回転時軸受剛性Kd´およびスクイズ力による軸受剛性
Kdが生じる。
When a rotating shaft supported by a radial hydrostatic bearing is rotated, as shown in FIG. 1, in addition to static bearing static pressure ks at static time, dynamic bearing causes rotary bearing as well. The rigidity Kd ′ and the bearing rigidity Kd due to the squeeze force are generated.

【0007】このとき、静止時軸受剛性ks,回転時軸
受剛性Kd´およびスクイズ力による軸受剛性Kdを加
えた全軸受剛性kdをあらかじめ測定することができれ
ば、図2に示す回転時における回転軸1の振れeを測定
して、 F=e×kd(F:不釣合による遠心力(不釣
合量)) に基づいて、遠心力Fを算出することができ
るが、実際において、動圧力による回転時軸受剛性kd
´は、偏芯方向から角度θ(偏芯角θ)遅れた方向に生
じるうえ、遠心力Fの大きさに左右され、また、スクイ
ズ力による軸受剛性kdは、振れ(偏芯量)eおよび回
転周波数に依存することから、全軸受剛性kdをあらか
じめ測定することは困難である。
At this time, if the total bearing rigidity kd including the stationary bearing rigidity ks, the rotating bearing rigidity Kd ', and the bearing rigidity Kd due to the squeeze force can be measured in advance, the rotating shaft 1 during rotation shown in FIG. The centrifugal force F can be calculated based on F = e × kd (F: centrifugal force due to unbalance (unbalanced amount)) by measuring the deflection e of kd
′ Is generated in a direction delayed by an angle θ (eccentricity angle θ) from the eccentric direction, and depends on the magnitude of the centrifugal force F. Further, the bearing rigidity kd due to the squeeze force is the deflection (eccentricity amount) e and Since it depends on the rotation frequency, it is difficult to measure the total bearing stiffness kd in advance.

【0008】ところが、静圧力による静止時軸受剛性k
sが回転に依存せず、しかも、動圧力による回転時軸受
剛性kd´およびスクイズ力による軸受剛性kdが供給
圧力の変化に影響されないことに着目すれば、図1にお
いて、ラジアル静圧軸受に対する供給圧力P1での静止
時軸受剛性ks1,全軸受剛性kd1および供給圧力P
2での静止時軸受剛性ks2,全軸受剛性kd2とした
ときに、 kd2−ks2=α2,kd1−ks1=α1,α1≒
α2(=α) の関係が成り立ち、したがって、回転に依存しない静止
時軸受剛性ks1,ks2および振れeを測定すること
で、上記 F=e×kd から遠心力Fを算出できるこ
とがわかる。
However, the static bearing stiffness k due to static pressure
If s does not depend on rotation, and the bearing rigidity kd ′ during rotation due to dynamic pressure and the bearing rigidity kd due to squeeze force are not affected by changes in supply pressure, in FIG. Stationary bearing stiffness ks1, total bearing stiffness kd1 and supply pressure P at pressure P1
When the static bearing rigidity ks2 at 2 is the total bearing rigidity kd2, kd2-ks2 = α2, kd1-ks1 = α1, α1≈
It is understood that the relationship of α2 (= α) is established, and therefore, the centrifugal force F can be calculated from the above F = e × kd by measuring the stationary bearing stiffnesses ks1 and ks2 and the deflection e that do not depend on rotation.

【0009】また、回転軸1を正回転および逆回転させ
た場合、各々の偏芯角+θ,−θが回転方向に対称をな
すことに着目すれば、各偏芯角+θ,−θの中間位置が
偏芯方向であることがわかる。
If the eccentric angles + θ and -θ are symmetrical in the rotational direction when the rotary shaft 1 is rotated in the forward and reverse directions, the eccentric angles + θ and -θ are intermediate. It can be seen that the position is in the eccentric direction.

【0010】本発明に係わる静圧軸受に支持される回転
軸のバランス修正方法は、上記着眼点に基づいてなされ
たもので、請求項1に係わる静圧軸受に支持される回転
軸のバランス修正方法では、ラジアル静圧軸受に支持さ
れる回転軸のバランスを修正するに際して、前記回転軸
を静止させた状態で前記ラジアル静圧軸受に対する供給
圧力P1での静止時軸受剛性ks1および供給圧力P2
での静止時軸受剛性ks2を測定し、続いて、前記回転
軸を回転させながら前記ラジアル静圧軸受に対する供給
圧力P1での回転軸の振れed1および供給圧力P2で
の回転軸の振れed2を測定した後、前記静止時軸受剛
性ks1に回転時軸受剛性およびスクイズ力による軸受
剛性を加えた全軸受剛性をkd1とすると共に、前記静
止時軸受剛性ks2に回転時軸受剛性およびスクイズ力
による軸受剛性を加えた全軸受剛性をkd2としたとき
に、前記回転時軸受剛性およびスクイズ力による軸受剛
性が供給圧力の変化に影響を受けないことにより成立す
る kd2−ks2=α2,kd1−ks1=α1,α1≒
α2(=α) の関係から得られる kd1=α+ks1,kd2=α+ks2 を供給圧力P1および供給圧力P2のもとで前記回転軸
を各々回転させた時に生じる不釣合による遠心力Fを求
める式 ed1×kd1=F,ed2×kd2=F にそれぞれ代入し、さらに、αを消去して得られる式 ed1×ed2×(ks2−ks1)/(ed1−ed
2)=F に基づいて遠心力Fを算出し、前記回転軸においてあら
かじめ設定した半径rの円周上に取り付ける修正おもり
の質量mを、半径r,角速度ωおよび前記遠心力Fと、
F=mrωとから決定すると共に、前記回転軸を正回
転および逆回転させてそれぞれ測定した各偏芯角の中間
位置を偏芯方向として判定することを特徴としており、
この静圧軸受に支持される回転軸のバランス修正方法の
構成を従来の課題を解決するための手段としている。
A balance correction method for a rotary shaft supported by a hydrostatic bearing according to the present invention is based on the above-mentioned point of view, and the balance correction for a rotary shaft supported by the hydrostatic bearing according to claim 1 is performed. According to the method, when correcting the balance of the rotary shaft supported by the radial static pressure bearing, the stationary bearing rigidity ks1 and the supply pressure P2 at the supply pressure P1 to the radial static pressure bearing in the state where the rotary shaft is stationary.
Bearing static rigidity ks2 at rest, and then while rotating the rotating shaft, the runout ed1 of the rotating shaft at the supply pressure P1 and the runout ed2 of the rotating shaft at the supply pressure P2 with respect to the radial hydrostatic bearing are measured. After that, the total bearing rigidity obtained by adding the stationary bearing rigidity ks1 to the rotating bearing rigidity and the bearing rigidity due to the squeeze force is set to kd1, and the stationary bearing rigidity ks2 is the rotating bearing rigidity and the bearing rigidity due to the squeeze force. When the added total bearing rigidity is kd2, it is established that the bearing rigidity during rotation and the bearing rigidity due to the squeeze force are not affected by changes in the supply pressure. Kd2-ks2 = α2, kd1-ks1 = α1, α1 ≒
An expression ed1 × kd1 for obtaining a centrifugal force F due to imbalance generated when kd1 = α + ks1 and kd2 = α + ks2 obtained from the relationship of α2 (= α) are respectively rotated under the supply pressure P1 and the supply pressure P2. = F, ed2 × kd2 = F, respectively, and the expression ed1 × ed2 × (ks2-ks1) / (ed1-ed obtained by eliminating α)
2) The centrifugal force F is calculated on the basis of = F 2, and the mass m of the modified weight to be attached on the circumference of the radius r preset on the rotation axis is defined by the radius r, the angular velocity ω and the centrifugal force F.
F = mrω 2 is determined, and the intermediate position of each eccentric angle measured by rotating the rotating shaft forward and backward is determined as the eccentric direction.
The structure of the method for correcting the balance of the rotary shaft supported by the hydrostatic bearing is used as means for solving the conventional problems.

【0011】また、本発明に係わる静圧軸受に支持され
る回転軸のバランス修正方法の実施態様として、請求項
2において、における半径rの円周上に複数の修正おも
り取付け部を設けたことを特徴としている。
Further, as an embodiment of the method for correcting the balance of the rotary shaft supported by the hydrostatic bearing according to the present invention, in claim 2, a plurality of correction weight mounting portions are provided on the circumference of the radius r. Is characterized by.

【0012】本発明に係わる静圧軸受に支持される回転
軸のバランス修正方法は、油圧を用いたラジアル静圧軸
受に支持される回転軸のバランス修正、および、空気圧
を用いたいわゆる静圧気体軸受に支持される回転軸のバ
ランス修正のいずれにも採用することが可能であるが、
回転抵抗が少ないうえ、軸受剛性が低いことにより、回
転軸の微小な変位を測定することができる静圧気体軸受
に支持される回転軸のバランス修正に適用することが望
ましい。
A balance correction method for a rotary shaft supported by a static pressure bearing according to the present invention is a balance correction for a rotary shaft supported by a radial static pressure bearing using hydraulic pressure, and a so-called static pressure gas using air pressure. It can be used for any of the balance correction of the rotating shaft supported by the bearing,
Since the rotation resistance is low and the bearing rigidity is low, it is desirable to apply it to the balance correction of the rotary shaft supported by the hydrostatic gas bearing, which can measure a minute displacement of the rotary shaft.

【0013】[0013]

【発明の作用】本発明の請求項1に係わる静圧軸受に支
持される回転軸のバランス修正方法では、上記した構成
としたため、ラジアル静圧軸受に支持される回転軸のバ
ランスを修正するに際して、回転軸を静止させた状態で
ラジアル静圧軸受に対する供給圧力P1での静止時軸受
剛性ks1および供給圧力P2での静止時軸受剛性ks
2を測定し、続いて、回転軸を回転させながらラジアル
静圧軸受に対する供給圧力P1での回転軸の振れed1
および供給圧力P2での回転軸の振れed2を測定すれ
ば、不釣合により生じる遠心力Fが求められることとな
り、また、回転軸を正回転および逆回転させた際の各偏
芯角をそれぞれ測定すれば、その中間位置が偏芯方向と
して求められることとなり、したがって、試しおもりの
付け替えを行う必要がなくなるので、修正作業性の向上
および修正時間の短縮が図られるうえ、回転軸の精密な
バランス修正がなされることとなる。
The method for correcting the balance of the rotary shaft supported by the hydrostatic bearing according to claim 1 of the present invention has the above-described structure, and therefore, the balance of the rotary shaft supported by the radial hydrostatic bearing is corrected. , The stationary bearing rigidity ks1 at the supply pressure P1 and the stationary bearing rigidity ks at the supply pressure P2 for the radial hydrostatic bearing with the rotating shaft stationary.
2 is measured, and then, while rotating the rotating shaft, the runout of the rotating shaft at the supply pressure P1 to the radial hydrostatic bearing is ed1.
If the runout ed2 of the rotating shaft at the supply pressure P2 is measured, the centrifugal force F generated by the imbalance is obtained, and each eccentric angle when the rotating shaft is normally rotated and reversely rotated is measured. In that case, the intermediate position is required as the eccentric direction, so it is not necessary to replace the trial weight, which improves the workability of the correction and shortens the correction time, and also enables precise balance correction of the rotary shaft. Will be done.

【0014】本発明の請求項2に係わる静圧軸受に支持
される回転軸のバランス修正方法では、上記した構成と
したため、修正おもりの取り付けが簡単になされること
となり、修正作業性のより一層の向上および修正時間の
大幅な短縮が図られることとなる。
According to the method for correcting the balance of the rotary shaft supported by the hydrostatic bearing according to the second aspect of the present invention, since the above-mentioned configuration is adopted, the correction weight can be easily attached, and the correction workability is further improved. Will be improved and the correction time will be significantly shortened.

【0015】[0015]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0016】図1は本発明に係わる静圧軸受に支持され
る回転軸のバランス修正方法の説明図であり、図2およ
び図3は本発明の一実施例による静圧軸受に支持される
回転軸のバランス修正方法が適用される研磨装置の主軸
部を示している。
FIG. 1 is an explanatory view of a balance correcting method of a rotary shaft supported by a hydrostatic bearing according to the present invention, and FIGS. 2 and 3 are rotations supported by a hydrostatic bearing according to an embodiment of the present invention. 4 illustrates a main shaft portion of a polishing apparatus to which a shaft balance correction method is applied.

【0017】図2に示すように、この研磨装置の主軸部
10は、ハウジング11と、このハウジング11内に収
容されかつ一端部(図示右側の端部)が図外の研磨装置
駆動部に連結されると共に他端部(図示左側の端部)に
工具としての砥石Tが取り付けられる回転軸1と、回転
軸1の両端側に設けた小径部1a,1aを支持するラジ
アル静圧軸受12,12と、送油路13aを介してラジ
アル静圧軸受12に油を圧送する送油ポンプ13と、送
油路13aと空気供給路14aを介して連通する空気源
14と、空気供給路14aに設けた逆止弁15と、ハウ
ジング11に回転軸1の一端側に位置する小径部1aに
向くようにして取り付けた変位計16と、ハウジング1
1に回転軸1の他端側に位置する小径部1aに向くよう
にして取り付けた回転検出器17を備えており、回転軸
1の振れを測定する変位計16および振れの位相を測定
する回転検出器17は、演算装置18に接続している。
As shown in FIG. 2, the main shaft portion 10 of this polishing apparatus is housed in a housing 11 and one end portion (the end portion on the right side in the drawing) of the main shaft portion 10 is connected to a polishing apparatus driving portion (not shown). And a radial static pressure bearing 12 for supporting the rotating shaft 1 to which a grindstone T as a tool is attached at the other end (the end on the left side in the drawing), and the small diameter parts 1a provided at both ends of the rotating shaft 1, 12, an oil feed pump 13 for sending oil under pressure to the radial static pressure bearing 12 via the oil feed passage 13a, an air source 14 communicating with the oil feed passage 13a and the air supply passage 14a, and an air feed passage 14a. The check valve 15 provided, the displacement meter 16 attached to the housing 11 so as to face the small diameter portion 1a located on one end side of the rotary shaft 1, and the housing 1
1 is provided with a rotation detector 17 attached so as to face the small diameter portion 1a located on the other end side of the rotary shaft 1, and a displacement meter 16 for measuring the shake of the rotary shaft 1 and a rotation for measuring the phase of the shake The detector 17 is connected to the arithmetic unit 18.

【0018】この研磨装置の主軸部10において、研磨
加工中は、送油ポンプ13の作動により、空気源14か
ら送られる圧縮空気よりも高圧の油をラジアル静圧軸受
12,12に送り込んで油圧により回転軸1を支持し、
一方、バランス修正中は、送油ポンプ13を停止させる
ことにより、圧縮空気をラジアル静圧軸受12,12に
送り込んで空気圧により回転軸1を支持する構成となっ
ている。
In the main shaft portion 10 of the polishing apparatus, during the polishing process, the oil feed pump 13 is operated to feed the oil having a pressure higher than that of the compressed air sent from the air source 14 to the radial static pressure bearings 12 and 12 for hydraulic pressure. Supports the rotating shaft 1 by
On the other hand, during the balance correction, the oil feed pump 13 is stopped to send compressed air to the radial static pressure bearings 12 and 12 to support the rotary shaft 1 by air pressure.

【0019】また、この研磨装置の主軸部10では、回
転軸1における他端面の中心に図示しないボルトにより
固定されるプレート20と回転軸1の他端面との間で砥
石Tを挾持するようになっており、この場合、図3に示
すように、プレート20には、半径rの円周上に位置す
る複数個のねじ孔(修正おもり取付け部)20aが略等
間隔で設けてある。
Further, in the main shaft portion 10 of this polishing apparatus, the grindstone T is held between the plate 20 fixed to the center of the other end surface of the rotary shaft 1 by a bolt (not shown) and the other end surface of the rotary shaft 1. In this case, as shown in FIG. 3, the plate 20 is provided with a plurality of screw holes (correction weight attaching portions) 20a located on the circumference of the radius r at substantially equal intervals.

【0020】この研磨装置の主軸部10において、砥石
Tを取り付けた状態の回転軸1のバランスを修正するに
際しては、まず、送油ポンプ13を停止させてラジアル
静圧軸受12,12において回転軸1が空気圧により支
持されるようにする。
In the main shaft portion 10 of this polishing apparatus, when correcting the balance of the rotary shaft 1 with the grindstone T attached, first, the oil feed pump 13 is stopped and the rotary shafts of the radial static pressure bearings 12 and 12 are rotated. So that 1 is pneumatically supported.

【0021】次いで、回転軸1を静止させた状態で、ラ
ジアル静圧軸受12,12への供給圧力P1として砥石
Tに所定の荷重を加え、このときの静止時軸受剛性ks
1を変位計16で測定すると共に、供給圧力P2として
同じく砥石Tに所定の荷重を加え、このときの静止時軸
受剛性ks2を変位計16で測定する。
Next, in a state where the rotary shaft 1 is stationary, a predetermined load is applied to the grindstone T as the supply pressure P1 to the radial static pressure bearings 12, 12, and the stationary bearing rigidity ks at this time is obtained.
1 is measured by the displacement meter 16, a predetermined load is also applied to the grindstone T as the supply pressure P2, and the stationary bearing rigidity ks2 at this time is measured by the displacement meter 16.

【0022】続いて、回転軸1を回転させながらラジア
ル静圧軸受12,12に対する供給圧力P1での回転軸
の振れed1および供給圧力P2での回転軸の振れed
2を変位計16で測定する。
Subsequently, while rotating the rotary shaft 1, the rotary shaft runout ed1 at the supply pressure P1 and the rotary shaft runout ed at the supply pressure P2 are applied to the radial static pressure bearings 12, 12.
2 is measured by the displacement gauge 16.

【0023】ここで、静止時軸受剛性ks1に回転時軸
受剛性Kd´およびスクイズ力による軸受剛性Kdを加
えて全軸受剛性kd1とすると共に、静止時軸受剛性k
s2に回転時軸受剛性Kd´およびスクイズ力による軸
受剛性Kdを加えて全軸受剛性kd2とすると、回転時
軸受剛性Kd´およびスクイズ力による軸受剛性Kdは
供給圧力の変化に影響を受けないことから、図1に示す
ように、 kd2−ks2=α2,kd1−ks1=α1,α1≒
α2(=α) の関係が成立する。
Here, the stationary bearing rigidity ks1 is added to the rotating bearing rigidity Kd 'and the bearing rigidity Kd due to the squeeze force to obtain the total bearing rigidity kd1, and the stationary bearing rigidity k is obtained.
If the bearing rigidity Kd 'during rotation and the bearing rigidity Kd due to the squeeze force are added to s2 to obtain the total bearing rigidity kd2, the bearing rigidity Kd' during rotation and the bearing rigidity Kd due to the squeeze force are not affected by changes in the supply pressure. , As shown in FIG. 1, kd2-ks2 = α2, kd1-ks1 = α1, α1≈
The relationship of α2 (= α) is established.

【0024】つまり、 kd1=α+ks1,kd2=
α+ks2 を供給圧力P1および供給圧力P2のもと
で回転軸1を各々回転させた時に生じる不釣合による遠
心力Fを求める式 ed1×kd1=F,ed2×kd
2=F にそれぞれ代入し、さらに、αを消去して得た ed1×ed2×(ks2−ks1)/(ed1−ed
2)=F から、上記供給圧力P1での静止時軸受剛性ks1,回
転軸の振れed1および供給圧力P2での静止時軸受剛
性ks2,回転軸の振れed2を用いて遠心力Fを算出
する。
That is, kd1 = α + ks1, kd2 =
An expression for determining a centrifugal force F due to imbalance that occurs when the rotating shaft 1 is rotated under the supply pressure P1 and the supply pressure P2 with α + ks2 ed1 × kd1 = F, ed2 × kd
2 = F, respectively, and ed1 × ed2 × (ks2-ks1) / (ed1-ed obtained by eliminating α)
2) = F 2, the centrifugal force F is calculated using the stationary bearing rigidity ks1 at the supply pressure P1, the rotational shaft runout ed1 and the stationary bearing rigidity ks2 at the supply pressure P2, the rotational shaft runout ed2.

【0025】次に、プレート20における半径rの円周
上に設けた複数個のねじ孔20aに取り付けるねじ(修
正おもり)wの質量mを、半径r,角速度ω,および遠
心力Fと、F=mrωとから決定する。
Next, the mass m of the screw (correction weight) w attached to the plurality of screw holes 20a provided on the circumference of the plate 20 having the radius r is defined by the radius r, the angular velocity ω, and the centrifugal force F and F. = Mrω 2 .

【0026】この後、回転軸1を正回転および逆回転さ
せて、その都度、変位計16で検出した回転軸1の振れ
eの位相と回転検出器17から得た回転パルスとを演算
装置18に取り込んで、各々の偏芯角+θ,−θを測定
して偏芯角+θ,−θの中間位置を偏芯方向zとして判
定し、偏芯方向zとは180゜反対方向でかつ半径rの
円周上に位置するねじ孔20aに上記のように決定した
ねじwを取り付ける。
After that, the rotary shaft 1 is rotated in the forward and reverse directions, and the phase of the deflection e of the rotary shaft 1 detected by the displacement gauge 16 and the rotation pulse obtained from the rotation detector 17 are calculated each time. The eccentric angle + θ, -θ is measured and the intermediate position between the eccentric angles + θ, -θ is determined as the eccentric direction z. The direction is 180 ° opposite to the eccentric direction z and the radius r The screw w determined as described above is attached to the screw hole 20a located on the circumference of.

【0027】したがって、この静圧軸受に支持される回
転軸のバランス修正方法では、あらかじめ正確に測定で
きる供給圧力P1での静止時軸受剛性ks1および供給
圧力P2での静止時軸受剛性ks2と、回転軸1を回転
させて測定できる供給圧力P1での回転軸の振れed1
および供給圧力P2での回転軸の振れed2とを用い
て、不釣合により生じる遠心力Fが求められ、また、回
転軸1を正回転および逆回転させてその都度測定した各
偏芯角+θ,−θを用いて偏芯方向が求められることか
ら、回転軸1の精密なバランス修正がなされることとな
り、加えて、従来行っていた試しおもりの付け替え作業
を行う必要がないので、修正作業性が向上すると共に、
修正時間の短縮が図られることとなる。
Therefore, in the method of correcting the balance of the rotary shaft supported by the hydrostatic bearing, the static bearing rigidity ks1 at the supply pressure P1 and the static bearing rigidity ks2 at the supply pressure P2 which can be accurately measured in advance, and the rotation Runout ed1 of the rotating shaft at the supply pressure P1 that can be measured by rotating the shaft 1.
And the runout ed2 of the rotating shaft at the supply pressure P2, the centrifugal force F generated by the imbalance is obtained, and the eccentric angles + θ, − measured each time by rotating the rotating shaft 1 in the forward and reverse directions. Since the eccentric direction is obtained by using θ, precise balance correction of the rotary shaft 1 is performed, and in addition, since it is not necessary to replace the trial weight, which has been conventionally performed, the correction workability is improved. Improve and
The correction time can be shortened.

【0028】また、砥石4を回転軸1に取り付けるプレ
ート20に、その半径rの円周上に位置する複数個のね
じ孔20aを略等間隔で設けているので、修正おもりと
してのねじwの取り付けが簡単なものとなり、その結
果、修正作業性のより一層の向上および修正時間の大幅
な短縮が図られることとなる。
Further, since the plate 20 for mounting the grindstone 4 on the rotary shaft 1 is provided with a plurality of screw holes 20a located on the circumference of the radius r thereof at substantially equal intervals, the screw w as a correction weight is The installation becomes simple, and as a result, the workability of the correction is further improved and the correction time is greatly shortened.

【0029】上記した実施例では、本発明に係わる回転
軸のバランス修正方法を研磨装置の主軸部10に適用し
た場合を示したがこれに限定されるものではない。
In the above-described embodiment, the method of correcting the balance of the rotating shaft according to the present invention is applied to the main shaft portion 10 of the polishing apparatus, but the present invention is not limited to this.

【0030】また、本発明に係わる回転軸のバランス修
正方法の詳細な構成は、上記した実施例に限定されるも
のではない。
The detailed construction of the method for correcting the balance of the rotary shaft according to the present invention is not limited to the above-mentioned embodiment.

【0031】[0031]

【発明の効果】以上説明したように、本発明の請求項1
に係わる回転軸のバランス修正方法において、上記した
構成としたから、ラジアル静圧軸受に支持される回転軸
のバランスを修正するに際して、回転軸を静止させた状
態でラジアル静圧軸受に対する供給圧力P1での静止時
軸受剛性ks1および供給圧力P2での静止時軸受剛性
ks2を測定し、続いて、回転軸を回転させながらラジ
アル静圧軸受に対する供給圧力P1での回転軸の振れe
d1および供給圧力P2での回転軸の振れed2を測定
するだけで、不釣合により生じる遠心力Fを求めること
が可能であり、加えて、回転軸を正回転および逆回転さ
せた際の各偏芯角をそれぞれ測定するだけで、その中間
位置を偏芯方向として求めることができ、その結果、回
転軸のバランス修正を極めて精密に行うことができ、加
えて、従来行っていた試しおもりの付け替え作業を行う
必要がなくなることから、修正作業性の向上および修正
時間の短縮を実現することが可能であるという非常に優
れた効果がもたらされる。
As described above, according to the first aspect of the present invention.
In the method for correcting the balance of the rotary shaft according to the present invention, since the configuration is as described above, when the balance of the rotary shaft supported by the radial static pressure bearing is corrected, the supply pressure P1 to the radial static pressure bearing is kept stationary while the rotary shaft is stationary. The static bearing rigidity ks1 at static pressure and the static bearing rigidity ks2 at supply pressure P2 were measured, and then the runout e of the rotating shaft at the supply pressure P1 against the radial static pressure bearing while rotating the rotating shaft was measured.
The centrifugal force F generated by the imbalance can be obtained only by measuring the runout ed2 of the rotating shaft at d1 and the supply pressure P2. In addition, the eccentricity when the rotating shaft is rotated forward and backward By just measuring each angle, the intermediate position can be obtained as the eccentric direction, and as a result, the balance adjustment of the rotating shaft can be performed extremely precisely. In addition, the trial weight replacement work that has been done conventionally Since it is not necessary to perform the above, it is possible to achieve a very excellent effect that it is possible to improve the workability of correction and shorten the correction time.

【0032】本発明の請求項2に係わる静圧軸受に支持
される回転軸のバランス修正方法では、上記した構成と
したため、修正おもりを簡単に取り付けることができ、
したがって、修正作業性のより一層の向上および修正時
間の大幅な短縮を実現できるという非常に優れた効果が
もたらされる。
In the method for correcting the balance of the rotary shaft supported by the hydrostatic bearing according to the second aspect of the present invention, since the above-mentioned configuration is adopted, the correction weight can be easily attached,
Therefore, a very excellent effect that the correction workability is further improved and the correction time is greatly shortened is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる回転軸のバランス修正方法を説
明する軸受剛性と供給圧力との関係を示すグラフ(a)
および回転軸が回転している場合における偏芯状況の説
明図(b)である。
FIG. 1 is a graph (a) showing the relationship between bearing rigidity and supply pressure for explaining the method for correcting the balance of a rotating shaft according to the present invention.
FIG. 8B is an explanatory diagram (b) of an eccentricity state when the rotation shaft is rotating.

【図2】本発明に係わる回転軸のバランス修正方法が適
用される研磨装置の主軸部を示す断面説明図である。
FIG. 2 is a cross-sectional explanatory view showing a main shaft portion of a polishing apparatus to which a method for correcting balance of a rotary shaft according to the present invention is applied.

【図3】図2における研磨装置の主軸部に固定されるプ
レートの正面説明図である。
3 is a front explanatory view of a plate fixed to a main shaft portion of the polishing apparatus in FIG.

【図4】従来における回転軸のバランス修正方法を示す
回転軸が回転している場合における偏芯状況の説明図
(a)および回転軸の振れと回転パルスとを重ねて示す
位相の説明図(b)である。
4A and 4B are explanatory views of an eccentricity condition when a rotating shaft is rotating, showing a conventional method of correcting the balance of the rotating shaft; and FIG. 4A is an explanatory diagram of a phase in which a shake of the rotating shaft and a rotating pulse are overlapped with each other. b).

【符号の説明】[Explanation of symbols]

1 回転軸 12 ラジアル静圧軸受 20a ねじ孔(修正おもり取付け部) w ねじ(修正おもり) 1 rotation axis 12 radial hydrostatic bearings 20a Screw hole (correction weight mounting part) w screw (correction weight)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大和田 優 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (72)発明者 和久田 学 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (72)発明者 大 谷 利 一 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (72)発明者 太 田 稔 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (72)発明者 宮 原 克 敏 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (56)参考文献 特開 昭63−96532(JP,A) 特開 平2−224944(JP,A) 特開 平5−65942(JP,A) 特開 昭58−42944(JP,A) 実開 平4−63316(JP,U) 実開 平4−63340(JP,U) (58)調査した分野(Int.Cl.7,DB名) B23Q 11/00 F16F 15/32 F16C 32/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yu Owada 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Manabu Wakuda 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Riichi Otani No. 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Minoru Ota No. 2, Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72 ) Inventor Katsutoshi Miyahara 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (56) Reference JP 63-96532 (JP, A) JP 2-224944 (JP, A) Special Kaihei 5-65942 (JP, A) JP-A-58-42944 (JP, A) Actual Kaihei 4-63316 (JP, U) Actual Kaihei 4-63340 (JP, U) (58) Field (Int.Cl. 7, DB name) B23Q 11/00 F16F 15/32 F16C 32/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ラジアル静圧軸受に支持される回転軸の
バランスを修正するに際して、前記回転軸を静止させた
状態で前記ラジアル静圧軸受に対する供給圧力P1での
静止時軸受剛性ks1および供給圧力P2での静止時軸
受剛性ks2を測定し、続いて、前記回転軸を回転させ
ながら前記ラジアル静圧軸受に対する供給圧力P1での
回転軸の振れed1および供給圧力P2での回転軸の振
れed2を測定した後、 前記静止時軸受剛性ks1に回転時軸受剛性およびスク
イズ力による軸受剛性を加えた全軸受剛性をkd1とす
ると共に、前記静止時軸受剛性ks2に回転時軸受剛性
およびスクイズ力による軸受剛性を加えた全軸受剛性を
kd2としたときに、前記回転時軸受剛性およびスクイ
ズ力による軸受剛性が供給圧力の変化に影響を受けない
ことにより成立する kd2−ks2=α2,kd1−ks1=α1,α1≒
α2(=α) の関係から得られる kd1=α+ks1,kd2=α+ks2 を供給圧力P1および供給圧力P2のもとで前記回転軸
を各々回転させた時に生じる不釣合による遠心力Fを求
める式 ed1×kd1=F,ed2×kd2=F にそれぞれ代入し、さらに、αを消去して得られる式 ed1×ed2×(ks2−ks1)/(ed1−ed
2)=F に基づいて遠心力Fを算出し、前記回転軸においてあら
かじめ設定した半径rの円周上に取り付ける修正おもり
の質量mを、半径r,角速度ωおよび前記遠心力Fと、
F=mrωとから決定すると共に、前記回転軸を正回
転および逆回転させてそれぞれ測定した各偏芯角の中間
位置を偏芯方向として判定することを特徴とする静圧軸
受に支持される回転軸のバランス修正方法。
1. When correcting the balance of a rotary shaft supported by a radial static pressure bearing, the static bearing rigidity ks1 and the supply pressure at a supply pressure P1 to the radial static pressure bearing in a state where the rotary shaft is stationary. The static bearing rigidity ks2 at P2 is measured, and subsequently, while rotating the rotary shaft, the runout ed1 of the rotary shaft at the supply pressure P1 and the runout ed2 of the rotary shaft at the supply pressure P2 with respect to the radial hydrostatic bearing are measured. After the measurement, the total bearing rigidity obtained by adding the bearing rigidity during rotation ks1 to the bearing rigidity during rotation and the bearing rigidity due to the squeeze force is kd1, and the stationary bearing rigidity ks2 is the bearing rigidity during rotation and the bearing rigidity due to the squeeze force. When the total bearing rigidity including the above is set to kd2, the bearing rigidity during rotation and the bearing rigidity due to the squeeze force are affected by changes in the supply pressure. Established by the absence kd2-ks2 = α2, kd1-ks1 = α1, α1 ≒
An expression ed1 × kd1 for obtaining a centrifugal force F due to imbalance generated when kd1 = α + ks1 and kd2 = α + ks2 obtained from the relationship of α2 (= α) are respectively rotated under the supply pressure P1 and the supply pressure P2. = F, ed2 × kd2 = F, respectively, and the expression ed1 × ed2 × (ks2-ks1) / (ed1-ed obtained by eliminating α)
2) The centrifugal force F is calculated on the basis of = F 2, and the mass m of the modified weight to be attached on the circumference of the radius r preset on the rotation axis is defined by the radius r, the angular velocity ω and the centrifugal force F.
The bearing is supported by a hydrostatic bearing characterized by determining from F = mrω 2 and determining the intermediate position of each eccentric angle measured by rotating the rotating shaft in the forward and reverse directions as the eccentric direction. Rotation axis balance correction method.
【請求項2】 回転軸における半径rの円周上に複数の
修正おもり取付け部を設けた請求項1に記載の静圧軸受
に支持される回転軸のバランス修正方法。
2. A method for correcting balance of a rotary shaft supported by a hydrostatic bearing according to claim 1, wherein a plurality of correction weight mounting portions are provided on a circumference of a radius r of the rotary shaft.
JP20238896A 1996-07-31 1996-07-31 Method for correcting balance of rotating shaft supported by hydrostatic bearing Expired - Fee Related JP3495515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20238896A JP3495515B2 (en) 1996-07-31 1996-07-31 Method for correcting balance of rotating shaft supported by hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20238896A JP3495515B2 (en) 1996-07-31 1996-07-31 Method for correcting balance of rotating shaft supported by hydrostatic bearing

Publications (2)

Publication Number Publication Date
JPH1043987A JPH1043987A (en) 1998-02-17
JP3495515B2 true JP3495515B2 (en) 2004-02-09

Family

ID=16456675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20238896A Expired - Fee Related JP3495515B2 (en) 1996-07-31 1996-07-31 Method for correcting balance of rotating shaft supported by hydrostatic bearing

Country Status (1)

Country Link
JP (1) JP3495515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625277B (en) * 2008-07-07 2011-07-27 西门子公司 Method and device for quantitatively detecting nonequilibrium state and method for detecting clamping state of workpiece

Also Published As

Publication number Publication date
JPH1043987A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP2882105B2 (en) Method and apparatus for measuring the preload of a rolling bearing
US4543825A (en) Procedure for balancing of rotors without journals
US5423218A (en) Method and instrument for measuring contact angle of rolling bearing
US5495764A (en) Vibration measurement system for a rolling bearing
US7793540B2 (en) Rotor unbalance correction
KR100724799B1 (en) Apparatus and method for bearing stiffness test
JP7387146B2 (en) Dynamic balance tester and unbalance correction method in the dynamic balance tester
US6360593B1 (en) Method and apparatus for reducing vibrations transmitted to a vehicle from a wheel unit
JP2005211654A (en) Method of compensating unbalance
US4517843A (en) Material and component testing machine
KR20220038702A (en) Methods and drivetrain test benches for detecting imbalance and/or misalignment
JP3495515B2 (en) Method for correcting balance of rotating shaft supported by hydrostatic bearing
US3961525A (en) Method of and device for resting the fatigue strength of rotors, especially disc wheels, especially those for motor vehicles
JPH03188341A (en) Balancing machine
JP4415680B2 (en) Grinding apparatus and grinding method
JPH10286770A (en) Grinding stone and grinding stone set
KR20010007867A (en) Automatic balancing apparatus for grinding wheels
JPH10264024A (en) Grinding wheel unbalance measuring method
JPS61117406A (en) Measuring instrument for curvature of rotating cylinder
US1547487A (en) Balancing machine
JP2003121289A (en) Elastic deformation amount measurement device of rod- like member, correction device and correction method
JP3059401B2 (en) Rotating body having one blade impeller and dynamic balancing method thereof
JPH0663898B2 (en) Precision balancing method for rotating body
JPS6310777B2 (en)
KR20010087133A (en) Apparatus for measuring forces produced by unbalance of a rotary member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees