JP3457738B2 - Hygroscopic chloride-containing humidity control building material and method for producing the same - Google Patents
Hygroscopic chloride-containing humidity control building material and method for producing the sameInfo
- Publication number
- JP3457738B2 JP3457738B2 JP16805694A JP16805694A JP3457738B2 JP 3457738 B2 JP3457738 B2 JP 3457738B2 JP 16805694 A JP16805694 A JP 16805694A JP 16805694 A JP16805694 A JP 16805694A JP 3457738 B2 JP3457738 B2 JP 3457738B2
- Authority
- JP
- Japan
- Prior art keywords
- chloride
- humidity control
- hygroscopic
- lithium chloride
- building material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
- C04B20/107—Acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5007—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
- C04B41/5011—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing halogen in the anion
- C04B41/5012—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing halogen in the anion chlorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/46—Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
- C04B2103/465—Water-sorbing agents, hygroscopic or hydrophilic agents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Building Environments (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は各種美術品等の保管室な
ど、一定の湿度条件に保持する必要のある室の壁材等に
好適な高い調湿性能を有する調湿建材及びその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity control building material having a high humidity control performance suitable for a wall material of a room such as a storage room for various works of art, etc., which needs to be kept under a constant humidity condition, and a method for producing the same. Regarding
【0002】[0002]
【従来の技術】夏期に高温多湿となる我が国の気候風土
上の特徴は伝統的民家における土壁のように多孔質で調
湿性に富む、特色ある建築材料や工法を発達させてき
た。調湿作用は単に湿度の変動を緩和するだけではな
く、夏期にあっては表面からの水分蒸発に伴う表面温度
の低下による体感上の効果も期待できる。しかし、近年
の建築材料の多くは断熱性、気密性に重きをおいたもの
が多く、乾式工法による施工性の効率化も起因して調湿
性に乏しい建材が大部分を占めるようになっている。そ
のため、一般の室内において、室内外の温度の変動など
により室内の壁面に結露を生じ、壁材料の剥落やカビ発
生の原因となるので、空調設備の設置が必要となる。ま
た、高価な美術品や書物などを収納、展示、保管する美
術館等の展示室、収蔵庫、書庫、運搬用コンテナなどで
は、冷水、冷媒配管等を伴う一般の空調システムが適用
できず、空調空気を室内に直接導入することなく、2重
壁構造の空気層内に空調空気を導入して温度制御を行
い、室内の湿度については2重壁の内側壁を調湿性を有
する桧や杉板などの木材仕上げとしてその調湿性を期待
する成り行き制御とする方法が採られている。この場合
は、高価な木材を多量に使用することになり、また室内
の収納物に応じた所要の吸放湿性をもたせることが難し
いという問題がある。2. Description of the Related Art The characteristics of Japan's climate that become hot and humid in the summer have developed characteristic building materials and construction methods that are porous and rich in humidity control, like the soil walls of traditional private houses. The humidity control effect not only alleviates the fluctuation of humidity, but also in summer, it can be expected to have a sensible effect due to a decrease in surface temperature due to evaporation of water from the surface. However, many of the building materials in recent years have emphasized heat insulation and airtightness, and due to the efficiency of workability by the dry construction method, building materials with poor humidity control have become the majority. . Therefore, in an ordinary room, dew condensation occurs on the wall surface of the room due to temperature fluctuations inside and outside the room, which may cause the wall material to peel off and mold, so that it is necessary to install air conditioning equipment. In addition, in exhibition rooms such as museums, which store, display, and store expensive works of art, books, etc., storage rooms, storage rooms, containers for transportation, etc., general air conditioning systems with cold water, refrigerant piping, etc. cannot be applied, and air conditioning is not possible. Air-conditioning air is introduced into the air layer of the double wall structure to control the temperature without directly introducing the air into the room. Regarding the indoor humidity, the inner wall of the double wall has humidity control cypress or cedar board. For wood finishing such as, the method of controlling the process that expects the humidity control property is adopted. In this case, there is a problem that a large amount of expensive wood is used and it is difficult to provide a required moisture absorption / release property according to the stored items in the room.
【0003】一方、高い調湿機能を有する建材の研究も
なされており、例えばモルタルの砂の代わりにゼオライ
トを使用することにより、砂との置換率100%で桧の
3倍の吸放湿性能が得られることが報告されている(寒
河江昭夫等,調湿性建材の開発 その1,鹿島建設技術
研究所年報,1987年,225〜230頁;寒河江昭
夫等,調湿性建材の開発 その2,鹿島建設技術研究所
年報,1991年,259〜266頁;寒河江昭夫等,
ゼオライト系調湿パネルに関する開発研究 その1,日
本建築学会大会学術講演梗概集,1990年,1095
〜1096頁;寒河江昭夫等,ゼオライト系調湿パネル
に関する開発研究 その2,日本建築学会大会学術講演
梗概集,1990年,1097〜1098頁;寒河江昭
夫等,ゼオライト系調湿パネルに関する開発研究 その
3,日本建築学会大会学術講演梗概集,1990年,8
25〜826頁など)。しかしながらこの建材において
も、材料がモルタルに限定され、その性能及び用途にも
制限がある。On the other hand, research on building materials having a high humidity control function has also been made. For example, by using zeolite instead of sand in mortar, the moisture absorption and desorption performance is three times as high as that of Japanese cypress with a substitution rate of 100% with sand. (Akio Sagae et al., Development of Humidity Control Building Materials, Part 1, Kashima Construction Technology Research Institute Annual Report, 1987, pp. 225-230; Akio Sagae et al., Development of Humidity Control Building Materials, Part 2, Kashima) Construction Technology Research Institute Annual Report, 1991, pp. 259-266; Akio Sagae et al.
Development Study on Zeolite Humidity Control Panel Part 1, Summary of Academic Lectures at the Architectural Institute of Japan, 1990, 1095
-1096; Akio Sagae et al., Developmental research on zeolite-based humidity control panel, Part 2, Summary of academic lectures at the Architectural Institute of Japan, 1990, 1097-1098; Akio Sagae et al., Developmental research on zeolite-based humidity control panel, Part 3 , Summary of Academic Lectures at the Architectural Institute of Japan, 1990, 8
25-826, etc.). However, even in this building material, the material is limited to mortar, and its performance and application are also limited.
【0004】[0004]
【発明が解決しようとする課題】本発明は前記のような
従来の技術における問題点を解決し、一般に使用されて
いる多孔質建材をベース基材として使用でき、しかも任
意の吸放湿性能を持たせた調湿建材およびその製造方法
を提供することを目的とする。[SUMMARY OF THE INVENTION The present invention solves the problems in the prior art as described above, the porous Shitsuken material that is generally used can be used as a base material, yet any moisture-absorbing and desorbing properties An object of the present invention is to provide a humidity-controlling building material having the property and a manufacturing method thereof.
【0005】[0005]
【課題を解決するための手段】本発明は、(1)多孔質
材料であるケイ酸カルシウム板よりなる成形体であっ
て、塩化リチウム、塩化カルシウム及び塩化マグネシウ
ムよりなる群から選ばれる1種以上の吸湿性を有する塩
化物を含有する塩化物を含有する調湿建材であり、大気
の乾湿状態に応じて吸湿又は放湿が可能な吸放湿性を有
することを特徴とする調湿建材、(2)多孔質材料であ
るケイ酸カルシウム板よりなる成形体に塩化リチウム、
塩化カルシウム及び塩化マグネシウムよりなる群から選
ばれる1種以上の吸湿性を有する塩化物の水溶液を含浸
させた後、乾燥させることを特徴とする前記(1)の調
湿建材の製造方法、並びに(3)多孔質材料であるケイ
酸カルシウム板よりなる成形体を形成するための原料粉
末に塩化リチウム、塩化カルシウム及び塩化マグネシウ
ムよりなる群から選ばれる1種以上の吸湿性を有する塩
化物の粉末を混合するかあるいは該吸湿性を有する塩化
物の水溶液を含浸させた後、成形することを特徴とする
前記(1)の調湿建材の製造方法である。Means for Solving the Problems The present invention is (1) a molded product made of a calcium silicate plate which is a porous material, and at least one member selected from the group consisting of lithium chloride, calcium chloride and magnesium chloride. It is a humidity-controlled building material containing chloride that contains chloride having the hygroscopic property of
Depending on the dry and dry state of the
A humidity control building material, (2) a molded body made of a calcium silicate plate which is a porous material, and lithium chloride,
A method for producing a humidity control building material according to the above (1), which comprises impregnating with an aqueous solution of one or more hygroscopic chlorides selected from the group consisting of calcium chloride and magnesium chloride and then drying, and ( 3) A powder of chloride having one or more hygroscopic properties selected from the group consisting of lithium chloride, calcium chloride and magnesium chloride is used as a raw material powder for forming a molded body made of a calcium silicate plate which is a porous material. It is characterized by being molded after being mixed or impregnated with the hygroscopic chloride aqueous solution.
The method for producing a humidity control building material according to (1) above .
【0006】調湿建材のベース基材となる多孔質材料と
しては、多孔質であってある程度以上の吸水性のあるも
のであれば問題なく使用できる。通常、建材として使用
されている材料は金属、ガラス、合成樹脂板などを除い
て、ほとんど全てが多孔質材料であり、調湿建材のベー
ス基材として使用可能である。もっとも、これらの材料
はその種類によって多孔性の程度(空隙率)に大きな差
があるが、一般的には多孔性が大きくかつ吸水性も大き
い(吸水率の大きい)材料の方が多量の塩化物を含有さ
せやすく、建材中への湿分の出入りも容易で、吸放湿性
能の大きいものが得られるので好ましい。例えば塩化物
の水溶液を含浸させる方法により調湿建材を製造する場
合、後述の実施例に示すように、ケイ酸カルシウム板と
ベニヤ合板では、両者とも調湿性能の付与効果はあるも
のの、吸水率の大きいケイ酸カルシウム板の方がはるか
に調湿性能の大きいものが得られる。[0006] As the porous material serving as a base substrate of the moisture control construction material, can be used without problems as long as a certain degree of water absorption porous. Normally, materials used as building materials, except metals, glass, synthetic resin plate or the like, is almost entirely porous material can be used as a base material for moisture control construction material. However, the degree of porosity (porosity) of these materials varies greatly depending on the type, but in general, a material with high porosity and high water absorption (high water absorption) has a large amount of chloride. It is preferable because it is easy to contain a substance, moisture can easily enter and leave the building material, and a substance having a high moisture absorption / desorption performance can be obtained. For example, when producing by Richo wet building material in the method of impregnating the aqueous solution of the chloride, as described later in Examples, the calcium silicate board and plywood, although imparting effect of both of the humidity control performance is, A calcium silicate plate having a high water absorption rate can have much higher humidity control performance.
【0007】調湿建材のベース基材となる多孔質材料の
例としては、ケイ酸カルシウム板、プラスターボード、
石綿スレート板、石綿セメント板、パーライト板、木毛
セメント板、モルタル、セメント板、ALC板などのセ
メント−無機質系材料、大谷石、抗火石などの多孔質石
材、ベニア合板、パーティクルボード、繊維板などの木
質系材料が挙げられる。これらの多孔質材料の吸水率の
具体的数値については、例えばケイ酸カルシウム板のみ
についてもその銘柄等により異なるので一概にはいえな
いが、一応の目安として、代表的なものについてその数
値の例を表1に示す。これらの材料の中でも、特に調湿
性能の高い調湿建材が得られるケイ酸カルシウム板が本
発明の調湿建材のベース基材として好ましい材料であ
る。[0007] Examples of the porous material as a base material of the humidity building materials, calcium silicate board, plasterboard,
Cement-inorganic materials such as asbestos slate board, asbestos cement board, perlite board, wood wool cement board, mortar, cement board, ALC board, porous stone materials such as Otani stone, anti-fire stone, veneer plywood, particle board, fiber board Wood-based materials such as. Regarding the specific numerical value of the water absorption rate of these porous materials, it cannot be said unequivocally because, for example, only the calcium silicate plate varies depending on the brand, etc. Is shown in Table 1. Among these materials, a calcium silicate plate, which can obtain a humidity-controlled building material having particularly high humidity-controlling performance, is a preferable material as a base substrate for the humidity-controlled building material of the present invention.
【0008】[0008]
【表1】 注)抗火石は実測値、他は文献(JIS等)公表値[Table 1] Note) Anti-fire stones are measured values, other values are published values in documents (JIS, etc.)
【0009】本発明において多孔質材料であるケイ酸カ
ルシウム板に調湿性能を付与するために用いられる吸湿
性を有する塩化物としては塩化リチウム、塩化カルシウ
ム又は塩化マグネシウムが好ましい。In the present invention, silicic acid silicate, which is a porous material , is used.
Lithium chloride, calcium chloride or magnesium chloride is preferable as the hygroscopic chloride used for imparting humidity control performance to the lucium plate .
【0010】本発明の調湿建材は、例えば次のような方
法により製造することができる。先ず前記多孔質材料の
成形体に前記の吸湿性を有する塩化物の水溶液を含浸さ
せる。所定量の塩化物を含浸させたのち、恒温恒湿槽内
に槽内の温湿度と平衡に達するまで放置するなど適当な
手段で乾燥することにより調湿建材が得られる。基材と
なる多孔質材料が粉末状の原料から製造する材料である
場合には、これらの多孔質材料を製造する段階で原料粉
末中に吸湿性を有する塩化物を混合して成形する方法を
採ることもできる。The humidity control building material of the present invention can be manufactured, for example, by the following method. First an aqueous solution of chloride impregnated to the molded body before Kio porous material having a hygroscopic. After impregnating a predetermined amount of chloride, it is dried by an appropriate means such as leaving it in a constant temperature and constant humidity tank until it reaches equilibrium with the temperature and humidity in the tank, to obtain a humidity controlled building material. When the porous material that is the base material is a material produced from powdered raw materials, a method of mixing hygroscopic chloride in the raw material powder at the stage of producing these porous materials and molding It can also be taken.
【0011】本発明の調湿建材中の塩化物の含有量は、
ベース基材となる多孔質材料及び含浸させる塩化物の種
類によって決まる最大含浸量以下の範囲内で、目的とす
る調湿建材に要求される調湿性能に応じて任意の値に設
定することができる。例えば塩化リチウムをケイ酸カル
シウム板に含浸させる場合、その最大含浸量は、ベース
基材の吸水特性により異なるが、通常の場合90kg/
m3 程度である。また、含浸量がごく微量の場合には吸
放湿特性の改善効果は小さくなるが、ベース基材のケイ
酸カルシウム板本来の吸放湿性を2倍程度に向上させる
ために必要な含浸量は5kg/m3 程度である。[0011] The content of chloride of the humidity in the building material of the present invention,
Within the maximum impregnation amount less range determined by the type of base over scan substrate and comprising porous material and impregnated to chlorides, be set to any value in accordance with the humidity control performance required for the building materials humidity control for the purpose be able to. For example, when impregnating a calcium silicate plate with lithium chloride, the maximum impregnation amount varies depending on the water absorption characteristics of the base material, but normally 90 kg /
It is about m 3 . In addition, when the amount of impregnation is very small, the effect of improving the moisture absorption and desorption characteristics becomes small, but the amount of impregnation required to improve the moisture absorption and desorption characteristic of the calcium silicate plate of the base material is about double. It is about 5 kg / m 3 .
【0012】[0012]
【実施例】以下実施例により本発明をさらに具体的に説
明する。
(実施例)
試験体として無機質系多孔質板であるケイ酸カルシウム
板(厚さ8mm)と木質系多孔質板であるベニア合板
(厚さ12mm)をそれぞれ150×300mmの大き
さに裁断し、試験片とした。ここでケイ酸カルシウム板
は本発明の調湿建材のベース基材であり、ベニア合板は
比較材である。これらの試験片を適度に温湿度制御され
た室内に数日間放置し、重量測定後、5重量%、10重
量%及び20重量%に調製した塩化リチウム水溶液中に
浸漬し所定時間静置したのち、再度前記と同じ条件で重
量測定を行い、含浸した水溶液量と溶液濃度から塩化リ
チウムの正味の含浸量を求めた。浸漬時間はケイ酸カル
シウム板では5、10及び20分間とし、ベニア合板に
ついては1、3及び9時間とした。ケイ酸カルシウム板
及びベニア合板について塩化リチウム水溶液への浸漬時
間と塩化リチウムの含浸量との関係をそれぞれ図1及び
図2に示す。図1及び図2において横軸は浸漬時間(含
浸時間)を表し、縦軸の左側の数値は各試験片当たりの
塩化リチウムの含浸量、右側の数値は試験片単位体積当
たりの塩化リチウムの含浸量を表し、また、各図中の%
は含浸させた塩化リチウム水溶液の濃度を表す。図1及
び図2から、塩化リチウムの含浸量は、材固有の吸水性
が大きいケイ酸カルシウム板では、吸水性の小さいベニ
ア合板に比較して1桁大きくなっている。このことは、
より多孔性で吸水性が大きい材料ほど吸放湿性の大きい
調湿建材が得られることを示している。The present invention will be described in more detail with reference to the following examples. (Example) As a test body, a calcium silicate plate (thickness 8 mm) which is an inorganic porous plate and a veneer plywood (thickness 12 mm) which is a wooden porous plate are cut into 150 × 300 mm size, respectively. The test piece was used. Here calcium silicate plate
Is a base material for the humidity control building material of the present invention, and veneer plywood is
It is a comparative material. These test pieces were left for several days in a room where the temperature and humidity were controlled appropriately, weighed, dipped in 5 wt%, 10 wt% and 20 wt% lithium chloride aqueous solution, and allowed to stand for a predetermined time. The weight was again measured under the same conditions as above, and the net impregnation amount of lithium chloride was determined from the impregnated aqueous solution amount and the solution concentration. The dipping time was 5, 10 and 20 minutes for the calcium silicate board and 1, 3 and 9 hours for the veneer plywood. The relationship between the immersion time in the lithium chloride aqueous solution and the impregnated amount of lithium chloride for the calcium silicate plate and the veneer plywood is shown in FIGS. 1 and 2, respectively. 1 and 2, the horizontal axis represents the immersion time (impregnation time), the numerical value on the left side of the vertical axis is the impregnated amount of lithium chloride per test piece, and the numerical value on the right side is the impregnation of lithium chloride per unit volume of the test piece. Represents the amount and% in each figure
Represents the concentration of the impregnated lithium chloride aqueous solution. From FIG. 1 and FIG. 2, the impregnated amount of lithium chloride is one digit larger in the calcium silicate plate, which has a large water absorption inherent to the material, than in the veneer plywood, which has a small water absorption. This is
It is shown that a more porous material having a higher water absorbing property can provide a humidity control building material having a higher moisture absorbing / releasing property.
【0013】このようにして調製した塩化リチウムを含
浸させた試験片18種類に、塩化リチウム無含浸の試験
片2種類を加えた合計20種について吸放湿特性の測定
を行った。試験方法としては、これらの試験片を1面
(150×300mmの面)を残してポリエチレンシー
トを貼り付けることにより断湿し、25℃、湿度50%
(12g/kg)に制御された恒温恒湿槽内に入れ、重
量が一定になるまで静置した。初期条件に対して十分定
常に達した後、槽内温度を25℃とし、槽内湿度を1
2g/kgから15g/kgにステップ変位させる加湿
実験、同じく槽内温度を25℃で槽内湿度を15g/
kgから11g/kgにステップ変位させる除湿実験、
25℃・11g/kgから30℃・13g/kgに変
化させる加湿加熱実験及び槽内湿度13g/kgで、
温度を30℃から25℃に変化させる冷却実験を行い、
そのときの各試験片の重量変化の応答特性を測定した。
図3及び図4に加湿実験における無含浸及び5、10及
び20重量%濃度の塩化リチウム水溶液にケイ酸カルシ
ウム板は20分間、ベニア合板は9時間それぞれ含浸さ
せた試験片の重量変化と経過時間との関係及びその非線
形回帰曲線を示す(なお、他の試験片についても同様の
傾向が認められた)。図中に示した回帰式においてwは
重量変化(g)、tは経過時間(h)を表す。図3及び
図4から、両者とも塩化リチウムの含浸により吸湿性が
増大し、ベニア合板では含浸量が少ないため明確ではな
いが、ケイ酸カルシウム板では塩化リチウムの含浸量が
多いほど重量変化の定常値(回帰曲線のw0 )が大き
く、吸湿容量の大きい材料が得られるが、重量変化の時
間遅れは含浸量によらずほぼ一定であり(回帰式中の減
衰率がほぼ一定)、塩化リチウムを含浸させることによ
り生じる吸湿特性の変化は主として吸湿容量に認めら
れ、吸湿速度については変化は小さいことがわかる。The moisture absorbing / releasing characteristics were measured for a total of 20 kinds of the 18 kinds of test pieces impregnated with lithium chloride thus prepared and 2 kinds of test pieces not impregnated with lithium chloride. As a test method, these test pieces were dehumidified by sticking a polyethylene sheet leaving one surface (150 × 300 mm surface) at 25 ° C. and 50% humidity.
It was placed in a constant temperature and constant humidity tank controlled to (12 g / kg) and allowed to stand until the weight became constant. After reaching the steady state sufficiently against the initial conditions, the temperature inside the tank is set to 25 ° C and the humidity inside the tank is set to 1
Humidification experiment with step displacement from 2 g / kg to 15 g / kg, the temperature inside the tank was 25 ° C and the humidity inside the tank was 15 g / kg.
Dehumidification experiment with step displacement from kg to 11 g / kg,
In a humidification heating experiment to change from 25 ° C · 11 g / kg to 30 ° C · 13 g / kg and a tank humidity of 13 g / kg,
We conducted a cooling experiment to change the temperature from 30 ℃ to 25 ℃,
The response characteristics of the weight change of each test piece at that time were measured.
Fig. 3 and Fig. 4 show the change in weight and the elapsed time of the test piece impregnated in a non-impregnated and 5%, 10 and 20 wt% concentration aqueous solution of lithium chloride for 20 minutes for calcium silicate board and 9 hours for veneer plywood in humidification experiments. And the non-linear regression curve thereof (the same tendency was observed for other test pieces). In the regression equation shown in the figure, w represents weight change (g) and t represents elapsed time (h). It is not clear from FIGS. 3 and 4 that the hygroscopicity of both increases due to the impregnation of lithium chloride and the amount of impregnation is small in veneer plywood, but it is not clear that the amount of impregnation of calcium silicate is large as the amount of impregnation of lithium chloride is constant. A material having a large value (w 0 of the regression curve) and a large moisture absorption capacity can be obtained, but the time delay of the weight change is almost constant regardless of the impregnation amount (the attenuation rate in the regression equation is almost constant), and lithium chloride It can be seen that the change in the hygroscopic property caused by the impregnation with is mainly found in the hygroscopic capacity, and the change in the hygroscopic rate is small.
【0014】図5及び図6は加湿実験、除湿実験結果か
ら求めた、単位体積当たりの塩化リチウム含浸量L(k
g/m3 )と、試験片単位体積当たりの単位絶対湿度変
化に対する吸放湿量κ′〔g/m3 (g/kg)〕との
関係を示したものである。κ L ′〔g/m3 (g/k
g)〕(=κ′−κ0 ′、κ0 ′は材固有の吸放湿性
能)は塩化リチウム含浸による吸放湿性能の増分を示
す。図5及び図6から、加湿実験と除湿実験の傾向はい
ずれも類似しており、吸湿と放湿の可逆性が認められ
る。ケイ酸カルシウム板、ベニア合板ともに塩化リチウ
ム含浸量とκ′には強い正の相関が認められ、また、塩
化リチウム含浸量とκ′との強い相関は、含浸塩化リチ
ウム量を加減することで所要の吸放湿性能が再現できる
ことを示している。なお、ケイ酸カルシウム板の場合、
90.8kg/m3 の含浸で材固有の吸放湿性能のほぼ
20倍の吸放湿性能を示した。5 and 6 are the results of the humidification and dehumidification experiments?
The amount of lithium chloride impregnated per unit volume L (k
g / m3) And the unit absolute humidity change per unit volume of the test piece.
Moisture absorption and desorption amount κ '[g / m3(G / kg)]
It shows the relationship. κ L′ [G / m3(G / k
g)] (= κ′−κ0′, Κ0′ Is the moisture absorption and release characteristic of the material
No.) indicates the increment of moisture absorption / release performance due to lithium chloride impregnation.
You From Figure 5 and Figure 6, the tendency of humidification and dehumidification experiments Yes
The difference is similar, and reversibility of moisture absorption and moisture release is recognized.
It Lithium chloride for both calcium silicate board and veneer plywood
A strong positive correlation was found between the amount of the impregnated water and κ ′.
The strong correlation between the impregnated amount of lithium fluoride and κ'is that the impregnated lithium chloride
The required moisture absorption / release performance can be reproduced by adjusting the amount of um.
It is shown that. In the case of calcium silicate plate,
90.8 kg / m3By the impregnation of the
It showed a moisture absorption and desorption performance of 20 times.
【0015】図7及び図8は冷却実験結果から求めた、
単位体積当たりの塩化リチウム含浸量L(kg/m3 )
と、単位体積当たりの単位温度変化に対する吸放湿量
ν′(g/m3 ℃)との関係を示したものである。
νL ′(g/m3 ℃)(=ν′−ν 0 ′、ν0 ′は材固
有の吸放湿性能)は塩化リチウム含浸による吸放湿性能
の増分を示す。図7及び図8から塩化リチウム含浸量と
ν′との間には、κ′の場合と同様に相関が認められ
る。また、90.8kg/m3 の塩化リチウムを含浸さ
せたケイ酸カルシウム板は、材固有の吸放湿性能のほぼ
24倍の吸放湿性能を示した。7 and 8 are obtained from the cooling experiment results,
Amount of lithium chloride impregnated per unit volume L (kg / m3)
And the amount of moisture absorption and desorption for a unit temperature change per unit volume
ν '(g / m3C)).
νL′ (G / m3℃) (= ν′-ν 0′, Ν0′ Is solid
Moisture absorption / release performance) is the moisture absorption / release performance due to lithium chloride impregnation
Indicates the increment of. From FIG. 7 and FIG.
Similar to the case of κ ', a correlation is recognized between ν'and
It Also, 90.8 kg / m3Impregnated with lithium chloride
The calcined calcium silicate plate has almost the same moisture absorption and desorption performance peculiar to the material.
It showed a 24-fold moisture absorption / desorption performance.
【0016】[0016]
【発明の効果】本発明の調湿建材は、一般に使用されて
いる多孔質建材であるケイ酸カルシウム板をベースと
し、高い吸放湿性能を有する建材であり、吸湿性を有す
る塩化物の含有割合を調整することにより任意の吸放湿
性能を持たせることができる。また、本発明の製造方法
によれば一般に使用されている多孔質建材であるケイ酸
カルシウム板をベース基材として使用でき、しかも任意
の吸放湿性能を持たせた調湿建材を容易かつ安価に製造
することができる。EFFECTS OF THE INVENTION The humidity-conditioning building material of the present invention is a building material having a high moisture absorbing / releasing performance, which is based on a calcium silicate plate which is a generally used porous building material, and contains a hygroscopic chloride. By adjusting the ratio, it is possible to give an arbitrary moisture absorbing / releasing performance. Further, according to the production method of the present invention, silicic acid which is a porous building material generally used
A calcium plate can be used as a base material, and a humidity control building material having any desired moisture absorption / release performance can be easily and inexpensively manufactured.
【図1】ケイ酸カルシウム板について塩化リチウム水溶
液への浸漬時間と塩化リチウムの含有量との関係を示す
グラフ。FIG. 1 is a graph showing the relationship between the immersion time of a calcium silicate plate in an aqueous solution of lithium chloride and the content of lithium chloride.
【図2】ベニア合板について塩化リチウム水溶液への浸
漬時間と塩化リチウムの含有量との関係を示すグラフ。FIG. 2 is a graph showing the relationship between the immersion time of a veneer plywood in an aqueous lithium chloride solution and the content of lithium chloride.
【図3】ケイ酸カルシウム板を用いた加湿実験における
重量変化と時間の関係を示すグラフ。FIG. 3 is a graph showing the relationship between weight change and time in a humidification experiment using a calcium silicate plate.
【図4】ベニア合板を用いた加湿実験における重量変化
と時間の関係を示すグラフ。FIG. 4 is a graph showing a relationship between weight change and time in a humidification experiment using veneer plywood.
【図5】ケイ酸カルシウム板を用いた加湿実験、除湿実
験結果から求めた、単位体積当たりの塩化リチウム含浸
量Lとκ′との関係を示すグラフ。FIG. 5 is a graph showing the relationship between the lithium chloride impregnated amount L per unit volume and κ ′, which is obtained from the results of humidification and dehumidification experiments using a calcium silicate plate.
【図6】ベニア合板を用いた加湿実験、除湿実験結果か
ら求めた、単位体積当たりの塩化リチウム含浸量Lと
κ′との関係を示すグラフ。FIG. 6 is a graph showing the relationship between the amount L of impregnated lithium chloride per unit volume and κ ′, obtained from the results of humidification and dehumidification experiments using veneer plywood.
【図7】ケイ酸カルシウム板を用いた冷却実験結果から
求めた、単位体積当たりの塩化リチウム含浸量Lと、
ν′との関係を示すグラフ。FIG. 7 shows the amount L of lithium chloride impregnated per unit volume, which was obtained from the results of a cooling experiment using a calcium silicate plate,
A graph showing the relationship with ν '.
【図8】ベニア合板を用いた冷却実験結果から求めた、
単位体積当たりの塩化リチウム含浸量Lと、ν′との関
係を示すグラフ。FIG. 8: Obtained from a cooling experiment result using plywood,
The graph which shows the relationship between lithium chloride impregnation amount L per unit volume, and v '.
フロントページの続き (72)発明者 木村 建一 埼玉県所沢市榎町13−21 (72)発明者 谷本 潤 神奈川県相模原市下九沢757−2351 (72)発明者 張本 和芳 東京都渋谷区神宮前5−31−2−401 (56)参考文献 特開 昭63−217040(JP,A)Continued front page (72) Inventor Kenichi Kimura 13-21 Enokicho, Tokorozawa City, Saitama Prefecture (72) Inventor Jun Tanimoto 757-2351 Shimogusawa, Sagamihara City, Kanagawa (72) Inventor Kazuyoshi Harimoto 5-31-2-401 Jingumae, Shibuya-ku, Tokyo (56) References JP-A-63-217040 (JP, A)
Claims (3)
りなる成形体であって、塩化リチウム、塩化カルシウム
及び塩化マグネシウムよりなる群から選ばれる1種以上
の吸湿性を有する塩化物を含有する調湿建材であり、大
気の乾湿状態に応じて吸湿又は放湿が可能な吸放湿性を
有することを特徴とする調湿建材。1. A molded article made from a porous material in which calcium silicate board, comprising a chloride of organic lithium chloride, one or more hygroscopic selected from the group consisting of calcium chloride and magnesium chloride A humidity control building material, large
A moisture absorbing / releasing property that can absorb or release moisture depending on the dry and dry state of the air
A humidity control building material characterized by having .
りなる成形体に塩化リチウム、塩化カルシウム及び塩化
マグネシウムよりなる群から選ばれる1種以上の吸湿性
を有する塩化物の水溶液を含浸させた後、乾燥させるこ
とを特徴とする請求項1に記載の調湿建材の製造方法。2. A molded body made of a calcium silicate plate which is a porous material is impregnated with an aqueous solution of one or more hygroscopic chlorides selected from the group consisting of lithium chloride, calcium chloride and magnesium chloride. The method for producing a humidity-controlled building material according to claim 1, wherein the method is used for drying.
りなる成形体を形成するための原料粉末に塩化リチウ
ム、塩化カルシウム及び塩化マグネシウムよりなる群か
ら選ばれる1種以上の吸湿性を有する塩化物の粉末を混
合するかあるいは該吸湿性を有する塩化物の水溶液を含
浸させた後、成形することを特徴とする請求項1に記載
の調湿建材の製造方法。3. A raw material powder for forming a molded body made of a calcium silicate plate which is a porous material, and at least one hygroscopic chloride selected from the group consisting of lithium chloride, calcium chloride and magnesium chloride. Alternatively or mixed powder was impregnated with an aqueous solution of chloride having hygroscopic, according to claim 1, characterized in that the molding
Of manufacturing humidity control building materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16805694A JP3457738B2 (en) | 1994-07-20 | 1994-07-20 | Hygroscopic chloride-containing humidity control building material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16805694A JP3457738B2 (en) | 1994-07-20 | 1994-07-20 | Hygroscopic chloride-containing humidity control building material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0826842A JPH0826842A (en) | 1996-01-30 |
JP3457738B2 true JP3457738B2 (en) | 2003-10-20 |
Family
ID=15861015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16805694A Expired - Fee Related JP3457738B2 (en) | 1994-07-20 | 1994-07-20 | Hygroscopic chloride-containing humidity control building material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3457738B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102717418B (en) * | 2012-07-06 | 2014-06-25 | 广西新凯骅实业集团股份有限公司 | Manufacturing method of high-strength waterproof fiber board |
CN104672848A (en) * | 2013-11-28 | 2015-06-03 | 上海杰事杰新材料(集团)股份有限公司 | Heat-resistant PC/ABS alloy material and preparation method thereof |
JP2020055712A (en) * | 2018-10-03 | 2020-04-09 | 有限会社城崎デザイン研究所 | Porous material and method for producing porous material |
-
1994
- 1994-07-20 JP JP16805694A patent/JP3457738B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0826842A (en) | 1996-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3208620U (en) | Wall that separates the interior of the building from the outside | |
Liuzzi et al. | Use of clay and olive pruning waste for building materials with high hygrothermal performances | |
Walker et al. | Thermal and hygric properties of insulation materials suitable for historic fabrics | |
JP3457738B2 (en) | Hygroscopic chloride-containing humidity control building material and method for producing the same | |
JP2002178444A (en) | Decorative veneer-clad humidity controlling fireproof building material | |
CN113396260A (en) | Multifunctional system for passive heat and water management | |
JP3028502B2 (en) | Manufacturing method of large panel materials for environmental control | |
JPH03109244A (en) | Moisture conditioning building material, building material having antifungus and fungiproof properties and their production | |
Kumaran et al. | Determination of equilibrium moisture content of building materials: some practical difficulties | |
JPH102044A (en) | Humidity controlling ceramic building material | |
CN102553518A (en) | Preparation process of mineral composite material capable of adjusting moisture | |
JP2004285611A (en) | Thermal insulation humidity conditioning material and building material using it | |
WO2008121716A2 (en) | Attic insulation with desiccant | |
Kim et al. | The hygric performances of moisture adsorbing/desorbing building materials | |
JP3980905B2 (en) | Humidity control method | |
JPH0959052A (en) | Humidity-controlling gypsum board | |
JP7406353B2 (en) | Inorganic board, ceiling finishing material, ceiling structure, and manufacturing method of inorganic board | |
Lakatos | Initial state sorption measurements | |
JPH0450433B2 (en) | ||
Konkov | The environmental control indoors with application of moisture-regulating plasters | |
JP2589825Y2 (en) | Wall structure and ceiling structure having humidity control function | |
JP2001049022A (en) | Conditioning material and its preparation | |
Sagae et al. | Study on a new humidity controlling material using zeolite for building | |
JPS6242735A (en) | Inorganic humidity conditioning material | |
TW201623187A (en) | Moisture-storing substance mixture and building board made therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |