JP3477270B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer

Info

Publication number
JP3477270B2
JP3477270B2 JP08602195A JP8602195A JP3477270B2 JP 3477270 B2 JP3477270 B2 JP 3477270B2 JP 08602195 A JP08602195 A JP 08602195A JP 8602195 A JP8602195 A JP 8602195A JP 3477270 B2 JP3477270 B2 JP 3477270B2
Authority
JP
Japan
Prior art keywords
vibrator
vibration
thickness direction
pedestal
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08602195A
Other languages
Japanese (ja)
Other versions
JPH08256395A (en
Inventor
裕徳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP08602195A priority Critical patent/JP3477270B2/en
Publication of JPH08256395A publication Critical patent/JPH08256395A/en
Application granted granted Critical
Publication of JP3477270B2 publication Critical patent/JP3477270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、水中で超音波の送受信
を行い、物体の探知等を行うためのセンサー部分である
超音波送受波器の改良に関するものである。 【0002】 【従来の技術】水中を高速で移動する航走体において
は、超音波送受波器は超音波の送受信を行うための音響
窓が航走体表面と同一面をなすように航走体に埋設した
形で取り付けられるが、航走時に発生するフローノイズ
あるいはキャビテーション小気泡を含む層流が超音波送
受波器の音響性能に悪影響を与えていた。これらの影響
を低減するため、航走体の形状あるいは外表面の処理
等、構造的な面での対策がなされる一方で、送受波器に
ついても多くの対策が検討され、中でも使用周波数の高
周波化が送受波器での有効な手段であり、メガヘルツ帯
の周波数を使用した超音波送受波器の実用化が進められ
ている。 【0003】従来、数百kHzから数MHz近傍の周波
数帯域で使用する送受波器は円板あるいは矩形板状の圧
電磁器振動子の厚み方向振動を利用し、かかる振動子を
位置決め及び固定用の台座等に接着・固定し、ゴム状弾
性体によるモールド等の手法で防水構造を付与した構成
が一般的であった。 【0004】 【発明が解決しようとする課題】ところで、厚み方向振
動を利用する圧電磁器振動子では、厚さ方向の対向する
両面はそれぞれほぼ全面に銀あるいはニッケル等よりな
る金属電極を形成し、この電極で分極および電気信号の
授受を行っており、厚み方向振動は、振動子全体で一様
に励振される。このような振動子で高周波化に対応する
場合、振動子の厚さは共振周波数に反比例して減少し、
また送受波器の性能である指向幅を維持しようとすれば
振動子外径あるいは幅や長さ方向の寸法を小さくしなけ
ればならず、結果的に振動子の体積減少を招くが、これ
により接着・組立作業性の悪化という組立品の特性のば
らつきを増大させる要因を増やすという問題があった。 【0005】厚み方向振動を利用する振動子において
は、よくみられる現象であるが、厚み方向振動以外の、
例えば、径方向あるいは幅や長さ方向振動の高次モード
共振等が寄生振動として現れやすいという問題がある。
200〜300kHz程度の周波数であれば、振動子の
厚さの3分の2程度の深さまでスリットを加工して寄生
振動の共振周波数を厚み方向振動の共振周波数より高く
することで影響を防ぐことも可能であるが、MHz帯ま
で高周波化すると振動子の厚さが1〜2mm、あるい
は、それ以下となるため、加工の面でも強度の面でも同
様の対策を講じることは難しい。さらに、指向特性の要
求から定まる振動子の外径あるいは幅等の寸法と、振動
子の厚み方向の寸法が、振動子の材料定数や形状から定
まる特定の寸法比に近づくと、厚み方向振動と寄生振動
間での結合振動が発生しやすくなる。結合振動が発生す
れば、本来の使用振動モードである厚み方向振動を有効
に励振できなくなると同時に、共振周波数の遷移を生
じ、目的とする周波数での使用が困難になる。 【0006】また、高周波化により音波伝搬波長が短く
なることで、振動子を接着・固定するための接着剤層の
厚さの影響がみられるようになる。低い周波数で使用す
る場合、0.1〜0.2mmという接着剤層の厚さは、
波長比で数十分の一程度であり、接着剤の機械的尖鋭度
Qmの低さも無視できるが、高周波化により波長が1〜
2mm程度まで短くなると、接着剤層の厚さが無視でき
なくなり、そのQmの低さのため振動子の振動に対する
制動要因として機能し、同時に振動子の外周部分にはみ
出して硬化した接着剤も同様に制動要因となる。 【0007】さらには、振動子の電極面に信号授受用の
リード線を接続するが、このリード線の持つ質量、剛性
あるいは弾性も無視できず、多くは接着剤と同様に振動
子の振動に対して制動効果を及ぼす。 【0008】これらは、いずれも振動子の主たる振動姿
態である厚み方向振動の励振に対する障害であり、送受
波器としての感度低下を始めとする特性不良の原因とな
っていた。 【0009】さらに、振動子の音響面となっている電極
面上にリード線及びこれを接続するための半田点が存在
し、指向特性乱れの一因となるなど、安定した特性の送
受波器を得ることが非常に困難であった。 【0010】本発明は、水中超音波送受波器の高周波化
に伴う上述の問題を解決し、容易な方法で特性のばらつ
きの少ない送受波器を提供しようとするものである。 【0011】 【課題を解決するための手段】円形あるいは矩形の圧電
磁器板のほぼ中央で、厚さ方向に対向する円形あるいは
矩形の対向電極と、前記対向電極より厚さ方向に対向し
ないように各々異なる方向に引出し電極を形成し、前記
引出し電極に電気信号の授受用の電線を接続して分極お
よび励振を行うよう構成した振動子と、少なくとも対向
電極が位置する範囲に凹み部分を設けて前記対向電極が
直接触れない構造とした台座からなり、前記振動子の対
向電極が台座の凹み部分に位置するように振動子の外周
部分のみを台座に接着して振動子を固定し、ゴム状弾性
体によるモールド等の方法により防水構造を付与したこ
とを特徴とする。 【0012】水中を移動する航走体が備えている超音波
送受波器が、高速航走時に受ける悪影響を低減する方策
として、送受波器の使用周波数の高周波化が有効な手段
であり、メガヘルツ帯の周波数を使用した超音波送受波
器を実用化しようとしている。しかし、この超音波送受
波器に用いられる厚み方向振動を利用する圧電磁器振動
子について、高周波化に伴い次のような問題がある。
振動子の厚さだけではなく、指向特性の要求から振動面
の面積を小さくしなければならないことから、接着・組
立作業性の悪化による特性のばらつきの増大。厚み方
向振動特有の寄生振動が発生し易く、指向特性とのから
みで、振動面の寸法と、厚み方向の寸法比が特定の寸法
比に近づくと、厚み方向振動と寄生振動間で結合振動が
発生し、厚み方向振動を有効に励振できなくなり、さら
には目標とする共振周波数の遷移が生ずる。接着剤層
の厚さが無視できなくなり、振動子の振動に対する制動
要因になる。リード線の質量、剛性あるいは弾性も無
視できず、振動子の振動に対する制動要因になる。電
極面上のリード線及びこれを接続するための半田点が、
指向特性の乱れの一因となる。ということで、これらの
問題点を克服するために、前述の構造的な対策を講じて
解決した。 【0013】 【実施例】以下、本発明を実施例を用いて説明する。 【0014】従来の送受波器の構成例を図4(a)に上
面透視図、図4(b)に概略断面図で示す。厚み方向両
面に各々ほぼ全面に電極を施した矩形圧電磁器振動子1
の両電極にリード線26a,26bを半田付けにより接
続し、振動子21の後面は接着剤で台座22に接着し固
定されている。ケース23の貫通穴にリード線26a,
26bを通し、台座22とケース23を接着した後に、
前記リード線を気密端子28a,28bへ接続し、気密
端子をハウジング25の所定位置へ接着する。ケース2
3をハウジング25へ接着し、ケース23の後方にでき
る空間には、水圧印加時の変型あるいは破損を防止する
ためエポキシ樹脂等の充填材27を注入し硬化させた後
に、振動子21の露出側にゴム状弾性体24をモールド
して水密構造とする。 【0015】ここで、振動子の形状寸法について検討す
る。厚み方向振動を利用する場合の振動子の厚さは、例
えば、共振周波数を1.5MHzとすれば約1.2m
m、共振周波数を3.0MHzとすれば約0.6mmと
なる。また、振動子の厚さを1として指向特性の要求か
ら振動子の外径寸法を求めると、矩形板状の振動子の場
合、−6dB指向幅で10度とすれば矩形板の辺長は約
5、−6dB指向幅で20度とすれば辺長は約2.5と
なる。従って、1.5MHzの周波数で−6dB指向幅
で20度を得ようとすれば、矩形板状の振動子では厚さ
約1.2mmで辺長約3.0mm角の寸法となり、指向
幅をそのまま維持して周波数を3.0MHzに上げるな
らば厚さ約0.6mmで辺長約1.5mm角の大きさ、
即ち、体積では、ほぼ4分の1となるように、高周波化
につれて振動子は著しく小型化してしまう。 【0016】図5は、3MHz近傍での使用を前提とし
て、図4の構成の送受波器を製作する為に設計した正方
形板状の厚み方向振動子の特性を示す。図5(a)は振
動子単体のアドミタンス周波数特性、図5(b)はゴム
状弾性体24をモールドする前の同特性である。 【0017】従来の方法での問題として振動子における
寄生振動の発生のしやすさがあったが、図5(a)の特
性においても厚み方向振動の共振fAの他にもfB,fC
と寄生振動の共振がみられる。厚み方向振動の共振が比
較的低い周波数で振動子の体積が大きければ、台座への
接着等で幅方向振動の高次モード共振等の寄生振動を制
動し、厚み方向振動を有効に利用することも困難ではな
いが、このように小型の振動子では接着剤層の厚さある
いはリード線接続の影響が無視できない。 【0018】図5(b)に示すように、振動子21の台
座22への接着およびリード線26a、26bの取り付
けにより、本来必要である厚み方向振動が制動されてし
まい、fAのアドミタンス値は他の寄生振動fB,fC
同等程度まで低下している。アドミタンスはインピーダ
ンスの逆数であり、これはfAにおけるインピーダンス
が大きくなり、うまく励振できなくなっていることを示
している。この状態で送受波器として組み上げても、所
期の性能を得るのが困難であることは容易に推測でき
る。組立による特性変化のしかたが一様であれば、振動
子仕様の見直し、あるいは組立方法の見直し等の対策で
特性のばらつきを押さえることも可能だが、この変化の
しかたは一様ではなく、類似の変化傾向を示す場合でも
個々の変化量は大きく異なり、容易には制御できないた
め、結果的に特性のばらつきが大きい状況を許容する
か、多数を製作し特性で選別使用するという対応が通例
であった。 【0019】図1および図2は、本発明による構成例で
あり、図1は振動子と台座の組立構造で(a)に上面
図、(b)に断面図を示し、図2は送受波器の概略断面
図を示す。矩形板状振動子1のほぼ中央に円形の対向電
極9を形成し、この対向電極から振動子の前面と背面で
各々180度異なる方向へ引出し電極10a,10bを
形成し、さらに引出し電極10a,10bの端部にはリ
ード線が半田付けにより接続される。振動子1は外周部
分にのみ接着剤11を塗布し台座2に接着・固定され
る。台座2においては、対向電極9の位置する範囲より
大きめに凹み部分12を設けており、振動子1の背面に
ある対向電極が直接台座に触れない構造となっている。
このように構成した後に、ケース3の貫通穴にリード線
6a,6bを通したのち台座2とケース3を接着して組
み立て、リード線6a,6bを気密端子8a,8bへ接
続して、気密端子をハウジング5の所定の位置に接着す
る。ケース3をハウジング5へ接着し、ケース3後方の
空間へ充填材7を注入し硬化させた後にゴム状弾性体4
を振動子1の露出面側にモールドして水密構造とする。 【0020】図1に示したような電極構造を持ち、厚み
方向振動を励振する振動子は、一般的にはエネルギー閉
込め型振動子として知られるものである。このような振
動子では、厚み方向振動は対向電極部分で強く励振され
対向電極から離れるに従って、その振動は指数関数的に
減衰し、結果的に対向電極部分の近傍に振動が閉じ込め
られるという現象を示す。このような特徴を利用して、
厚み方向振動がほとんど励振されない振動子1の周辺部
分のみを接着・固定し、また振動子1の端部へリード線
を接続することにより、振動子1のほぼ中央部分に位置
する対向電極9近傍の振動を制動することなく送受波器
の構成が可能となる。 【0021】しかし、空気中での使用を前提とするなら
ば、このような振動子の利用だけで充分な効果も得られ
るが、水中で使用する場合、水圧の印加という状況を考
えなければならない。対向電極部分が台座に直接接触す
るような構成で水圧を印加した場合、その圧力により対
向電極と台座との接触状況が随時変化することになる
が、これは振動子からみた後方のインピーダンスが変化
することを意味する。このインピーダンスが変化すれ
ば、台座の方へ伝搬する音響的エネルギーが変化し、結
果的に送受波器としての感度変動をもたらすため好まし
くない。従って、振動子1の特徴を有効に利用するに
は、水圧変化に対して振動子1の後方のインピーダンス
が、ほとんど変化しないような構成をとる必要があり、
その方法としては、空隙を設けることが最も効果的であ
り、これは座グリ加工等で台座2に凹み部分12を設け
ることで容易に達成できる。凹み部分12の形成範囲
は、少なくとも対向電極9と同等の大きさが必要である
ことは明白であり、実用的には対向電極9より広い範囲
に凹み部分12を形成することが望ましい。この振動子
1と台座2を除く部分は、従来の送受波器とほぼ同様の
構成であることから、この部分の置き換えのみで容易に
改善が可能である。 【0022】図3は、3MHz近傍での使用を前提とし
て製作した図1の構成の送受波器の特性であり、図3
(a)は振動子単体のアドミタンス周波数特性、図3
(b)はゴム状弾性体4をモールドする前の同特性を複
数個について示したものである。 【0023】図3(a)では、従来の全面電極を施した
振動子と同様に寄生振動の共振fb,fC等はみられる
が、厚み方向振動fAと比較すると、従来よりは小さく
なっており、厚み方向振動の単一共振に近づいている。
図3(b)では、fb,fCの寄生振動が消えているが、
これは振動子1の外周部分のみを接着・固定することで
幅方向振動の高次モード共振等の寄生振動に制動効果が
現れていることを示している。これに対して厚み方向振
動faは、アドミタンス値の変化も少なく、図5(b)
の特性例で見られたように、アドミタンス値が振動子単
体の5分の1程度まで小さくなるというような極端な変
化もなく、厚み方向振動が良好に励振されていることを
示す。従来の構成でみられたような特性変化の乱れもな
く、5個の送受波器は、共振周波数もアドミタンス特性
の形状も、かなりよく揃った状態で組み立てられてい
る。 【0024】 【発明の効果】以上に述べたように、本発明によれば、
送受波器の高周波化に対応して超音波の送受信を行う場
合に振動子の主たる振動モードとして利用される厚み方
向振動の励振において、その厚み方向振動を制動するこ
となく、また組立による特性のばらつきが少ない送受波
器を容易に得ることが可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an ultrasonic transducer which is a sensor for transmitting and receiving ultrasonic waves in water and detecting an object. Things. 2. Description of the Related Art In a marine vehicle moving at high speed in water, an ultrasonic transducer is operated so that an acoustic window for transmitting and receiving ultrasonic waves is flush with the surface of the marine vehicle. Although installed in a buried form, flow noise generated during cruising or laminar flow containing cavitation small bubbles had a bad influence on the acoustic performance of the ultrasonic transducer. In order to reduce these effects, structural measures, such as the shape of the hull and the treatment of the outer surface, are taken, while a number of measures are also being considered for transducers. Is an effective means for a transducer, and practical use of an ultrasonic transducer using a frequency in the megahertz band is being promoted. Conventionally, a transducer used in a frequency band of several hundred kHz to several MHz uses the thickness direction vibration of a disc-shaped or rectangular-plate-shaped piezoelectric vibrator to position and fix such a vibrator. In general, a structure in which a waterproof structure is provided by bonding or fixing to a pedestal or the like and using a method such as molding with a rubber-like elastic body is used. By the way, in a piezoelectric ceramic vibrator utilizing the vibration in the thickness direction, a metal electrode made of silver, nickel or the like is formed on almost both surfaces opposed in the thickness direction, respectively. Polarization and electric signals are transmitted and received by these electrodes, and the vibration in the thickness direction is uniformly excited in the entire vibrator. When such a vibrator responds to higher frequencies, the vibrator thickness decreases in inverse proportion to the resonance frequency,
Also, in order to maintain the directivity width, which is the performance of the transducer, the outer diameter of the vibrator or the dimension in the width or length direction must be reduced, resulting in a reduction in the volume of the vibrator. There has been a problem in that the factors that increase the variation in the characteristics of the assembled product, such as the deterioration of the bonding and assembling workability, are increased. [0005] In a vibrator utilizing the thickness direction vibration, a phenomenon that is often observed is that other than the thickness direction vibration,
For example, there is a problem that higher-order mode resonance of vibration in the radial or width and length directions is likely to appear as parasitic vibration.
In the case of a frequency of about 200 to 300 kHz, the effect is prevented by processing the slit to a depth of about two thirds of the thickness of the vibrator and making the resonance frequency of the parasitic vibration higher than the resonance frequency of the thickness direction vibration. However, when the frequency is increased to the MHz band, the thickness of the vibrator becomes 1 to 2 mm or less, so that it is difficult to take the same measures in terms of processing and strength. Furthermore, when the dimensions such as the outer diameter or width of the vibrator determined from the requirements of the directional characteristics and the dimensions in the thickness direction of the vibrator approach a specific dimensional ratio determined by the material constant or shape of the vibrator, the vibration in the thickness direction is reduced. Coupling vibration between parasitic vibrations is likely to occur. When the coupled vibration occurs, the vibration in the thickness direction, which is the original vibration mode, cannot be effectively excited, and at the same time, the transition of the resonance frequency occurs, so that the use at the target frequency becomes difficult. In addition, the effect of the thickness of the adhesive layer for bonding and fixing the vibrator can be seen as the sound wave propagation wavelength becomes shorter due to the higher frequency. When used at a low frequency, the thickness of the adhesive layer of 0.1 to 0.2 mm is
The wavelength ratio is about several tenths, and the low mechanical sharpness Qm of the adhesive can be neglected.
When the thickness is reduced to about 2 mm, the thickness of the adhesive layer cannot be ignored, and because of its low Qm, it functions as a damping factor for the vibration of the vibrator. It becomes a braking factor. Further, a lead wire for signal transmission / reception is connected to the electrode surface of the vibrator, but the mass, rigidity or elasticity of this lead wire cannot be neglected, and in many cases, the vibration of the vibrator like the adhesive does not occur. It exerts a braking effect on it. These are all obstacles to the excitation of the vibration in the thickness direction, which is the main vibration mode of the vibrator, and have caused poor characteristics such as a decrease in sensitivity as a transducer. Further, a lead wire and a solder point for connecting the lead wire exist on the electrode surface which is an acoustic surface of the vibrator, and the transducer has stable characteristics such as causing a disturbance in directional characteristics. Was very difficult to get. An object of the present invention is to solve the above-mentioned problems associated with the use of higher frequencies in underwater ultrasonic transducers and to provide a transducer having a small variation in characteristics by an easy method. At the substantially center of a circular or rectangular piezoelectric ceramic plate, a circular or rectangular counter electrode opposed in the thickness direction is provided so as not to be opposed in the thickness direction than the counter electrode. An extraction electrode is formed in each different direction, a vibrator configured to perform polarization and excitation by connecting an electric signal transmission / reception wire to the extraction electrode, and a concave portion is provided at least in a range where the counter electrode is located. It consists of a pedestal with a structure in which the opposing electrode does not directly touch. A waterproof structure is provided by a method such as molding with an elastic body. [0012] As a measure to reduce the adverse effect of the ultrasonic transducer provided on the traveling body moving underwater during high-speed cruising, it is effective means to increase the operating frequency of the transducer. Ultrasonic transducers using band frequencies are being put to practical use. However, the piezoelectric vibrator utilizing the thickness direction vibration used in the ultrasonic wave transducer has the following problems as the frequency is increased.
Not only the thickness of the vibrator but also the area of the vibrating surface must be reduced due to the requirement of the directional characteristics, and the dispersion of the characteristics is increased due to the deterioration of the workability of bonding and assembling. Parasitic vibration peculiar to the thickness direction vibration is likely to occur, and when the dimension of the vibrating surface and the dimension ratio in the thickness direction approach a specific size ratio in view of the directional characteristics, the coupled vibration between the thickness direction vibration and the parasitic vibration As a result, the vibration in the thickness direction cannot be effectively excited, and further, the transition of the target resonance frequency occurs. The thickness of the adhesive layer cannot be ignored, and becomes a factor of damping vibration of the vibrator. The mass, stiffness or elasticity of the lead wire cannot be neglected and becomes a damping factor for the vibration of the vibrator. The lead wire on the electrode surface and the solder point to connect it,
This contributes to disturbance of the directional characteristics. Therefore, in order to overcome these problems, the above-mentioned structural measures were taken and solved. Hereinafter, the present invention will be described with reference to examples. FIG. 4 (a) is a top perspective view and FIG. 4 (b) is a schematic sectional view showing an example of the configuration of a conventional transducer. A rectangular piezoelectric ceramic vibrator 1 in which electrodes are applied almost entirely on both sides in the thickness direction
Lead wires 26a and 26b are connected to both electrodes by soldering, and the rear surface of the vibrator 21 is adhered and fixed to the pedestal 22 with an adhesive. The lead wire 26a is inserted into the through hole of the case 23,
After bonding the pedestal 22 and the case 23 through 26b,
The lead wires are connected to the airtight terminals 28a and 28b, and the airtight terminals are bonded to predetermined positions of the housing 25. Case 2
3 is bonded to the housing 25, and a filler 27 such as an epoxy resin is injected into a space formed behind the case 23 to prevent deformation or breakage caused by application of water pressure, and is cured. The rubber-like elastic body 24 is molded into a watertight structure. Here, the shape and dimensions of the vibrator will be examined. The thickness of the vibrator when utilizing the thickness direction vibration is, for example, about 1.2 m when the resonance frequency is 1.5 MHz.
m, the resonance frequency is about 0.6 mm if the resonance frequency is 3.0 MHz. Further, when the outer diameter of the vibrator is obtained from the requirement of the directional characteristics with the thickness of the vibrator as 1, the side length of the rectangular plate is obtained assuming that the rectangular plate vibrator has a -6 dB directivity width of 10 degrees. If the directional width is about 5 and -6 dB and the angle is 20 degrees, the side length is about 2.5. Therefore, if an attempt is made to obtain 20 degrees with a -6 dB directivity width at a frequency of 1.5 MHz, a rectangular plate-shaped vibrator has a thickness of about 1.2 mm and a side length of about 3.0 mm square. If you keep the frequency as it is and increase the frequency to 3.0 MHz, the thickness is about 0.6 mm, the side length is about 1.5 mm square,
That is, the vibrator is significantly reduced in size as the frequency is increased so that the volume is reduced to approximately one fourth. FIG. 5 shows the characteristics of a square plate-shaped thickness-directional vibrator designed to manufacture the transducer having the configuration shown in FIG. 4 on the assumption that it is used near 3 MHz. FIG. 5A shows the admittance frequency characteristics of the vibrator alone, and FIG. 5B shows the same characteristics before the rubber-like elastic body 24 is molded. The problem with the conventional method is that parasitic vibrations are easily generated in the vibrator. However, in the characteristics shown in FIG. 5A, in addition to the resonance f A of the thickness direction vibration, f B and f C
And the resonance of the parasitic vibration is observed. If the vibration in the thickness direction is relatively low in frequency and the volume of the vibrator is large, parasitic vibrations such as higher order mode resonance in the width direction should be damped by bonding to the pedestal, etc., and the thickness direction vibration should be used effectively. Although it is not difficult, the effect of the thickness of the adhesive layer or the connection of the lead wire cannot be ignored in such a small vibrator. As shown in FIG. 5 (b), the adhesion of the vibrator 21 to the pedestal 22 and the attachment of the lead wires 26a and 26b dampen the thickness vibration which is originally required, and the admittance value of f A Is reduced to the same level as the other parasitic vibrations f B and f C. Admittance is the reciprocal of the impedance, which indicates that the impedance at f A has increased and is no longer well excitable. It can easily be inferred that it is difficult to obtain the expected performance even when assembled as a transducer in this state. If the characteristics change due to assembling is uniform, it is possible to reduce the variation in characteristics by reviewing the oscillator specifications or reviewing the assembling method, but this variation is not uniform, and similar Even in the case of showing a change tendency, the amount of change in each individual varies greatly and cannot be easily controlled. As a result, it is customary to allow a situation in which the characteristics vary widely, or to produce a large number of products and use them selectively. Was. FIGS. 1 and 2 show examples of the structure according to the present invention. FIGS. 1A and 1B show an assembly structure of a vibrator and a pedestal. FIG. 1A is a top view, FIG. 2B is a sectional view, and FIG. 1 shows a schematic sectional view of a vessel. A circular counter electrode 9 is formed substantially at the center of the rectangular plate-shaped vibrator 1, and lead electrodes 10a and 10b are formed from the counter electrode in directions different from each other by 180 degrees on the front surface and the back surface of the vibrator. A lead wire is connected to the end of 10b by soldering. The vibrator 1 is adhered and fixed to the pedestal 2 by applying an adhesive 11 only to the outer peripheral portion. The pedestal 2 is provided with a recess 12 that is larger than the area where the opposing electrode 9 is located, so that the opposing electrode on the back of the vibrator 1 does not directly touch the pedestal.
After the above configuration, the lead wires 6a and 6b are passed through the through holes of the case 3, and then the pedestal 2 and the case 3 are bonded and assembled. The lead wires 6a and 6b are connected to the hermetic terminals 8a and 8b to form a hermetic seal. The terminal is bonded to a predetermined position of the housing 5. The case 3 is adhered to the housing 5, the filler 7 is injected into the space behind the case 3, and is hardened.
Is molded on the exposed surface side of the vibrator 1 to obtain a watertight structure. The vibrator having the electrode structure as shown in FIG. 1 and exciting the thickness direction vibration is generally known as an energy trap type vibrator. In such a vibrator, the vibration in the thickness direction is strongly excited at the opposing electrode portion, and as it moves away from the opposing electrode, the vibration attenuates exponentially. As a result, the vibration is confined in the vicinity of the opposing electrode portion. Show. Utilizing such features,
By bonding and fixing only the peripheral portion of the vibrator 1 where vibration in the thickness direction is hardly excited, and connecting a lead wire to an end portion of the vibrator 1, the vicinity of the counter electrode 9 located at a substantially central portion of the vibrator 1 The structure of the transducer can be realized without damping the vibration of the transducer. However, if it is assumed that the vibrator is used in the air, a sufficient effect can be obtained only by using such a vibrator. However, in the case where the vibrator is used in water, the situation of applying a water pressure must be considered. . When water pressure is applied in such a configuration that the opposing electrode part directly contacts the pedestal, the pressure changes the contact state between the opposing electrode and the pedestal at any time, but this changes the rear impedance as viewed from the vibrator. Means to do. If this impedance changes, the acoustic energy propagating toward the pedestal changes, resulting in a fluctuation in sensitivity as a transducer, which is not preferable. Therefore, in order to use the characteristics of the vibrator 1 effectively, it is necessary to adopt a configuration in which the impedance behind the vibrator 1 hardly changes in response to a change in water pressure.
The most effective method is to provide a gap, which can be easily achieved by providing the pedestal 2 with the concave portion 12 by counterbore processing or the like. It is clear that the formation range of the concave portion 12 needs to be at least as large as the counter electrode 9, and it is practically desirable to form the concave portion 12 in a wider range than the counter electrode 9. Since the parts other than the vibrator 1 and the pedestal 2 have substantially the same configuration as the conventional transducer, improvement can be easily made only by replacing this part. FIG. 3 shows the characteristics of the transmitter / receiver having the configuration of FIG. 1 manufactured on the assumption that it is used near 3 MHz.
(A) is the admittance frequency characteristic of the vibrator alone, and FIG.
(B) shows the same characteristics for a plurality of rubber-like elastic bodies 4 before they are molded. In FIG. 3A, the resonances f b , f C, etc. of the parasitic vibration are observed as in the case of the conventional vibrator having the full-surface electrode, but are smaller than the conventional vibration f A in the thickness direction. And approaches a single resonance of the thickness direction vibration.
In FIG. 3B, the parasitic oscillations of f b and f C have disappeared.
This indicates that the bonding effect of only the outer peripheral portion of the vibrator 1 exerts a braking effect on parasitic vibration such as higher-order mode resonance in the width direction vibration. On the other hand, in the thickness direction vibration f a , the change in the admittance value is small, and FIG.
As shown in the characteristic example, there is no extreme change such that the admittance value is reduced to about one-fifth of the vibrator alone, indicating that the thickness direction vibration is favorably excited. The five transducers are assembled in a state in which the resonance frequency and the shape of the admittance characteristics are fairly uniform without disturbance in the characteristic change as seen in the conventional configuration. As described above, according to the present invention,
Excitation of the thickness direction vibration used as the main vibration mode of the vibrator when transmitting and receiving ultrasonic waves corresponding to the high frequency of the transducer, without damping the thickness direction vibration, and the characteristics due to assembly It is possible to easily obtain a transceiver having little variation.

【図面の簡単な説明】 【図1】本発明による水中超音波送受波器の台座部分の
組立構造を示す図で、図1(a)は上面図、図1(b)
は断面図。 【図2】本発明による送受波器の概略構成を示す断面
図。 【図3】本発明で使用する圧電磁器振動子の特性を示す
図で、図3(a)は単体のアドミタンス特性、図3
(b)はモールド前の組立品のアドミタンス特性。 【図4】従来の水中超音波送受波器の概略構成図で、図
4(a)は上面透視図、図4(b)は断面図。 【図5】従来構成で使用する圧電磁器振動子の特性を示
す図で、図5(a)は単体のアドミタンス特性、図5
(b)はモールド前の組立品のアドミタンス特性。 【符号の説明】 1,21 圧電磁器または圧電磁器振動子 2,22 台座 3,23 ケース 4,24 ゴム状弾性体 5,25 ハウジング 6a,6b,26a,26b リード線 7,27 充填材 8a,8b,28a,28b 気密端子 9 対向電極 10a,10b 引出し電極 11 接着剤 12 凹み部分
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an assembling structure of a pedestal portion of an underwater ultrasonic transducer according to the present invention, FIG. 1 (a) is a top view, and FIG. 1 (b).
Is a sectional view. FIG. 2 is a sectional view showing a schematic configuration of a transducer according to the present invention. 3A and 3B are diagrams showing characteristics of a piezoelectric ceramic vibrator used in the present invention. FIG. 3A shows admittance characteristics of a single unit, and FIG.
(B) Admittance characteristics of the assembly before molding. FIG. 4 is a schematic configuration diagram of a conventional underwater ultrasonic transducer, wherein FIG. 4 (a) is a top perspective view and FIG. 4 (b) is a cross-sectional view. 5A and 5B are diagrams showing characteristics of a piezoelectric ceramic vibrator used in a conventional configuration. FIG. 5A is a diagram showing admittance characteristics of a single unit, and FIG.
(B) Admittance characteristics of the assembly before molding. DESCRIPTION OF SYMBOLS 1, 21 Piezoelectric ceramic or piezoelectric ceramic oscillator 2, 22 Pedestal 3, 23 Case 4, 24 Rubbery elastic body 5, 25 Housing 6a, 6b, 26a, 26b Lead wire 7, 27 Filler 8a, 8b, 28a, 28b Airtight terminal 9 Counter electrode 10a, 10b Leader electrode 11 Adhesive 12 Depressed portion

Claims (1)

(57)【特許請求の範囲】 【請求項1】 円形あるいは矩形板状の圧電磁器のほぼ
中央で、厚さ方向に対向する円形あるいは矩形の対向電
極と、前記対向電極より厚さ方向で対向しないように各
々異なる方向に一対の引出し電極とを形成し、前記引出
し電極に電気信号の授受用の電線を接続して分極および
励振を行うよう構成した振動子と、前記対向電極が位置
する範囲に凹み部分を設けて前記対向電極が直接触れな
い構造とした台座とからなり、前記対向電極が前記台座
の凹み部分に位置するように前記振動子の外周部分のみ
を前記台座に接着して固定し、モールドによる防水構造
を付与したことを特徴とする水中超音波送受波器。
(57) [Claim 1] At a substantially center of a circular or rectangular plate-shaped piezoelectric ceramic, a circular or rectangular counter electrode facing in the thickness direction is opposed in the thickness direction than the counter electrode. A pair of extraction electrodes formed in different directions so as not to be connected to each other, and a vibrator configured to perform polarization and excitation by connecting an electric wire for transmitting and receiving an electric signal to the extraction electrodes, and a range in which the counter electrode is located. And a pedestal having a structure in which the counter electrode is not directly touched by providing a concave portion, and only the outer peripheral portion of the vibrator is adhered and fixed to the pedestal so that the counter electrode is located in the concave portion of the pedestal. An underwater ultrasonic transducer characterized by having a waterproof structure provided by a mold.
JP08602195A 1995-03-17 1995-03-17 Ultrasonic transducer Expired - Lifetime JP3477270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08602195A JP3477270B2 (en) 1995-03-17 1995-03-17 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08602195A JP3477270B2 (en) 1995-03-17 1995-03-17 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPH08256395A JPH08256395A (en) 1996-10-01
JP3477270B2 true JP3477270B2 (en) 2003-12-10

Family

ID=13875017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08602195A Expired - Lifetime JP3477270B2 (en) 1995-03-17 1995-03-17 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP3477270B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598747B2 (en) * 2006-12-18 2010-12-15 三菱電機株式会社 Ranging sensor and equipment equipped with the same
JP2008170306A (en) * 2007-01-12 2008-07-24 Mitsubishi Electric Corp Evaluation method of ranging sensor
JP2012198106A (en) * 2011-03-22 2012-10-18 Panasonic Corp Ultrasonic sensor

Also Published As

Publication number Publication date
JPH08256395A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
EP1962552B1 (en) Ultrasonic transducer
EP2530953B1 (en) Ultrasonic vibration device
JP4618165B2 (en) Ultrasonic sensor
WO2011090484A1 (en) Hidden ultrasonic transducer
US7692367B2 (en) Ultrasonic transducer
JP5522311B2 (en) Ultrasonic sensor and manufacturing method thereof
JP3477270B2 (en) Ultrasonic transducer
US20060232165A1 (en) Ultrasonic transmitter-receiver
JP2001326987A (en) Ultrasonic wave transceiver
JP2000032594A (en) Ultrasonic wave transmitter-receiver
JP4134911B2 (en) Ultrasonic transducer and method for manufacturing the same
CN111490746A (en) Film bulk acoustic resonator
JP4304556B2 (en) Ultrasonic sensor
JP2001238292A (en) Ultrasonic wave sensor
JP5423295B2 (en) Ultrasonic transducer
JP7088099B2 (en) Ultrasonic sensor
JP3528491B2 (en) Ultrasonic transducer
JPH0723755Y2 (en) Ultrasonic sensor
KR101516654B1 (en) Ultrasonic transducer
JP4126758B2 (en) Ultrasonic sensor
KR20050005291A (en) Ultrasonic sensor and manufacturing method thereof
JPS6120199B2 (en)
JPH11146492A (en) Ultrasonic probe
JP2000023292A (en) Ultrasonic sensor
JPS6365199B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140926

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term