JP3427915B2 - Method for assembling solid polymer electrolyte fuel cell - Google Patents

Method for assembling solid polymer electrolyte fuel cell

Info

Publication number
JP3427915B2
JP3427915B2 JP18082295A JP18082295A JP3427915B2 JP 3427915 B2 JP3427915 B2 JP 3427915B2 JP 18082295 A JP18082295 A JP 18082295A JP 18082295 A JP18082295 A JP 18082295A JP 3427915 B2 JP3427915 B2 JP 3427915B2
Authority
JP
Japan
Prior art keywords
cell
polymer electrolyte
solid polymer
plate
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18082295A
Other languages
Japanese (ja)
Other versions
JPH097627A (en
Inventor
浩 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP18082295A priority Critical patent/JP3427915B2/en
Publication of JPH097627A publication Critical patent/JPH097627A/en
Application granted granted Critical
Publication of JP3427915B2 publication Critical patent/JP3427915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池の組立方法に関する。 【0002】 【従来の技術】従来、固体高分子電解質型燃料電池を組
立てるには、ガスプレート、冷却プレート等のカーボン
プレート、固体高分子電解質膜等をシールプレートを介
してシールしてセルを構成し、このセルを数層〜数10層
積層し、位置決め用ノック穴へノックピンを挿入してス
タックを組立てた上、加圧用プレートを用いて締め付け
固定していた。ところで、セルの積層数が多ければ多い
程ノックピンを挿入することが難しく、また、積層した
部材に位置ずれが生じてシールが不完全となることがあ
った。 【0003】 【発明が解決しようとする課題】そこで本発明は、ノッ
クピンの挿入が容易で、積層重合したセルやセルユニッ
トに位置ずれが生じていても高精度に組立てることがで
き、且つ完全にシールすることができる燃料電池の製造
方法を提供しようとするものである。 【0004】 【課題を解決するための手段】上記課題を解決するため
の本発明の燃料電池の組立方法は、方形のカーボンプレ
ート、シールプレート、触媒電極、固体高分子電解質膜
を積層してなり、シールプレートを介してカーボンプレ
ートと固体高分子電解質膜とがシールされているセルを
複数積層してなる固体高分子電解質型燃料電池の組立方
法において、カーボンプレート、シールプレート、固体
高分子電解質膜の一対の対角隅部にセル組立用位置決め
穴を穿設すると共に他の一対の対角隅部にスタック組立
用位置決め穴を穿設し、次に固体高分子電解質膜の両面
にシールプレートを介して触媒電極とカーボンプレート
を積層してセルを構成し、このセルを複数層夫々シール
プレートを介して重合し、セル組立用位置決め穴に端面
を面取りした短いPTFE製のノックピンを挿入してセ
ルユニットを構成し、次にこのセルユニットを複数個夫
々シールプレートを介して重合し、スタック組立用位置
決め穴に端面を面取りした長いPTFE製のノックピン
を挿入してスタックを構成し、然る後加圧プレートを用
いて締め付け固定することを特徴とする燃料電池の組立
方法である。 【0005】 【作用】上記のように本発明の燃料電池の組立方法で
は、固体高分子電解質膜の両面にシールプレート、触媒
電極、カーボンプレートを積層したセルを複数個重合の
上、一対の対角隅部のセル組立用位置決め穴に、端面を
面取りした短いPTFE製のノックピンを挿入するの
で、滑りが良く、嵌合し易く、しかもしなやかで弾力性
があるので若干の位置ずれも吸収でき、セル及びセルユ
ニットが高精度に組立てられる。 【0006】また、こうして組立てたセルユニットを複
数個重合の上、他の一対の対角隅部のスタック組立用位
置決め穴に、端面を面取りした長いPTFE製のノック
ピンを挿入するので、滑りが良く、嵌合し易く、しかも
しなやかで弾力性があるので、セルユニットの若干の位
置ずれも吸収できるスタックが高精度に組立てられる。 【0007】さらにノックピンは、絶縁性があるので、
各セルがショートすることがなく、また、耐熱性がある
ので、ノックピンは発電による熱により溶けることがな
く、さらに材料強度に優れているので、セル及びスタッ
クを確実に保持でき、加圧プレートを用いて締め込むと
適度な柔構造体であるスタックは固定され且つ各セルが
完全にシールされる。 【0008】 【実施例】本発明の燃料電池の組立方法の実施例を図に
よって説明すると、図1に示すように厚さ 3.0mm、一辺
120mmの方形のカーボンプレート(ガスプレート及び冷
却プレート)1の一対の対角隅部、本例の場合右上隅部
と左下隅部に、内径6mmのセル組立用位置決め穴2を穿
設すると共に、他の一対の対角隅部、即ち左上隅部と右
下隅部に、内径7mmのスタック組立用位置決め用穴3を
穿設した。尚、4はガス入口マニホールド、5はガス通
路溝、6はガス出口マニホールド、7は裏面のガス通路
溝、8はそのガス入口マニホールド、9はガス出口マニ
ホールドであり、カーボンプレート1が冷却プレートの
場合は、表面に冷却水通路溝、冷却水入口マニホール
ド、冷却水出口マニホールドが設けられている。 【0009】図2は、カーボンプレート1間に配して各
マニホールドの周囲をシールする厚さ 0.4mmのシールプ
レート10で、前記カーボンプレート1と同様に一対の対
角隅部に内径6mmのセル組立用位置決め穴2を穿設する
と共に、他の一対の対角隅部に、内径7mmのスタック組
立用位置決め穴3を穿設した。 【0010】図3は、ガスプレート1間にシールプレー
ト10を介して挟み込む厚さ0.14mm、一辺 120mmの方形の
電解用の固体高分子電解質膜11で、前記カーボンプレー
ト1と同様に各マニホールドを有していて、これの一対
の対角隅部に、内径6mmのセル組立用位置決め穴2を穿
設すると共に、他の一対の対角隅部に、内径7mmのスタ
ック組立用位置決め穴3を穿設した。 【0011】次に固体高分子電解質膜11の両面にシール
プレート10を介して触媒電極19とカーボンプレート(ガ
スプレート又は冷却水プレート)1を積層して、図4に
示すようにセル12を構成し、次いでこのセル12を複数
層、本例の場合10層夫々シールプレート10を介して重合
し、図5に示すようにセル組立用位置決め穴2に端面を
面取りした直径 5.7mm、長さ69.0mmのPTFE製のノッ
クピン13を挿入してセルユニット14を構成し、次にこの
セルユニット14を複数個、本例の場合5個夫々シールプ
レート10を介して重合し、図6に示すようにスタック組
立用位置決め穴3に、端面を面取りした直径 6.7mm、長
さ 400.0mmのPTFE製のノックピン15を挿入してスタ
ック16を構成し、然る後図7に示すように加圧プレート
17を用いて締め付けボルト18により締め付け固定した。 【0012】上記のように実施例の燃料電池の組立方法
では、固体高分子電解質膜11の両面にシールプレート10
を介してカーボンプレート1を積層したセル12を10個重
合の上、一対の対角隅部のセル組立用位置決め穴2に、
端面を面取りした短いPTFE製のノックピン13を挿入
するので、滑りが良くて嵌合し易く、しかもしなやかで
弾力性があるので、若干の位置ずれも吸収でき、セル12
及びセルユニット14が高精度に組立てられた。 【0013】また、こうして組立てたセルユニット14を
5個重合の上、他の一対の対角隅部のスタック組立用位
置決め穴3に、端面を面取りした長いPTFE製のノッ
クピン15を挿入するので、滑りが良くて嵌合しやすく、
しかもしなやかで弾力性があるので、セルユニット14の
若干の位置ずれも吸収でき、スタック16が高精度に組立
てられる。 【0014】さらにノックピン13、15は、絶縁性がある
ので、各セル12がショートすることがなく、また耐熱性
があるので、ノックピン13、15は発電による熱により溶
けることがなく、さらに材料強度に優れているので、セ
ル12及びスタック16を確実に保持でき、加圧プレート17
を用いて締め付けボルト18により締め込むと、適度な柔
構造体であるスタック16は固定され且つ各セル12が完全
にシールされる。 【0015】 【発明の効果】以上の通り本発明の燃料電池の組立方法
によれば、ノックピンの挿入が容易で、積層重合したセ
ルやセルユニットに位置ずれが生じていても高精度に組
立てることができ且つ完全にシールすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for assembling a solid polymer electrolyte fuel cell. 2. Description of the Related Art Conventionally, in order to assemble a solid polymer electrolyte fuel cell, a cell is formed by sealing a carbon plate such as a gas plate and a cooling plate, a solid polymer electrolyte membrane through a seal plate, and the like. Then, several to several tens of these cells were stacked, and a knock pin was inserted into a knocking hole for positioning to assemble the stack, and then fixed by using a pressure plate. By the way, as the number of stacked cells is larger, it is more difficult to insert the knock pin, and the stacked members may be displaced, resulting in incomplete sealing. [0003] Therefore, the present invention provides a method for easily inserting a knock pin, enabling high-precision assembly even when a misalignment occurs in a stacked cell or a cell unit, and completely. It is an object of the present invention to provide a method of manufacturing a fuel cell that can be sealed. [0004] A method for assembling a fuel cell according to the present invention for solving the above-mentioned problems comprises laminating a square carbon plate, a seal plate, a catalyst electrode, and a solid polymer electrolyte membrane. In a method for assembling a solid polymer electrolyte fuel cell comprising a plurality of stacked cells in which a carbon plate and a solid polymer electrolyte membrane are sealed via a seal plate, a carbon plate, a seal plate, and a solid polymer electrolyte membrane are provided. A cell assembly positioning hole is drilled at one pair of diagonal corners, and a stack assembly positioning hole is drilled at the other pair of diagonal corners, and then seal plates are placed on both surfaces of the solid polymer electrolyte membrane. A cell is formed by laminating a catalyst electrode and a carbon plate via a seal plate, and the cells are superimposed on each of a plurality of layers via a seal plate. A short PTFE knock pin is inserted to form a cell unit, and then a plurality of the cell units are stacked via a seal plate, and a long PTFE knock pin having an end face chamfered in a stacking assembly positioning hole. A method for assembling a fuel cell, comprising forming a stack by inserting and then tightening and fixing the stack using a pressure plate. As described above, in the fuel cell assembling method of the present invention, a plurality of cells in which a seal plate, a catalyst electrode, and a carbon plate are laminated on both surfaces of a solid polymer electrolyte membrane are polymerized and a pair of cells is formed. A short PTFE knock pin with a chamfered end face is inserted into the cell assembly positioning hole at the corner, so it is slippery, easy to fit, and flexible and elastic, so it can absorb some misalignment, The cell and the cell unit are assembled with high precision. In addition, since a plurality of the cell units assembled in this way are overlapped, a long PTFE knock pin having a chamfered end face is inserted into the stacking positioning hole at the other pair of diagonal corners, so that slippage is improved. Since it is easy to fit, and is flexible and elastic, a stack that can absorb a slight displacement of the cell unit can be assembled with high precision. Further, since the knock pin has an insulating property,
Since each cell does not short-circuit and has heat resistance, the knock pin does not melt due to heat generated by power generation, and since it has excellent material strength, it can securely hold the cell and stack, and the pressure plate When used and tightened, the stack, which is a moderately flexible structure, is fixed and each cell is completely sealed. An embodiment of a method for assembling a fuel cell according to the present invention will be described with reference to the accompanying drawings. As shown in FIG.
In a pair of diagonal corners of a 120 mm rectangular carbon plate (gas plate and cooling plate) 1, in this example, upper and lower left corners, a cell assembling positioning hole 2 having an inner diameter of 6 mm is formed. Stacking positioning holes 3 having an inner diameter of 7 mm were formed in the other pair of diagonal corners, that is, in the upper left corner and the lower right corner. 4 is a gas inlet manifold, 5 is a gas passage groove, 6 is a gas outlet manifold, 7 is a gas passage groove on the back surface, 8 is its gas inlet manifold, 9 is a gas outlet manifold, and carbon plate 1 is a cooling plate. In this case, a cooling water passage groove, a cooling water inlet manifold, and a cooling water outlet manifold are provided on the surface. FIG. 2 shows a seal plate 10 having a thickness of 0.4 mm which is disposed between the carbon plates 1 and seals the periphery of each manifold. Similarly to the carbon plate 1, cells having an inner diameter of 6 mm are provided at a pair of diagonal corners. The positioning hole 2 for assembling was formed, and the positioning hole 3 for stack assembly having an inner diameter of 7 mm was formed in another pair of diagonal corners. FIG. 3 shows a rectangular solid polymer electrolyte membrane 11 for electrolysis having a thickness of 0.14 mm and a side of 120 mm sandwiched between the gas plates 1 with a seal plate 10 interposed therebetween. A cell assembly positioning hole 2 having an inner diameter of 6 mm is formed in a pair of diagonal corners, and a stack assembly positioning hole 3 having an inner diameter of 7 mm is formed in another pair of diagonal corners. Drilled. Next, a catalyst electrode 19 and a carbon plate (gas plate or cooling water plate) 1 are laminated on both surfaces of a solid polymer electrolyte membrane 11 via a seal plate 10 to form a cell 12 as shown in FIG. Then, the cells 12 are superposed by a plurality of layers, in this case, 10 layers, respectively, through the seal plate 10, and the end faces are chamfered into the cell assembly positioning holes 2 as shown in FIG. A cell unit 14 is formed by inserting a PTFE knock pin 13 of mm, and a plurality of, in this case, five, cell units 14 are superimposed via the seal plate 10, respectively, as shown in FIG. The stack 16 is formed by inserting a PTFE knock pin 15 having a diameter of 6.7 mm and a length of 400.0 mm with a chamfered end face into the positioning hole 3 for stack assembly, and then a pressing plate as shown in FIG.
17 and fastened by fastening bolts 18. As described above, in the fuel cell assembling method of the embodiment, the seal plates 10 are provided on both surfaces of the solid polymer electrolyte membrane 11.
After stacking 10 cells 12 each having the carbon plate 1 laminated thereon, the cell assembling positioning holes 2 at a pair of diagonal corners,
Since the short PTFE knock pin 13 with a chamfered end face is inserted, it is slippery and easy to fit, and since it is flexible and elastic, it can absorb a slight displacement, and the cell 12
And the cell unit 14 was assembled with high precision. In addition, since five cell units 14 assembled in this manner are overlapped, a long PTFE knock pin 15 whose end face is chamfered is inserted into the stack assembly positioning hole 3 at the other pair of diagonal corners. Slippery and easy to fit,
Moreover, since it is flexible and elastic, a slight displacement of the cell unit 14 can be absorbed, and the stack 16 can be assembled with high precision. Further, since the knock pins 13 and 15 are insulative, each cell 12 is not short-circuited and has heat resistance, so that the knock pins 13 and 15 are not melted by heat generated by power generation, and furthermore, the material strength is increased. Cell 12 and the stack 16 can be securely held, and the pressure plate 17
When tightened with the tightening bolts 18 using, the stack 16 which is a moderately flexible structure is fixed and each cell 12 is completely sealed. As described above, according to the method for assembling a fuel cell of the present invention, it is easy to insert a knock pin, and it is possible to assemble with high accuracy even if a positional shift occurs in a stacked cell or cell unit. And can be completely sealed.

【図面の簡単な説明】 【図1】本発明の燃料電池の組立方法に用いるカーボン
プレートを示す図である。 【図2】本発明の燃料電池の組立方法に用いるシールプ
レートを示す図である。 【図3】本発明の燃料電池の組立方法に用いる固体高分
子電解質膜を示す図である。 【図4】カーボンプレート、シールプレート、触媒電
極、固体高分子電解質膜を用いて構成したセルを示す図
である。 【図5】図4のセルを10層重合して構成したセルユニッ
トを示す図である。 【図6】図5のセルユニットを5個重合して構成したス
タックを示す図である。 【図7】図6のスタックを加圧プレートを用いて締め付
け固定した状態を示す図である。 【符号の説明】 1 カーボンプレート 2 セル組立用位置決め穴 3 スタック組立用位置決め穴 10 シールプレート 11 固体高分子電解質膜 12 セル 13 短いPTFE製ノックピン 14 セルユニット 15 長いPTFE製ノックピン 16 スタック 17 加圧プレート 18 締め付けボルト 19 触媒電極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a carbon plate used in a method for assembling a fuel cell according to the present invention. FIG. 2 is a view showing a seal plate used in the method for assembling a fuel cell according to the present invention. FIG. 3 is a view showing a solid polymer electrolyte membrane used in the fuel cell assembling method of the present invention. FIG. 4 is a diagram showing a cell configured using a carbon plate, a seal plate, a catalyst electrode, and a solid polymer electrolyte membrane. FIG. 5 is a view showing a cell unit formed by stacking 10 layers of the cell of FIG. 4; FIG. 6 is a diagram showing a stack formed by stacking five cell units of FIG. 5; FIG. 7 is a diagram showing a state in which the stack of FIG. 6 is fastened and fixed using a pressure plate. [Description of Signs] 1 Carbon plate 2 Positioning hole for cell assembly 3 Positioning hole for stack assembly 10 Seal plate 11 Solid polymer electrolyte membrane 12 Cell 13 Short PTFE knock pin 14 Cell unit 15 Long PTFE knock pin 16 Stack 17 Pressure plate 18 Tightening bolt 19 Catalyst electrode

Claims (1)

(57)【特許請求の範囲】 【請求項1】 方形のカーボンプレート、シールプレー
ト、触媒電極、固体高分子電解質膜を積層してなり、シ
ールプレートを介してカーボンプレートと固体高分子電
解質膜とがシールされているセルを複数構積層してなる
固体高分子電解質型燃料電池の組立方法において、 カーボンプレート、シールプレート、固体高分子電解質
膜の一対の対角隅部にセル組立用位置決め穴を穿設する
と共に他の一対の対角隅部にスタック組立用位置決め穴
を穿設し、 次に固体高分子電解質膜の両面にシールプレートを介し
て触媒電極とカーボンプレートを積層してセルを構成
し、 このセルを複数層夫々シールプレートを介して重合し、
セル組立用位置決め穴に端面を面取りした短いPTFE
製のノックピンを挿入してセルユニットを構成し、 次にこのセルユニットを複数個夫々シールプレートを介
して重合し、 スタック組立用位置決め穴に端面を面取りした長いPT
FE製のノックピンを挿入してスタックを構成し、 然る後加圧プレートを用いて締め付け固定することを特
徴とする燃料電池の組立方法。
(57) [Claims 1] A rectangular carbon plate, a seal plate, a catalyst electrode, and a solid polymer electrolyte membrane are laminated, and the carbon plate and the solid polymer electrolyte membrane are connected via the seal plate. In a method of assembling a solid polymer electrolyte fuel cell comprising a plurality of stacked cells in which a plurality of cells are sealed, a positioning hole for cell assembly is provided at a pair of diagonal corners of a carbon plate, a seal plate, and a solid polymer electrolyte membrane. At the same time, stacking positioning holes are drilled at the other pair of diagonal corners, and then a catalyst electrode and a carbon plate are laminated on both surfaces of the solid polymer electrolyte membrane via seal plates to form a cell. Then, the cells are polymerized through a plurality of layers through seal plates, respectively.
Short PTFE with chamfered end face in positioning hole for cell assembly
A cell unit is constructed by inserting a dowel pin made of the same, then a plurality of the cell units are superimposed via a seal plate, and a long PT having a chamfered end face in a positioning hole for stack assembly.
A method for assembling a fuel cell, comprising: forming a stack by inserting FE knock pins; and then tightening and fixing the stack by using a pressure plate.
JP18082295A 1995-06-23 1995-06-23 Method for assembling solid polymer electrolyte fuel cell Expired - Lifetime JP3427915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18082295A JP3427915B2 (en) 1995-06-23 1995-06-23 Method for assembling solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18082295A JP3427915B2 (en) 1995-06-23 1995-06-23 Method for assembling solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH097627A JPH097627A (en) 1997-01-10
JP3427915B2 true JP3427915B2 (en) 2003-07-22

Family

ID=16089968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18082295A Expired - Lifetime JP3427915B2 (en) 1995-06-23 1995-06-23 Method for assembling solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3427915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007000569T5 (en) 2006-03-10 2009-01-22 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell, fuel cell stack and method of manufacturing the fuel cell stack
US8148032B2 (en) 2004-03-29 2012-04-03 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US9502732B2 (en) 2012-12-07 2016-11-22 Honda Motor Co., Ltd. Fuel cell comprising a knock pin

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889880B2 (en) * 2001-06-12 2012-03-07 本田技研工業株式会社 Fuel cell
JP4422458B2 (en) 2002-11-07 2010-02-24 本田技研工業株式会社 Fuel cell
JP4539069B2 (en) * 2003-10-09 2010-09-08 トヨタ自動車株式会社 Fuel cell
JP2005142048A (en) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd Manufacturing device and manufacturing method of fuel cell
JP2005142051A (en) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd Manufacturing method and manufacturing device of fuel cell laminate
WO2005045980A1 (en) * 2003-11-07 2005-05-19 Nissan Motor Co., Ltd. Device and method for manufacturing fuel cell
JP4604530B2 (en) * 2004-03-23 2011-01-05 日産自動車株式会社 Fuel cell manufacturing method and fuel cell manufacturing apparatus
DE112004002350B4 (en) 2003-12-02 2009-09-10 Nissan Motor Co., Ltd., Yokohama-shi Method and device for producing a fuel cell
JP4729849B2 (en) * 2003-12-02 2011-07-20 日産自動車株式会社 Method and apparatus for manufacturing fuel cell stack
JP4776886B2 (en) * 2004-03-22 2011-09-21 本田技研工業株式会社 Fuel cell stack structure
WO2006090464A1 (en) * 2005-02-24 2006-08-31 Octec, Inc. Solid polymer fuel cell and method for producing same
JP4951974B2 (en) * 2006-01-10 2012-06-13 トヨタ自動車株式会社 Fuel cell
JP2007193971A (en) * 2006-01-17 2007-08-02 Toyota Motor Corp Fuel cell
JP5196219B2 (en) * 2007-02-23 2013-05-15 トヨタ自動車株式会社 Method for confirming cell stack misalignment of fuel cell and gauge for confirming cell stack misalignment of fuel cell
JP5189302B2 (en) * 2007-03-14 2013-04-24 本田技研工業株式会社 Fuel cell system
JP5136828B2 (en) * 2007-06-01 2013-02-06 トヨタ自動車株式会社 Fuel cell
JP5256779B2 (en) * 2008-02-28 2013-08-07 日産自動車株式会社 Fuel cell manufacturing method and manufacturing apparatus
JP5233387B2 (en) * 2008-04-24 2013-07-10 トヨタ自動車株式会社 Inspection method of fuel cell
JP6153891B2 (en) * 2014-05-29 2017-06-28 本田技研工業株式会社 Fuel cell stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148032B2 (en) 2004-03-29 2012-04-03 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
DE112007000569T5 (en) 2006-03-10 2009-01-22 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell, fuel cell stack and method of manufacturing the fuel cell stack
DE112007000569B4 (en) * 2006-03-10 2014-08-07 Toyota Jidosha Kabushiki Kaisha Fuel cell, fuel cell stack and method of manufacturing the fuel cell stack
US9203103B2 (en) 2006-03-10 2015-12-01 Toyota Jidosha Kabushiki Kaisha Fuel cell, fuel cell stack, and method of producing the fuel cell stack
US9502732B2 (en) 2012-12-07 2016-11-22 Honda Motor Co., Ltd. Fuel cell comprising a knock pin

Also Published As

Publication number Publication date
JPH097627A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
JP3427915B2 (en) Method for assembling solid polymer electrolyte fuel cell
US7892695B2 (en) Fuel cell stack
AU2005309264B2 (en) Solid oxide fuel cell with external manifolds
US20080070081A1 (en) Integrated and modular bsp/mea/manifold plates for fuel cells
JPH09134734A (en) Assembling method for fuel cell
JP4481423B2 (en) Polymer electrolyte fuel cell stack
US20100159345A1 (en) Cell stack of fuel cell and method of fastening cell stack of fuel cell
JP2001035514A (en) Sheet metal for current-carrying and solid electrolyte fuel cell using the same
WO2013164932A1 (en) Battery apparatus
CN108075163B (en) Fuel cell stack and assembling method thereof
JP2003086232A (en) Fuel cell stack
JP5481970B2 (en) Battery module and manufacturing method thereof
JP5211539B2 (en) Fuel cell stack
JP2014229577A (en) Separator for fuel cell
JP2004214123A (en) Layer-built fuel cell and its maintenance method
CN108039507B (en) Modular structure of fuel cell
JP2581950Y2 (en) Fuel cell manifold plate
JP2569361Y2 (en) Fuel cell separator
JP2009037834A (en) Fuel cell
JPS6313309B2 (en)
JPH0955221A (en) Fuel cell plate, fuel cell unit, and stacked fuel cell
JP2010153299A (en) External manifold type fuel cell
JP2007048553A (en) Fuel cell stack
JPS6255874A (en) Sealing structure for fuel cell
JP2569541B2 (en) Separator for fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150516

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term