JP3418796B2 - Electrorheological fluid - Google Patents

Electrorheological fluid

Info

Publication number
JP3418796B2
JP3418796B2 JP11713393A JP11713393A JP3418796B2 JP 3418796 B2 JP3418796 B2 JP 3418796B2 JP 11713393 A JP11713393 A JP 11713393A JP 11713393 A JP11713393 A JP 11713393A JP 3418796 B2 JP3418796 B2 JP 3418796B2
Authority
JP
Japan
Prior art keywords
silica gel
adsorbed
particles
electric field
electrorheological fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11713393A
Other languages
Japanese (ja)
Other versions
JPH06330074A (en
Inventor
直幸 谷
典彦 国武
英史 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP11713393A priority Critical patent/JP3418796B2/en
Publication of JPH06330074A publication Critical patent/JPH06330074A/en
Application granted granted Critical
Publication of JP3418796B2 publication Critical patent/JP3418796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電気粘性流体に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrorheological fluid.

【0002】[0002]

【従来の技術】電気粘性流体は、水等の高誘電率の液体
を吸着させた固体粒子からなる分散相を電気絶縁性の分
散媒に分散せしめて成り、電場の作用により可逆的にそ
の流体の粘度を変化させうるものである。前記固体粒子
としてはシリカゲル(特公昭45−10098)、ゼオ
ライト(特開昭62−95397)、澱粉、イオン交換
樹脂(特開昭48−17806)等が提案されており、
クラッチ、バルブ、アクチュエータなどへの今後の応用
展開が期待されている。
2. Description of the Related Art An electrorheological fluid is formed by dispersing a dispersed phase composed of solid particles in which a liquid having a high dielectric constant such as water is adsorbed, in an electrically insulating dispersion medium, and reversible by the action of an electric field. It is possible to change the viscosity of. As the solid particles, silica gel (Japanese Patent Publication No. 45-10098), zeolite (Japanese Unexamined Patent Publication No. 62-95397), starch, ion-exchange resin (Japanese Unexamined Patent Publication No. 48-17806), etc. have been proposed.
It is expected to be applied to clutches, valves and actuators in the future.

【0003】この電気粘性流体は原理的に固体粒子に吸
着されている高誘電率の液体が電場の作用により電気二
重層を形成し、この電気二重層が外部電場の影響による
自由イオンの移動を容易にし分極を起こしやすくしてい
るものと考えられる。ところで、この電気粘性流体には
電場の非印加時の流体粘度に対する電場の印加時の流体
粘度の増粘倍率を大きくしたいという要望がある。
In this electrorheological fluid, in principle, a liquid having a high dielectric constant adsorbed on solid particles forms an electric double layer by the action of an electric field, and this electric double layer causes the movement of free ions due to the influence of an external electric field. It is thought that it facilitates and easily causes polarization. By the way, there is a demand for this electrorheological fluid to have a large viscosity multiplication factor when the electric field is applied to the fluid viscosity when the electric field is not applied.

【0004】[0004]

【発明が解決しようとする課題】そこでこの発明は、そ
の固体粒子が同程度の含水率を有する従来のものよりも
電場の非印加時の流体粘度に対する電場の印加時の流体
粘度の増粘倍率を大きくできる電気粘性流体を提起する
ことを課題とする。
SUMMARY OF THE INVENTION Therefore, according to the present invention, the thickening ratio of the fluid viscosity when the electric field is applied to the fluid viscosity when the electric field is not applied is higher than that of the conventional one in which the solid particles have similar water contents. The object is to propose an electrorheological fluid capable of increasing the value.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
この発明では次のような技術的手段を講じている。すな
わち、高分子保護剤を含む金属コロイドを吸着させた固
体粒子から成る分散相と、電気絶縁性の分散媒とを具備
し、前記高分子保護剤は、親水性且つ有機溶媒に可溶な
両溶媒性であると共に、金属コロイドを吸着させた固体
粒子には、高誘電率の液体が吸着されることを特徴とす
る。
In order to solve the above problems, the present invention takes the following technical means. That is, it comprises a dispersed phase composed of solid particles having adsorbed a metal colloid containing a polymer protective agent, and an electrically insulating dispersion medium, and the polymer protective agent is both hydrophilic and soluble in an organic solvent. It is characterized by being a solvent and having a high dielectric constant liquid adsorbed on the solid particles on which the metal colloid is adsorbed.

【0006】前記固体粒子として例えばシリカゲル、ゼ
オライト(シリカアルミナ)、活性炭等を用いることが
できる。電気絶縁性の分散媒としてはフッ素オイル、シ
リコーン・オイル、ホスファーゼン・オイル等を用いる
ことができる。分散相の固体粒子と電気絶縁性の分散媒
の比重は同程度とした方が分散が均一になるので好まし
い。
As the solid particles, for example, silica gel, zeolite (silica alumina), activated carbon or the like can be used. Fluorine oil, silicone oil, phosphazene oil and the like can be used as the electrically insulating dispersion medium. It is preferable that the specific gravity of the solid particles in the dispersed phase and the specific gravity of the electrically insulating dispersion medium be approximately the same, because the dispersion will be uniform.

【0007】前記金属コロイドの金属粒子は貴金属を主
体とすることができる。例えば銀、ロジウム、パラジウ
ム、白金、イリジウム、ルテニウム、オスミウム等を主
体とすることができる。貴金属以外にも銅などを主体と
することができる。前記高分子保護剤は例えばポリ(N
−ビニル−2−ピロリドン)を主体とするものとするこ
とができる。その他に、ポリアクリル酸、ポリメタクリ
ルアミド、ポリビニルアルコール、ポリ無水マレイン酸
等を使用できる。
The metal particles of the metal colloid may be mainly composed of a noble metal. For example, silver, rhodium, palladium, platinum, iridium, ruthenium, osmium, etc. can be the main constituents. In addition to precious metals, copper can be used as the main component. The polymer protective agent is, for example, poly (N
-Vinyl-2-pyrrolidone). In addition, polyacrylic acid, polymethacrylamide, polyvinyl alcohol, polymaleic anhydride, etc. can be used.

【0008】高誘電率の液体としては水の他にグリセリ
ンやエチルアルコール等が例示される。
Examples of the liquid having a high dielectric constant include glycerin and ethyl alcohol in addition to water.

【0009】[0009]

【発明の効果】この発明の電気粘性流体は上述のような
構成を有するものであり、その固体粒子が同程度の含水
率を有する従来のものよりも電場の非印加時の流体粘度
に対する電場の印加時の流体粘度の増粘倍率を大きくで
きる電気粘性流体を提供できるという効果を奏する。
The electrorheological fluid of the present invention has the above-mentioned constitution, and the solid particles have an electric field with respect to the fluid viscosity when the electric field is not applied, as compared with the conventional one having the same water content. It is possible to provide an electrorheological fluid that can increase the viscosity increase ratio of the fluid viscosity when applied.

【0010】[0010]

【実施例】以下、この発明の構成を具体的な実施例によ
り詳細に説明する。 (実施例1)硝酸銀(関東化学試薬社製、特級)0.0
28gをメタノール125mlに、また、親水性且つ有
機溶媒に可溶な両溶媒性の高分子保護剤たるポリ(N−
ビニル−2−ピロリドン)(東京化成社製、商品名K−
15、分子量10,000)(以下、PVPと略記す
る)0.1465gをメタノール100mlにそれぞれ
溶解させた後、前記硝酸銀メタノール溶液と前記PVP
メタノール溶液とを混合し攪拌した(以下、溶液Aとい
う)。
EXAMPLES The constitution of the present invention will be described in detail below with reference to specific examples. (Example 1) Silver nitrate (Kanto Kagaku Reagent Co., special grade) 0.0
28 g of methanol in 125 ml, and poly (N-) which is a hydrophilic and organic solvent-soluble amphoteric polymer protecting agent
Vinyl-2-pyrrolidone) (Tokyo Kasei Co., Ltd., trade name K-
15, a molecular weight of 10,000) (hereinafter abbreviated as PVP) 0.1465 g was dissolved in 100 ml of methanol, and then the silver nitrate methanol solution and the PVP were dissolved.
A methanol solution was mixed and stirred (hereinafter referred to as solution A).

【0011】前記溶液A,225mlを80℃で30分
間加熱還流を行った後、水酸化ナトリウムメタノール溶
液(水酸化ナトリウム0.0066gをメタノール25
mlに溶解)を加え、さらに10分間加熱還流を行な
い、冷却して銀超微粒子(金属コロイド)分散液(以
下、溶液Bという)を調整した。そして、分散すべき固
体粒子たるシリカゲル粒子(Merk社製、商品名Ki
essel Gel60)10gを120℃で乾燥後、
室温で溶液B,250mlに浸漬し攪拌して銀超微粒子
(金属コロイド)をシリカゲル粒子に吸着させた。銀超
微粒子(金属コロイド)を吸着させたシリカゲル粒子を
濾別し、80℃にて一昼夜乾燥させた。
After 225 ml of the above solution A was heated and refluxed at 80 ° C. for 30 minutes, a sodium hydroxide methanol solution (sodium hydroxide 0.0066 g was added to methanol 25
(dissolved in ml), heated and refluxed for 10 minutes, and cooled to prepare a silver ultrafine particle (metal colloid) dispersion (hereinafter referred to as solution B). Then, silica gel particles as solid particles to be dispersed (manufactured by Merk, trade name Ki
After drying 10 g of Essel Gel60) at 120 ° C.,
The solution was immersed in 250 ml of solution B at room temperature and stirred to adsorb the silver ultrafine particles (metal colloid) on the silica gel particles. The silica gel particles to which the ultrafine silver particles (metal colloid) were adsorbed were separated by filtration and dried at 80 ° C. for 24 hours.

【0012】銀超微粒子(金属コロイド)を吸着させた
シリカゲル粒子に対して4.44wt%の水分を吸着さ
せた後、電気絶縁性の分散媒たるフッ素オイル(ダイキ
ン工業社製、商品名ダイフロル#1)に重量比10wt
%で分散させ、電気粘性流体を得た。表1に、シリカゲ
ルに対するAg吸着量(wt%)とPVP吸着量(wt
%)、及び銀超微粒子(金属コロイド)を吸着させたシ
リカゲル粒子に対する含水量(wt%)を示す。ここ
で、Ag吸着量は、Ag/AgNO3 =108/17
0、上記0.028g×(108/170)≒0.01
8g、0.018g/シリカゲル10g=0.18%と
して算出した。また、PVP吸着量は、上記0.146
5g/シリカゲル10g=1.47%として算出した。 (実施例2〜20)実施例1と同様にし、シリカゲル粒
子に対するAg吸着量(wt%)とPVP吸着量(wt
%)、及び銀超微粒子(金属コロイド)を吸着させたシ
リカゲル粒子に対する含水量(wt%)を表1及び表2
に示す電気粘性流体を得た。
After adsorbing 4.44 wt% of water to silica gel particles to which ultrafine silver particles (metal colloid) have been adsorbed, fluorine oil (trade name: Daiflor #, manufactured by Daikin Industries, Ltd., which is an electrically insulating dispersion medium, is used. 1) weight ratio of 10wt
% To obtain an electrorheological fluid. Table 1 shows the Ag adsorption amount (wt%) and PVP adsorption amount (wt) with respect to silica gel.
%), And the water content (wt%) with respect to the silica gel particles to which ultrafine silver particles (metal colloid) are adsorbed. Here, the amount of adsorbed Ag is Ag / AgNO 3 = 108/17
0, 0.028 g × (108/170) ≈0.01
It was calculated as 8 g, 0.018 g / 10 g of silica gel = 0.18%. Further, the PVP adsorption amount is 0.146 above.
It was calculated as 5 g / 10 g of silica gel = 1.47%. (Examples 2 to 20) In the same manner as in Example 1, the amount of adsorbed Ag (wt%) and the amount of adsorbed PVP (wt) on the silica gel particles.
%), And the water content (wt%) with respect to the silica gel particles to which the ultrafine silver particles (metal colloid) are adsorbed are shown in Tables 1 and 2.
The electrorheological fluid shown in was obtained.

【0013】上記実施例1〜20について銀超微粒子を
吸着させたシリカゲル粒子に関し、硝酸銀の仕込み量に
対する銀のシリカゲル粒子への吸着固定化率を次のよう
にして推定した。溶液Bの標準濃度液の紫外可視吸収ス
ペクトルを取り、320nm付近と700nmの接線か
らの400nm付近のピークの吸光度の高さから検量線
を作成した。また、溶液Bをシリカゲル粒子に吸着後、
上澄み液の溶液Bの濃度を同様に紫外可視吸収スペクト
ルの400nm付近のピークの吸光度の高さから求め、
シリカゲル粒子への銀の吸着固定化前後の溶液Bの濃度
の変化量を算出した。これによると、各実施例に於いて
硝酸銀の仕込み量のうちの銀の98%以上がシリカゲル
粒子に吸着固定化されているものと推定された。 (比較例1及び2)銀超微粒子(金属コロイド)を吸着
させないシリカゲル粒子を用いて、表3にシリカゲル粒
子に対する含水量(wt%)を示す電気粘性流体を得
た。
With respect to the silica gel particles to which ultrafine silver particles were adsorbed in Examples 1 to 20, the adsorption immobilization ratio of silver to the silica gel particles with respect to the charged amount of silver nitrate was estimated as follows. The UV-visible absorption spectrum of the standard concentration solution of the solution B was taken, and a calibration curve was prepared from the high absorbance values of the peaks near 320 nm and around 400 nm from the tangent line at 700 nm. In addition, after adsorbing the solution B on the silica gel particles,
Similarly, the concentration of the solution B in the supernatant was determined from the high absorbance of the peak near 400 nm in the UV-visible absorption spectrum,
The amount of change in the concentration of the solution B before and after the adsorption and fixation of silver on the silica gel particles was calculated. According to this, it was estimated that 98% or more of silver in the charged amount of silver nitrate in each example was adsorbed and immobilized on the silica gel particles. (Comparative Examples 1 and 2) By using silica gel particles not adsorbing ultrafine silver particles (metal colloid), an electrorheological fluid having a water content (wt%) with respect to the silica gel particles in Table 3 was obtained.

【0014】上記のようにして得た各電気粘性流体をそ
れぞれ用い、電場の非印加時の流体粘度、電場の印加時
の流体粘度、及び電流密度(μA/cm2 )を測定した。
流体粘度の測定には、同心円二重円筒型粘度計(東京計
器社製)を用いた。電界は直流電界(0.5〜3.0k
V/mm)とした。電流密度は、絶縁抵抗計により測定し
た。電気粘性流体への電場の非印加時の流体粘度に対す
る2kV/mmの電場の印加時の流体粘度の増粘倍率
(倍)、及び電流密度(μA/cm2 )を、表1乃至表3
及び図1乃至図5のグラフに示す。なお、グラフ中のナ
ンバーは実施例のNo.を示す。
Using each of the electrorheological fluids obtained as described above, the fluid viscosity when no electric field was applied, the fluid viscosity when an electric field was applied, and the current density (μA / cm 2 ) were measured.
A concentric double cylinder type viscometer (manufactured by Tokyo Keiki Co., Ltd.) was used for measuring the fluid viscosity. The electric field is a DC electric field (0.5 to 3.0 k
V / mm). The current density was measured by an insulation resistance meter. Tables 1 to 3 show the viscosity multiplication factor (times) and the current density (μA / cm 2 ) of the fluid viscosity when an electric field of 2 kV / mm is applied to the fluid viscosity when the electric field is not applied to the electrorheological fluid.
And the graphs of FIGS. 1 to 5. The numbers in the graph are the numbers of the examples. Indicates.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表1に示すように実施例1〜9は含水量を
ほぼ4.5wt%とし、グラフ中に於いて実線で連結す
る。表4に示すように実施例10、11、4は、Ag/
PVPの組成比をほぼ1.2程度とするとともにAg及
びPVPの吸着量を順に増加させており、グラフ中に於
いて同様に実線で連結する。表4に示すように実施例1
2、13、14は、Ag/PVPの組成比をほぼ2.5
程度とするとともにAg及びPVPの吸着量を順に増加
させており、グラフ中に於いて破線で連結する。表4に
示すように実施例15、16、17は、Ag/PVPの
組成比をほぼ3.5程度とするとともにAg及びPVP
の吸着量を順に増加させており、グラフ中に於いて一点
鎖線で連結する。
As shown in Table 1, Examples 1 to 9 have a water content of about 4.5 wt% and are connected by a solid line in the graph. As shown in Table 4, in Examples 10, 11, and 4, Ag /
The composition ratio of PVP is set to about 1.2, and the adsorption amounts of Ag and PVP are sequentially increased. Similarly, in the graph, the solid lines are connected. As shown in Table 4, Example 1
2, 13, and 14 have a composition ratio of Ag / PVP of about 2.5.
The amount of adsorption of Ag and PVP is increased in order along with the degree, and they are connected by a broken line in the graph. As shown in Table 4, in Examples 15, 16 and 17, the composition ratio Ag / PVP was set to about 3.5 and Ag and PVP were used.
The adsorption amount of is increased in order, and is connected by a one-dot chain line in the graph.

【0019】[0019]

【表4】 [Table 4]

【0020】表1乃至表3により、各実施例の電気粘性
流体は、その固体粒子が同程度の含水率を有する比較例
1のものよりも、電場の非印加時の流体粘度に対する電
場の印加時の流体粘度の増粘倍率が大きいことが分か
る。また、その電流密度が小さな値で済むことが分か
る。さらに、図1乃至図5に示すグラフより下記の傾向
が分かる。
According to Tables 1 to 3, the electrorheological fluids of the respective examples were applied with an electric field with respect to the fluid viscosity when the electric field was not applied, as compared with the electrorheological fluid of Comparative Example 1 in which the solid particles had the same water content. It can be seen that the increase ratio of the fluid viscosity is large. Also, it can be seen that the current density is small. Furthermore, the following trends can be seen from the graphs shown in FIGS.

【0021】図1に示すグラフより、シリカゲル粒子へ
のAg吸着量(wt%)と電場(2kV/mm)の印加時
の増粘倍率(倍)とは、一定の吸着量までは比例関係に
あることが分かる。また図2に示すグラフより、シリカ
ゲル粒子へのAg及びPVPの吸着量(wt%)と電場
(2kV/mm)の印加時の増粘倍率(倍)も、一定の吸
着量までは比例関係にあることが分かる。
From the graph shown in FIG. 1, the Ag adsorption amount (wt%) on the silica gel particles and the viscosity increase ratio (times) when an electric field (2 kV / mm) is applied have a proportional relationship up to a certain adsorption amount. I know there is. Further, from the graph shown in FIG. 2, the adsorption amount (wt%) of Ag and PVP on the silica gel particles and the thickening factor (times) when an electric field (2 kV / mm) is applied are proportional to a certain adsorption amount. I know there is.

【0022】図3に示すグラフより、シリカゲル粒子へ
吸着させるAg/PVPの組成比が一定の場合、Ag及
びPVPの吸着量(wt%)の増加にともない電場(2
kV/mm)の印加時の増粘倍率(倍)が増加することが
分かる。図4及び図5に示すグラフより、シリカゲル粒
子へのAg吸着量(wt%)と電流密度(μA/cm2
とはほぼ比例関係にあるとともに、シリカゲル粒子へ吸
着させるAg/PVPの重量比と電流密度(μA/c
m2 )ともほぼ比例関係にあることが分かる。 (実施例21〜23)実施例1と同様にし、シリカゲル
粒子に対するAg、Cu、Feのそれぞれの吸着量(w
t%)を2%、PVP吸着量(wt%)を1.5%と
し、銀、銅、鉄のそれぞれの超微粒子(金属コロイド)
を吸着させたシリカゲル粒子に対する含水量(wt%)
を、銀の場合は4.27%、銅の場合は4.15%、鉄
の場合は4.39%とした電気粘性流体を得た。なお、
実施例22では硝酸銀のかわりにCu(NO3 2 、実
施例23では硝酸銀のかわりにFe(NO3 2 を用い
た。 (比較例3)金属超微粒子(金属コロイド)を吸着させ
ないシリカゲル粒子を用い、シリカゲル粒子に対する含
水量(wt%)を4.33%とした電気粘性流体を得
た。
According to the graph shown in FIG. 3, when the composition ratio of Ag / PVP to be adsorbed on the silica gel particles is constant, the electric field (2) increases as the adsorption amount (wt%) of Ag and PVP increases.
It can be seen that the viscosity multiplication factor (times) increases when kV / mm) is applied. From the graphs shown in FIGS. 4 and 5, the amount of Ag adsorbed on the silica gel particles (wt%) and the current density (μA / cm 2 )
Is almost proportional to the ratio of Ag / PVP to the silica gel particles and the current density (μA / c
It can be seen that there is an almost proportional relationship with m 2 ). (Examples 21 to 23) In the same manner as in Example 1, the adsorption amounts (w) of Ag, Cu, and Fe on the silica gel particles were measured.
t%) is 2%, PVP adsorption amount (wt%) is 1.5%, and ultrafine particles of silver, copper, and iron (metal colloid)
Water content (wt%) based on silica gel particles
Was obtained with 4.27% for silver, 4.15% for copper, and 4.39% for iron to obtain an electrorheological fluid. In addition,
Example 22 In the place of silver nitrate Cu (NO 3) 2, was used Fe (NO 3) 2 in place of silver nitrate in Example 23. (Comparative Example 3) An electrorheological fluid having a water content (wt%) of 4.33% relative to silica gel particles was obtained using silica gel particles that did not adsorb ultrafine metal particles (metal colloid).

【0023】実施例21〜23及び比較例3で得た各電
気粘性流体をそれぞれ用い、上記と同様にして、電場の
非印加時の流体粘度、電場の印加時の流体粘度、及び電
流値(μA)を測定した。電場として直流電界1kV/
mm、1.5kV/mm、2kV/mm、2.5kV/mm、3
kV/mmを印加した。各電場の印加時に於ける、電流値
(μA)と電場の非印加時に対する流体粘度の増粘倍率
(倍)の関係を図6のグラフに示す。グラフ中に於いて
Agを用いたものは□で、Cuを用いたものは○で、F
eを用いたものは△で、金属超微粒子(金属コロイド)
を吸着させなかったものは+で示す。
Using the electrorheological fluids obtained in Examples 21 to 23 and Comparative Example 3, respectively, in the same manner as above, the fluid viscosity when no electric field is applied, the fluid viscosity when an electric field is applied, and the current value ( μA) was measured. DC electric field of 1 kV /
mm, 1.5 kV / mm, 2 kV / mm, 2.5 kV / mm, 3
kV / mm was applied. The graph of FIG. 6 shows the relationship between the current value (μA) at the time of applying each electric field and the viscosity multiplication factor (times) of the fluid viscosity when the electric field was not applied. In the graph, those using Ag are □, those using Cu are ◯, F
Those using e are △, and ultrafine metal particles (metal colloid)
Those not adsorbed with are indicated by +.

【0024】このグラフにより、同じ強さの電場を印加
した場合には金属超微粒子(金属コロイド)を吸着させ
なかったものが最も電流が流れ、次いで鉄、銅、銀の順
に流れる電流値が減少するのが分かる。また、増粘倍率
は電場の値が大きくなると増加していくのが分かる。更
に、貴金属の銀より若干余計に電流が流れるようになる
が、銅や鉄も増粘倍率を大きくできる利点があることが
分かる。
According to this graph, when an electric field of the same strength is applied, the current that flows the most when the ultrafine metal particles (metal colloid) are not adsorbed, and the current value that flows in the order of iron, copper, and silver then decreases. I can see it. Also, it can be seen that the thickening factor increases as the value of the electric field increases. Furthermore, although a current flows slightly more than the precious metal silver, it can be seen that copper and iron also have the advantage of increasing the thickening ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリカゲル粒子へのAg吸着量(wt%)と電
場(2kV/mm)の印加時の増粘倍率(倍)との関係を
示すグラフ。
FIG. 1 is a graph showing the relationship between the amount of Ag adsorbed on silica gel particles (wt%) and the thickening factor (times) when an electric field (2 kV / mm) is applied.

【図2】シリカゲル粒子へのAg及びPVPの吸着量
(wt%)と電場(2kV/mm)の印加時の増粘倍率
(倍)との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the adsorption amounts (wt%) of Ag and PVP on silica gel particles and the viscosity increase ratio (times) when an electric field (2 kV / mm) is applied.

【図3】シリカゲル粒子へ吸着させるAg/PVPの重
量比と電場(2kV/mm)の印加時の増粘倍率(倍)と
の関係を示すグラフ。
FIG. 3 is a graph showing a relationship between a weight ratio of Ag / PVP to be adsorbed on silica gel particles and a thickening ratio (times) when an electric field (2 kV / mm) is applied.

【図4】シリカゲル粒子へのAg吸着量(wt%)と電
流密度(μA/cm2 )との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the amount of Ag adsorbed on silica gel particles (wt%) and the current density (μA / cm 2 ).

【図5】シリカゲル粒子へ吸着させるAg/PVPの重
量比と電流密度(μA/cm2 )との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the weight ratio of Ag / PVP to be adsorbed on silica gel particles and the current density (μA / cm 2 ).

【図6】電気粘性流体への電場(kV/mm)の印加時の
電流値(μA)と増粘倍率(倍)との関係を示すグラ
フ。
FIG. 6 is a graph showing a relationship between a current value (μA) and an increase ratio (times) when an electric field (kV / mm) is applied to an electrorheological fluid.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C10M 145:14 C10M 145:16 145:16 149:06 149:06 149:10 149:10) C10N 10:02 C10N 10:02 10:16 10:16 20:06 A 20:06 30:00 Z 30:00 40:14 40:14 (72)発明者 平井 英史 東京都調布市上石原1丁目14番8 (56)参考文献 特開 平6−220481(JP,A) 特開 昭63−97694(JP,A) 特開 平3−93898(JP,A) 特開 平1−253110(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10M 171/06 C10M 125/04 C10M 145/04 C10M 145/14 - 145/16 C10M 149/06 C10M 149/10 C10M 161/00 C10N 10:02 C10N 10:16 C10N 20:06 C10N 30:00 C10N 40:14 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C10M 145: 14 C10M 145: 16 145: 16 149: 06 149: 06 149: 10 149: 10) C10N 10:02 C10N 10:02 10:16 10:16 20:06 A 20:06 30:00 Z 30:00 40:14 40:14 (72) Inventor Hidefumi Hirai 1-14-8 Kamiishihara, Chofu City, Tokyo (56) References Kaihei 6-220481 (JP, A) JP 63-96994 (JP, A) JP 3-93898 (JP, A) JP 1-253110 (JP, A) (58) Fields investigated (58) Int.Cl. 7 , DB name) C10M 171/06 C10M 125/04 C10M 145/04 C10M 145/14-145/16 C10M 149/06 C10M 149/10 C10M 161/00 C10N 10:02 C10N 10:16 C10N 20:06 C10N 30:00 C10N 40:14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高分子保護剤を含む金属コロイドを吸着
させた固体粒子から成る分散相と、電気絶縁性の分散媒
とを具備し、前記高分子保護剤は、親水性且つ有機溶媒
に可溶な両溶媒性であると共に、金属コロイドを吸着さ
せた固体粒子には、高誘電率の液体が吸着されることを
特徴とする電気粘性流体。
1. A disperse phase comprising solid particles having metal colloids containing a polymer protective agent adsorbed thereon, and an electrically insulating dispersion medium, wherein the polymer protective agent is hydrophilic and compatible with organic solvents. An electrorheological fluid, which is soluble in both solvents and in which a high dielectric constant liquid is adsorbed by solid particles on which a metal colloid is adsorbed.
【請求項2】 前記金属コロイドの金属粒子が貴金属を
主体とすることを特徴とする請求項1記載の電気粘性流
体。
2. The electrorheological fluid according to claim 1, wherein the metal particles of the metal colloid are mainly composed of a noble metal.
【請求項3】 前記高分子保護剤がポリ(N−ビニル−
2−ピロリドン)を主体とするものであることを特徴と
する請求項1又は2記載の電気粘性流体。
3. The polymer protective agent is poly (N-vinyl-
The electrorheological fluid according to claim 1 or 2, which is mainly composed of (2-pyrrolidone).
JP11713393A 1993-05-19 1993-05-19 Electrorheological fluid Expired - Lifetime JP3418796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11713393A JP3418796B2 (en) 1993-05-19 1993-05-19 Electrorheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11713393A JP3418796B2 (en) 1993-05-19 1993-05-19 Electrorheological fluid

Publications (2)

Publication Number Publication Date
JPH06330074A JPH06330074A (en) 1994-11-29
JP3418796B2 true JP3418796B2 (en) 2003-06-23

Family

ID=14704270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11713393A Expired - Lifetime JP3418796B2 (en) 1993-05-19 1993-05-19 Electrorheological fluid

Country Status (1)

Country Link
JP (1) JP3418796B2 (en)

Also Published As

Publication number Publication date
JPH06330074A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
ES2287749T3 (en) ELECTRIC DRIVING PASTA.
Peethala et al. Controlling the galvanic corrosion of copper during chemical mechanical planarization of ruthenium barrier films
US4859364A (en) Conductive paste composition
EP0009245B1 (en) Gold conductor compositions, process for preparing the same, gold conductor metallization and process for preparing the same
CN107470609A (en) A kind of preparation method of oxidation resistant copper nano-wire
KR970071856A (en) Coating liquid for forming a transparent conductive film, a transparent conductive film using the same and a method of forming the same
US2444034A (en) Electrically conducting adhesive
TW301843B (en) Electrically conductive paste and composite and their use as an electrically conductive connector
JP2012136725A (en) Metal particulate dispersion liquid, metal particulate, and method for producing metal particulate dispersion liquid or the like
JPS6355807A (en) Conducting paste
US4865772A (en) Copper thick film conductor composition
WO2003081608A1 (en) Transparent conductive film, coating liquid for forming the transparent conductive film, transparent conductive multilayer structure, and display
JP2014039012A (en) Photonic sintering of polymer thick film conductor compositions
JP3418796B2 (en) Electrorheological fluid
GB2122631A (en) Composites of a conductive pigment affixed to a substrate
US20060289837A1 (en) Silver salts of dicarboxcylic acids for precious metal powder and flakes
CN1136208A (en) Electrically conductive paste
CN105185429B (en) Base metal electric slurry encasement medium slurry and its application
JPS59103204A (en) Thick film gold metallized composition
CN113388303A (en) Anti-shielding conductive coating applied to 5G consumer electronics equipment
JP2519222B2 (en) Conductive paste
JP6247069B2 (en) Lamination of polymer thick film conductor composition
US4547436A (en) Conductive element metallized with a thick film gold composition
JPH07252488A (en) Electroviscous fluid
CA1216177A (en) Thick film gold metallization composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

EXPY Cancellation because of completion of term