JP3469754B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JP3469754B2
JP3469754B2 JP26690897A JP26690897A JP3469754B2 JP 3469754 B2 JP3469754 B2 JP 3469754B2 JP 26690897 A JP26690897 A JP 26690897A JP 26690897 A JP26690897 A JP 26690897A JP 3469754 B2 JP3469754 B2 JP 3469754B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
metal
carbon powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26690897A
Other languages
Japanese (ja)
Other versions
JPH11111298A (en
Inventor
信幸 東山
輝彦 井本
菊子 加藤
洋平 廣田
衛 木本
伸 藤谷
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26690897A priority Critical patent/JP3469754B2/en
Publication of JPH11111298A publication Critical patent/JPH11111298A/en
Application granted granted Critical
Publication of JP3469754B2 publication Critical patent/JP3469754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・水素蓄
電池等のアルカリ二次電池の負極電極として用いられる
水素吸蔵合金に関し、特に、導電材として用いられる炭
素粉末の粒子表面の特性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy used as a negative electrode of an alkaline secondary battery such as a nickel-hydrogen storage battery, and more particularly to improvement of characteristics of particle surface of carbon powder used as a conductive material. Is.

【0002】[0002]

【従来の技術】従来、二次電池として、ニッケル・カド
ミウム蓄電池や鉛蓄電池が広く普及しているが、特に近
年、携帯電話機やノート型コンピュータ等の小型情報機
器の発達に伴って、エネルギー密度が大きく、然もクリ
ーンな二次電池の開発が要望されている。そこで、カド
ミウムや鉛のような有害物質を含まない水素吸蔵合金か
らなる電極を負極に用いた密閉型ニッケル・水素蓄電池
が注目されている。
2. Description of the Related Art Conventionally, nickel-cadmium storage batteries and lead storage batteries have been widely used as secondary batteries. In recent years, in particular, with the development of small information devices such as mobile phones and notebook computers, the energy density has been There is a demand for the development of a large and clean secondary battery. Therefore, attention has been paid to a sealed nickel-hydrogen storage battery in which an electrode made of a hydrogen storage alloy that does not contain harmful substances such as cadmium and lead is used as a negative electrode.

【0003】ニッケル・水素蓄電池は、水素吸蔵合金か
らなる負極、ニッケル正極、アルカリ電解液、セパレー
タ等を備え、負極となる水素吸蔵合金電極は水素吸蔵合
金塊を粉砕して得られる水素吸蔵合金粉末に導電材及び
結着剤を加え、これを電極形状に成形することによって
作製される。
A nickel-hydrogen storage battery is provided with a negative electrode made of a hydrogen storage alloy, a nickel positive electrode, an alkaline electrolyte, a separator and the like. The hydrogen storage alloy electrode serving as a negative electrode is a hydrogen storage alloy powder obtained by crushing a hydrogen storage alloy lump. It is manufactured by adding a conductive material and a binder to and molding it into an electrode shape.

【0004】水素吸蔵合金を負極に用いたニッケル・水
素蓄電池においては、水素吸蔵合金の表面がアルカリ電
解液と接触することにより、合金表面では気相反応と電
気化学的反応が同時に進行する。即ち、水素圧力及び温
度の関係では、水素が水素吸蔵合金に吸蔵され、或いは
水素吸蔵合金から水素が放出される(気相反応)。一
方、電圧及び電流の関係では、電圧の印加(充電)によ
って、水の電気分解で生じた水素が水素吸蔵合金に吸蔵
され、電流の取り出し(放電)によって、水素が酸化さ
れて水となる(電気化学的反応)。
In a nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode, the surface of the hydrogen storage alloy comes into contact with an alkaline electrolyte, so that a vapor phase reaction and an electrochemical reaction simultaneously proceed on the alloy surface. That is, in the relationship between hydrogen pressure and temperature, hydrogen is stored in the hydrogen storage alloy or released from the hydrogen storage alloy (gas phase reaction). On the other hand, regarding the relationship between voltage and current, hydrogen generated by electrolysis of water is occluded in the hydrogen storage alloy by voltage application (charging), and hydrogen is oxidized to water by current extraction (discharging) ( Electrochemical reaction).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ニッケ
ル・水素蓄電池では、水素吸蔵合金電極の電気伝導性が
不十分な場合、電子の移動が滞り、電極内が電子が飽和
した状態に陥いる。このとき、正極であるニッケル電極
の表面では気体状酸素が発生し、負極である水素吸蔵合
金電極の表面では気体状水素が発生し、電池内圧が上昇
する。密閉型ニッケル・水素蓄電池においては、電池内
圧の過度の上昇は、電解液の外部への逸散などによる充
放電容量の低下などの問題がある。更に、これら水素原
子と、酸素原子が再結合することによって水が生成する
と、電池内圧は降下するものの、電気エネルギーが熱エ
ネルギーとして発散され、放電容量、及び高圧放電特性
の低下が問題となる。
However, in the nickel-hydrogen storage battery, when the electric conductivity of the hydrogen storage alloy electrode is insufficient, the movement of electrons is delayed and the inside of the electrode is saturated with electrons. At this time, gaseous oxygen is generated on the surface of the nickel electrode that is the positive electrode, and gaseous hydrogen is generated on the surface of the hydrogen storage alloy electrode that is the negative electrode, and the internal pressure of the battery rises. In a sealed nickel-hydrogen storage battery, an excessive rise in the internal pressure of the battery has a problem such as a decrease in charge / discharge capacity due to the diffusion of the electrolytic solution to the outside. Furthermore, when water is generated by the recombination of these hydrogen atoms and oxygen atoms, the internal pressure of the battery drops, but the electric energy is dissipated as heat energy, and the discharge capacity and the high-voltage discharge characteristics deteriorate.

【0006】現在、一般に使用されているニッケル・水
素蓄電池においては、金属粉末、炭素粉末等の導電剤を
水素吸蔵合金に混合し、水素吸蔵合金電極の導電性を向
上させることによって、気体の発生を抑制し、充電時の
電池内圧上昇を低減させているが、充分な効果が得られ
ず、更に電極の電気伝導特性を高めることが望まれてい
る。
In a nickel-hydrogen storage battery that is currently generally used, gas is generated by mixing a hydrogen storage alloy with a conductive agent such as metal powder or carbon powder to improve the conductivity of the hydrogen storage alloy electrode. While suppressing the increase in the internal pressure of the battery during charging, the sufficient effect cannot be obtained, and it is desired to further improve the electric conduction characteristics of the electrode.

【0007】本発明の目的は、炭素粉末を導電剤として
含有する水素吸蔵合金電極において、炭素粉末の電気伝
導性を更に向上させることによって、電池内圧特性や高
率放電特性等の電池特性に優れた水素吸蔵合金電極を提
供することである。
An object of the present invention is to provide a hydrogen storage alloy electrode containing carbon powder as a conductive agent, by further improving the electrical conductivity of the carbon powder, it is possible to obtain excellent battery characteristics such as battery internal pressure characteristics and high rate discharge characteristics. Another object is to provide a hydrogen storage alloy electrode.

【0008】[0008]

【課題を解決する為の手段】本発明に係る水素吸蔵合金
電極は、水素吸蔵合金粉末Bと導電材の粉末Aとの混合
物を主材とする水素吸蔵合金電極であって、前記導電材
の粉末Aが、炭素粒子(22)の表面の少なくとも一部の領
域を被って金属被膜(23)が形成された金属被覆炭素粉末
であることを特徴とする。
A hydrogen storage alloy electrode according to the present invention is a hydrogen storage alloy electrode containing a mixture of a hydrogen storage alloy powder B and a conductive material powder A as a main material. The powder A is a metal-coated carbon powder in which at least a part of the surface of the carbon particles (22) is covered with the metal coating (23).

【0009】水素吸蔵合金における気相反応及び電気化
学的反応を効率よく行なうためには、気相(酸素、水
素)−固相(水素吸蔵合金)−液相(電解液)の三相界面を
電気的に導通がとれた状態に形成することが必要であ
る。導電剤である炭素粉末は、気体状水素及び気体状酸
素に対して親和性があり、上記反応系への気体の供給、
即ち気相−固相間の相互作用を促進する効果を有する。
本発明に係る水素吸蔵合金電極では、炭素粒子(22)の表
面に良電導性の金属からなる金属被膜(23)を形成した金
属被覆炭素粉末Aを導電材として用いている。金属被覆
炭素粉末Aは上記の炭素粉末の有する作用を維持しつ
つ、その表面を被覆する金属の有する良電導性によっ
て、水素吸蔵合金粉末Bの粒子(24)、金属被覆炭素粉末
Aの粒子(21)、及び集電体の三者間の電子の授受を促進
させることが可能となる。その結果として、各々の粒子
間、或いは集電体と、集電体に接触する粒子との間の電
気的接触が良好となり、高率放電特性が改善されると共
に、水素吸蔵合金粉末への水素原子の吸収を促進させ、
電池内圧の上昇が抑制される。
In order to efficiently perform the gas phase reaction and the electrochemical reaction in the hydrogen storage alloy, the three-phase interface of gas phase (oxygen, hydrogen) -solid phase (hydrogen storage alloy) -liquid phase (electrolyte) is set. It is necessary to form an electrically conductive state. Carbon powder as a conductive agent has an affinity for gaseous hydrogen and gaseous oxygen, supply of gas to the reaction system,
That is, it has the effect of promoting the interaction between the gas phase and the solid phase.
In the hydrogen storage alloy electrode according to the present invention, the metal-coated carbon powder A in which the metal coating film (23) made of a highly conductive metal is formed on the surface of the carbon particle (22) is used as a conductive material. The metal-coated carbon powder A maintains the function of the above-mentioned carbon powder, and due to the good electric conductivity of the metal coating the surface thereof, the particles of the hydrogen storage alloy powder B (24) and the particles of the metal-coated carbon powder A ( 21) And, it becomes possible to promote the transfer of electrons between the three members of the current collector. As a result, the electrical contact between the particles or between the current collector and the particles in contact with the current collector is improved, the high-rate discharge characteristics are improved, and the hydrogen storage alloy powder contains hydrogen. Promotes the absorption of atoms,
The rise in battery internal pressure is suppressed.

【0010】具体的には、前記金属元素は、Ti、V、
Cr、Mn、Fe、Co、Ni、Cu、Zn、Sn、Sb、及び
Alから選ばれた1種以上の遷移金属である。又、前記
炭素粉末は、黒鉛及びカーボンブラックから選ばれた1
種以上の炭素粉末からなる。
Specifically, the metal elements are Ti, V,
It is one or more transition metals selected from Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, and Al. Further, the carbon powder is 1 selected from graphite and carbon black.
It consists of more than one kind of carbon powder.

【0011】該具体的構成において、導電剤には良伝導
性素材を用いることが望ましく、母材となる炭素粉末と
しては、黒鉛及びカーボンブラックから選ばれた1種以
上を用いることが好ましく、又、該炭素粉末の粒子(22)
の表面を覆う金属元素としては、Ti、V、Cr、Mn、
Fe、Co、Ni、Cu、Zn、Sn、Sb、及びAlから選ば
れた1種以上の遷移金属を用いることが好ましい。
In the specific constitution, it is desirable to use a material having good conductivity as the conductive agent, and it is preferable to use at least one selected from graphite and carbon black as the carbon powder as the base material. , Particles of said carbon powder (22)
The metal elements that cover the surface of Ti, V, Cr, Mn,
It is preferable to use at least one transition metal selected from Fe, Co, Ni, Cu, Zn, Sn, Sb, and Al.

【0012】更に具体的には、前記金属被覆炭素粉末A
の粒子径は、1〜30μmである。又、前記金属被膜(2
3)の比表面積は、前記炭素粉末の粒子(22)の単位重量当
たり、0.3〜0.6m2/gである。
More specifically, the metal-coated carbon powder A
Has a particle size of 1 to 30 μm. In addition, the metal coating (2
The specific surface area of 3) is 0.3 to 0.6 m 2 / g per unit weight of the particles (22) of the carbon powder.

【0013】前記炭素粉末の粒子(22)の表面に前記金属
被膜(23)を形成することよって、本発明に係る水素吸蔵
合金電極の導電性を改善させる旨は先に述べたが、物理
的な側面からみて、各々の粒子が密に接触した充填率の
高い状態にあることが、該水素吸蔵合金電極の導電性を
改善する上で更に望ましい。前記金属被覆炭素粉末Aの
粒子径を縮小させることによって、電極合材の充填率を
増大させることができるため、前記金属被覆炭素粉末A
の粒子径は1μm〜30μmとすることが好ましい。
尚、前記金属被覆炭素粉末Aの最適粒子径に対して、水
素吸蔵合金粉末Bの粒子径は10μm以上であることが
望ましく、両粒子の大小関係は問わない。又、前記金属
被膜(23)が厚すぎる、或いは前記炭素粉末の粒子(22)に
対する前記金属被膜(23)の被覆面積が広すぎる場合、本
来、炭素粉末が有する良好なガス親和性が抑制され、電
池特性の改善効果が得られなくなる。従って、前記炭素
粉末の有するガス親和性と金属被膜(23)の有する良電導
性のバランスをとるために、前記金属被膜(23)の前記炭
素粉末の粒子(22)に対する比表面積は、0.3m2/g〜
0.6m2/gであることが好ましい。
As described above, the conductivity of the hydrogen storage alloy electrode according to the present invention is improved by forming the metal coating (23) on the surface of the particles (22) of the carbon powder. It is more desirable for improving the conductivity of the hydrogen storage alloy electrode that the particles are in close contact with each other and have a high packing rate. By reducing the particle size of the metal-coated carbon powder A, the filling rate of the electrode mixture can be increased.
The particle diameter of is preferably 1 μm to 30 μm.
The particle size of the hydrogen-absorbing alloy powder B is preferably 10 μm or more with respect to the optimum particle size of the metal-coated carbon powder A, and the size relationship between the two particles does not matter. Further, if the metal coating (23) is too thick, or if the coating area of the metal coating (23) with respect to the particles (22) of the carbon powder is too wide, the good gas affinity originally possessed by the carbon powder is suppressed. However, the effect of improving the battery characteristics cannot be obtained. Therefore, in order to balance the gas affinity of the carbon powder and the good electrical conductivity of the metal coating (23), the specific surface area of the metal coating (23) to the particles (22) of the carbon powder is 0. 3m 2 / g~
It is preferably 0.6 m 2 / g.

【0014】[0014]

【発明の効果】本発明に係る水素吸蔵合金電極によれ
ば、導電剤である炭素粉末を良電導性の遷移金属で部分
的に被覆することによって、炭素粉末の有する良好なガ
ス親和性を保持しつつ、水素吸蔵合金粉末Bの粒子(2
4)、金属被覆炭素粉末Aの粒子(21)、及び集電体の間の
電気的接続が増強される。従って、本発明に係る水素吸
蔵合金電極を用いたアルカリ二次電池の電池内圧特性や
高圧放電特性が改善され、電池特性に優れたアルカリ二
次電池が得られる。
EFFECTS OF THE INVENTION According to the hydrogen storage alloy electrode of the present invention, the carbon powder, which is a conductive agent, is partially covered with a transition metal having a high electric conductivity to maintain a good gas affinity of the carbon powder. The particles of the hydrogen storage alloy powder B (2
4), the electrical connection between the metal-coated carbon powder A particles (21) and the current collector is enhanced. Therefore, the battery internal pressure characteristics and high-pressure discharge characteristics of the alkaline secondary battery using the hydrogen storage alloy electrode according to the present invention are improved, and an alkaline secondary battery having excellent battery characteristics can be obtained.

【0015】[0015]

【発明の実施の形態】図1に示す如く、本発明に係る水
素吸蔵合金電極の活物質層(2)は、水素吸蔵合金粉末B
の粒子(24)の間に、金属被覆炭素粉末Aの粒子(21)が介
在している。金属被覆炭素粉末Aの粒子(21)は、炭素粉
末の粒子(22)と、その表面を被覆する金属被膜(23)から
なる。ただし、炭素粉末の有するガス親和性を損なわな
いように、水素吸蔵合金電極合材に存在するすべての金
属被覆炭素粉末Aの粒子(21)において、炭素粉末の粒子
(22)の表面全体を覆うような金属被膜(23)が形成される
べきではない。以下、本発明を実施すべきニッケル・水
素蓄電池の水素吸蔵合金電極の実施の形態について、具
体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, an active material layer (2) of a hydrogen storage alloy electrode according to the present invention comprises a hydrogen storage alloy powder B.
The particles (21) of the metal-coated carbon powder A are present between the particles (24). The particles (21) of the metal-coated carbon powder A are composed of carbon powder particles (22) and a metal coating (23) for coating the surface thereof. However, in order not to impair the gas affinity of the carbon powder, all the particles of the metal-coated carbon powder A (21) present in the hydrogen-absorbing alloy electrode mixture should be the particles of the carbon powder.
The metal coating (23) should not be formed so as to cover the entire surface of (22). Hereinafter, embodiments of the hydrogen storage alloy electrode of the nickel-hydrogen storage battery in which the present invention is to be implemented will be specifically described.

【0016】[0016]

【実施例】実施例1 (水素吸蔵合金の作製)希土類元素の混合物であるミッ
シュメタル(以下Mmという)、及び夫々純度99.9%
の金属単体であるNi、Co、Al、Mnを所定のモル比で
混合し、アルゴン雰囲気のアーク溶解炉で溶解せしめた
後、これを自然放冷してCaCu5型結晶構造を有する組
成式MmNi3.6Co0.6Al0.2Mn0.6で表わされる水素吸
蔵合金を作製した。この水素吸蔵合金のインゴットを空
気中で機械的に粉砕し、平均粒径が30μmの水素吸蔵
合金粉末を得た。
Example 1 (Preparation of hydrogen storage alloy) Misch metal (hereinafter referred to as Mm) which is a mixture of rare earth elements, and purity 99.9% respectively
Ni, Co, Al, and Mn, which are simple metals, are mixed at a predetermined molar ratio, and are melted in an arc melting furnace in an argon atmosphere, and then they are naturally cooled to have a composition formula MmNi having a CaCu 5 type crystal structure. A hydrogen storage alloy represented by 3.6 Co 0.6 Al 0.2 Mn 0.6 was prepared. The hydrogen storage alloy ingot was mechanically crushed in air to obtain a hydrogen storage alloy powder having an average particle size of 30 μm.

【0017】(化学メッキ法によるカーボンブラックの
表面被覆処理)Co、Cu、Ni、Cr、Zn、或いはSnの
塩化物を各々0.5mol/lと、次亜リン酸ソーダを1.0
mol/l、クエン酸ソーダを0.5mol/lとなるように溶
解させた6種のメッキ浴に、粒子径1.0μmのカーボン
ブラックを2時間浸漬し、洗浄後、乾燥処理を施し、6
種の金属被覆炭素粉末を得た。
(Surface coating treatment of carbon black by chemical plating) Co, Cu, Ni, Cr, Zn, or Sn chloride of 0.5 mol / l and sodium hypophosphite of 1.0, respectively.
Carbon black having a particle size of 1.0 μm was dipped in 6 kinds of plating baths in which mol / l and sodium citrate were dissolved so as to be 0.5 mol / l for 2 hours, washed and dried to obtain 6
A seed metal-coated carbon powder was obtained.

【0018】(電極の作製)活物質として前記水素吸蔵
合金粉末と、導電剤として6種の前記金属被覆炭素粉末
と、結着剤としてポリエチレンオキサイドを0.5重量
%含む水溶液とを混合し、6種のペーストを調製した。
これら6種のペーストを、ニッケル鍍金を施したパンチ
ングメタルからなる芯体の両面に塗布し、室温で乾燥さ
せた後に所定の寸法に切断して、6種の負極電極を作製
した。正極としては、従来より公知の焼結式ニッケル電
極を使用した。
(Production of Electrode) The hydrogen-absorbing alloy powder as an active material, the six kinds of metal-coated carbon powder as a conductive agent, and an aqueous solution containing 0.5% by weight of polyethylene oxide as a binder were mixed, Six pastes were prepared.
These 6 kinds of pastes were applied on both surfaces of a core body made of punched metal plated with nickel, dried at room temperature, and then cut into a predetermined size to prepare 6 kinds of negative electrodes. A conventionally known sintered nickel electrode was used as the positive electrode.

【0019】(ニッケル・水素蓄電池の作製)上記の正
極及び6種の負極を用いて、正極容量規制の理論容量1
000mAhを有する6種の密閉型ニッケル・水素蓄電池
A1〜A6を作製した。図2に示す如く、本発明に係る
水素吸蔵合金電極を用いて作製したニッケル・水素蓄電
池A1(1)は、正極(11)、負極(12)、セパレーター(1
3)、正極リード(14)、負極リード(15)、正極外部端子(1
6)、負極缶(17)、及び封口蓋(18)等から構成される。正
極(11)及び負極(12)は、セパレーター(13)を介して渦巻
き状に巻き取られた状態で負極缶(17)に収容されてお
り、正極(11)は正極リード(14)を介して封口蓋(18)に、
負極(12)は負極リード(15)を介して負極缶(17)に接続さ
れている。負極缶(17)と封口蓋(18)との接合部には絶縁
性のパッキング(20)が装着されて、電池A1(1)の密閉
化が施されている。正極外部端子(16)と封口蓋(18)との
間には、コイルスプリング(19)が設けられ、電池内圧が
異常に上昇したときに圧縮されて電池内部のガスを大気
中に放出し得る様になっている。
(Preparation of nickel-hydrogen storage battery) Using the above positive electrode and six kinds of negative electrodes, the theoretical capacity of the positive electrode capacity regulation 1
Six types of sealed nickel-hydrogen storage batteries A1 to A6 having 000 mAh were produced. As shown in FIG. 2, the nickel-hydrogen storage battery A1 (1) manufactured by using the hydrogen storage alloy electrode according to the present invention has a positive electrode (11), a negative electrode (12) and a separator (1).
3), positive electrode lead (14), negative electrode lead (15), positive electrode external terminal (1
6), a negative electrode can (17), a sealing lid (18) and the like. The positive electrode (11) and the negative electrode (12) are housed in the negative electrode can (17) in a state of being spirally wound via the separator (13), and the positive electrode (11) is connected via the positive electrode lead (14). To the lid (18),
The negative electrode (12) is connected to the negative electrode can (17) via the negative electrode lead (15). An insulating packing (20) is attached to the joint between the negative electrode can (17) and the sealing lid (18) to seal the battery A1 (1). A coil spring (19) is provided between the positive electrode external terminal (16) and the sealing lid (18), and can be compressed when the internal pressure of the battery rises abnormally to release the gas inside the battery to the atmosphere. It has become like.

【0020】(電池特性実験)上記の本発明を実施すべ
き6種のニッケル・水素蓄電池A1〜A6を条件を揃え
るために100mAで2回充放電を行なった。高率放電特
性について検討を行なうために、前記の充放電反応後
に、100mAで16時間充電を行ない、4000mAで放
電した際の放電容量を測定した。又、放電容量の測定と
同様に、100mAで2回の充放電反応を行なった後に、
100mAで16時間充電を行ない、更に1000mAで8
0分間充電した時点での電池内圧についても測定した。
(Battery Characteristic Experiment) The six kinds of nickel-hydrogen storage batteries A1 to A6 for carrying out the present invention were charged and discharged twice at 100 mA in order to meet the conditions. In order to study the high rate discharge characteristics, after the above charge / discharge reaction, charging was performed at 100 mA for 16 hours, and the discharge capacity when discharging at 4000 mA was measured. Also, as with the measurement of the discharge capacity, after carrying out the charge / discharge reaction twice at 100 mA,
Charged at 100mA for 16 hours, then at 1000mA for 8 hours
The battery internal pressure at the time of charging for 0 minutes was also measured.

【0021】実施例2 Ti、V、Mn、Fe、Sb、或いはAlの金属小片を、各
々カーボンブラック粉末と共に容器中に収容した。6種
の各々の容器中を10×10-3mmHg以下の高真空とし、
タングステンフィラメントを電気的に加熱させ、前記金
属小片を融解し、更に蒸発させた。その蒸気をカーボン
ブラックの粒子表面に薄膜として凝着させ、6種の金属
被覆カーボンブラックを得た。上記の如く、蒸着法によ
りカーボンブラックの表面被覆処理を行なった以外は、
実施例1と同様にして、6種の本発明を実施すべきニッ
ケル・水素蓄電池A7〜A12を作製し、電池特性試験
を行なった。
Example 2 Small metal pieces of Ti, V, Mn, Fe, Sb or Al were placed in a container together with carbon black powder. In each of the 6 types of containers, a high vacuum of 10 × 10 −3 mmHg or less is set,
The tungsten filament was electrically heated to melt and evaporate the metal pieces. The vapor was deposited as a thin film on the surface of carbon black particles to obtain 6 kinds of metal-coated carbon black. As described above, except that the surface coating treatment of carbon black is performed by the vapor deposition method,
Six types of nickel-hydrogen storage batteries A7 to A12 for carrying out the present invention were prepared in the same manner as in Example 1, and a battery characteristic test was conducted.

【0022】実施例3 (ニッケル・水素蓄電池の作製)表3に示すように、平
均粒径が0.5〜42μmで比表面積が0.62〜0.29
2/gの8種のカーボンブラックと、コバルトの塩化
物を用い、前記化学メッキ法によって処理した8種のコ
バルト被覆カーボンブラックを得た。これら8種のコバ
ルト被覆カーボンブラックを用いた以外は、実施例1と
同様にして、本発明を実施すべきニッケル・水素蓄電池
B1〜B8を作製した。
Example 3 (Preparation of nickel-hydrogen storage battery) As shown in Table 3, the average particle size is 0.5 to 42 μm and the specific surface area is 0.62 to 0.29.
Eight types of cobalt-coated carbon black treated by the above chemical plating method were obtained by using m 2 / g of eight types of carbon black and cobalt chloride. Nickel-hydrogen storage batteries B1 to B8 for carrying out the present invention were produced in the same manner as in Example 1 except that these eight types of cobalt-coated carbon black were used.

【0023】(電池特性実験)上記の本発明を実施すべ
き8種のニッケル・水素蓄電池B1〜B8を、条件を揃
えるために100mAで2回充放電を行なった。高率放電
特性について検討を行なうために、前記の充放電反応後
に、100mAで16時間充電を行ない、3000mAで放
電した際の放電容量を測定した。又、放電容量の測定と
同様に、100mAで2回の充放電反応を行なった後に、
100mAで16時間充電を行ない、更に1500mAで6
0分間充電した時点での電池内圧についても測定した。
(Battery Characteristic Experiment) Eight kinds of nickel-hydrogen storage batteries B1 to B8 for carrying out the present invention were charged and discharged twice at 100 mA in order to make the conditions uniform. In order to study the high rate discharge characteristics, after the above charge / discharge reaction, charging was performed at 100 mA for 16 hours, and the discharge capacity when discharging at 3000 mA was measured. Also, as with the measurement of the discharge capacity, after carrying out the charge / discharge reaction twice at 100 mA,
Charged at 100mA for 16 hours, then at 1500mA for 6 hours
The battery internal pressure at the time of charging for 0 minutes was also measured.

【0024】比較例 カーボンブラック粉末に金属被覆処理を施さない以外
は、実施例1と同様にして従来のニッケル・水素蓄電池
C1を作製し、電池特性試験を行なった。
Comparative Example A conventional nickel-hydrogen storage battery C1 was prepared in the same manner as in Example 1 except that the carbon black powder was not subjected to a metal coating treatment, and a battery characteristic test was conducted.

【0025】以下、実施例1〜実施例3及び比較例の電
池特性試験の結果を表1〜表3に示す。
The results of the battery characteristic tests of Examples 1 to 3 and Comparative Example are shown in Tables 1 to 3 below.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】表1及び表2に示されるように、本発明を
実施すべきニッケル・水素蓄電池A1〜A12では、従
来のニッケル・水素蓄電池C1と比較して、放電容量が
著しく増加し、高率放電特性が改善されている。又、充
電反応時の電池内圧も従来のニッケル・水素蓄電池C1
と比較して低く抑えられており、炭素粉末粒子を金属で
被覆することによって水素吸蔵合金電極の電気伝導性が
改善されたことが明らかである。
As shown in Tables 1 and 2, in the nickel-hydrogen storage batteries A1 to A12 in which the present invention is to be carried out, the discharge capacity is remarkably increased and the high rate is high as compared with the conventional nickel-hydrogen storage battery C1. The discharge characteristics are improved. Also, the battery internal pressure during the charging reaction is the same as the conventional nickel-hydrogen storage battery C1.
It is suppressed to be low as compared with, and it is clear that the electrical conductivity of the hydrogen storage alloy electrode was improved by coating the carbon powder particles with the metal.

【0030】更に、表3においては、コバルトを被覆し
たカーボンブラックを例に、本発明に係る水素吸蔵合金
電極の合材に添加すべき炭素粉末の粒子径及び遷移金属
による表面被覆量の最適域についての検討結果を示す。
コバルト被膜を有するカーボンブラックを負極電極の導
電材として用いたニッケル・水素蓄電池B1〜B6は、
従来のニッケル・水素蓄電池C1と比較して高率放電特
性、電池内圧特性ともに優れている。特に、ニッケル・
水素蓄電池B2〜B4でそれらの効果が著しく、本発明
に係る水素吸蔵合金電極に用いられる金属被覆炭素粉末
の粒子径は1μm〜30μmであることが好ましく、
又、金属被覆の炭素粉末粒子に対する比表面積は0.3
2/g〜0.6m2/gが好ましいことが明らかとなっ
た。
Further, in Table 3, taking a carbon black coated with cobalt as an example, the optimum range of the particle size of the carbon powder to be added to the mixture of the hydrogen storage alloy electrode according to the present invention and the amount of surface coating with the transition metal is shown. The examination result about is shown.
The nickel-hydrogen storage batteries B1 to B6 using carbon black having a cobalt coating as the conductive material of the negative electrode are
Compared to the conventional nickel-hydrogen storage battery C1, it has excellent high-rate discharge characteristics and battery internal pressure characteristics. Especially nickel
Those effects are remarkable in the hydrogen storage batteries B2 to B4, and the particle diameter of the metal-coated carbon powder used in the hydrogen storage alloy electrode according to the present invention is preferably 1 μm to 30 μm,
In addition, the specific surface area of the metal-coated carbon powder particles is 0.3.
m 2 /g~0.6m 2 / g It is preferred revealed.

【0031】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、CaCu5型結晶構造を有す
る水素吸蔵合金を用いる以外にも、C14型若しくはC
15型ラーベス相構造を有する水素吸蔵合金を用いて、
本発明に係る水素吸蔵合金電極を作製することも可能で
ある。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, in addition to using a hydrogen storage alloy having a CaCu 5 type crystal structure, C14 type or C type
Using a hydrogen storage alloy having a 15-type Laves phase structure,
It is also possible to produce the hydrogen storage alloy electrode according to the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水素吸蔵合金電極の活物質層を模
式的に表わした拡大断面図である。
FIG. 1 is an enlarged cross-sectional view schematically showing an active material layer of a hydrogen storage alloy electrode according to the present invention.

【図2】本発明を実施すべきニッケル・水素蓄電池の断
面図である。
FIG. 2 is a sectional view of a nickel-hydrogen storage battery in which the present invention is to be implemented.

【符号の説明】[Explanation of symbols]

A 金属被覆炭素粉末 B 水素吸蔵合金粉末 (1) ニッケル・水素蓄電池A1 (11) 正極 (12) 負極 (13) セパレーター (2) 活物質層 (21) 金属被覆炭素粉末Aの粒子 (22) 炭素粉末の粒子 (23) 金属被膜 (24) 水素吸蔵合金粉末Bの粒子 A metal-coated carbon powder B Hydrogen storage alloy powder (1) Nickel / hydrogen storage battery A1 (11) Positive electrode (12) Negative electrode (13) Separator (2) Active material layer (21) Particles of metal-coated carbon powder A (22) Carbon powder particles (23) Metal coating (24) Particles of hydrogen storage alloy powder B

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣田 洋平 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平3−252056(JP,A) 特開 平4−269454(JP,A) 特開 平4−160763(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yohei Hirota 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Mamoru Kimoto 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Shin Fujitani 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 within Sanyo Electric Co., Ltd. (56) Reference JP-A-3-252056 (JP, A) JP-A-4-269454 (JP, A) JP-A-4-160763 (JP, A) (58) Survey Areas (Int.Cl. 7 , DB name) H01M 4/00-4/62

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金粉末Bと導電材の粉末Aと
の混合物を主材とする水素吸蔵合金電極であって、前記
導電材の粉末Aが、炭素粒子(22)の表面の少なくとも一
部の領域を被って金属被膜(23)が形成された金属被覆炭
素粉末であることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode comprising a mixture of a hydrogen storage alloy powder B and a conductive material powder A as a main material, wherein the conductive material powder A is at least one of the surfaces of carbon particles (22). A hydrogen storage alloy electrode, which is a metal-coated carbon powder in which a metal coating (23) is formed so as to cover a partial region.
【請求項2】 前記金属被膜(23)を形成する金属元素
が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、S
n、Sb、及びAlから選ばれた1種以上の遷移金属であ
る請求項1に記載の水素吸蔵合金電極。
2. The metal element forming the metal coating (23) is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, S.
The hydrogen storage alloy electrode according to claim 1, which is one or more kinds of transition metals selected from n, Sb, and Al.
【請求項3】 前記炭素粉末が、黒鉛及びカーボンブラ
ックから選ばれた1種以上の炭素粉末からなる請求項1
又は請求項2に記載の水素吸蔵合金電極。
3. The carbon powder comprises at least one carbon powder selected from graphite and carbon black.
Alternatively, the hydrogen storage alloy electrode according to claim 2.
【請求項4】 前記金属被覆炭素粉末Aの粒子径が、1
〜30μmである請求項1乃至請求項3の何れかに記載
の水素吸蔵合金電極。
4. The particle diameter of the metal-coated carbon powder A is 1
The hydrogen storage alloy electrode according to any one of claims 1 to 3, having a thickness of -30 μm.
【請求項5】 前記金属被膜(23)の比表面積が、前記炭
素粉末の粒子(22)の単位重量当たり、0.3〜0.6m2
/gである請求項1乃至請求項4の何れかに記載の水素
吸蔵合金電極。
5. The specific surface area of the metal coating (23) is 0.3 to 0.6 m 2 per unit weight of the particles (22) of the carbon powder.
/ G, The hydrogen storage alloy electrode according to any one of claims 1 to 4.
JP26690897A 1997-09-30 1997-09-30 Hydrogen storage alloy electrode Expired - Fee Related JP3469754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26690897A JP3469754B2 (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26690897A JP3469754B2 (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH11111298A JPH11111298A (en) 1999-04-23
JP3469754B2 true JP3469754B2 (en) 2003-11-25

Family

ID=17437341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26690897A Expired - Fee Related JP3469754B2 (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3469754B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO325620B1 (en) * 2003-10-21 2008-06-30 Revolt Technology Ltd Electrode, Method of Preparation thereof, Metal / Air Fuel Cell and Metal Hydride Battery Cell
JP4196005B2 (en) 2004-07-30 2008-12-17 パナソニック株式会社 Hydrogen storage alloy negative electrode and nickel-hydrogen storage battery
KR100780481B1 (en) 2006-04-28 2007-11-28 인하대학교 산학협력단 Preparation method of multi-metals?activated carbon composites
KR101182273B1 (en) * 2010-08-12 2012-09-12 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, methode of preparing the same, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JPH11111298A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
US6338917B1 (en) Alkaline storage battery
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP3469754B2 (en) Hydrogen storage alloy electrode
JP3573925B2 (en) Metal-hydride alkaline storage battery and method of manufacturing the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3481095B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JP3071026B2 (en) Metal hydride storage battery
JP2001223000A (en) Alkaline secondary battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2823303B2 (en) Hydrogen storage alloy electrode
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP3229636B2 (en) Metal-hydrogen alkaline storage battery
JPH06318455A (en) Nickel-hydrogen battery
JPH0949039A (en) Production of hydrogen storage alloy particles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees