JP3416728B2 - Long-distance geothermal property measurement device - Google Patents

Long-distance geothermal property measurement device

Info

Publication number
JP3416728B2
JP3416728B2 JP2000089434A JP2000089434A JP3416728B2 JP 3416728 B2 JP3416728 B2 JP 3416728B2 JP 2000089434 A JP2000089434 A JP 2000089434A JP 2000089434 A JP2000089434 A JP 2000089434A JP 3416728 B2 JP3416728 B2 JP 3416728B2
Authority
JP
Japan
Prior art keywords
ground
thermophysical
heat
temperature
measuring sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000089434A
Other languages
Japanese (ja)
Other versions
JP2001281071A (en
Inventor
元治 神宮司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000089434A priority Critical patent/JP3416728B2/en
Publication of JP2001281071A publication Critical patent/JP2001281071A/en
Application granted granted Critical
Publication of JP3416728B2 publication Critical patent/JP3416728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地下の地盤熱物性
量のセンサー長手方向プロファイルを把握する地盤熱物
性量計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground thermophysical property measuring device for grasping a sensor longitudinal profile of a ground thermophysical property.

【0002】[0002]

【従来の技術】従来、海底や地熱地帯の熱伝導率の計測
を行うのに、ニードルプローブ法が用いられてきた。こ
れは、不攪乱でその地点の熱伝導率を計測できる手法で
あり、海洋調査地質や地熱地帯の地熱調査などで用いら
れてきた。
2. Description of the Related Art Conventionally, a needle probe method has been used to measure the thermal conductivity of the seabed or geothermal area. This is a method that can measure the thermal conductivity at that point without disturbance, and has been used in the geological survey of the ocean and the geothermal field.

【0003】[0003]

【発明が解決しようとする課題】上記ニードルプローブ
法は、半無限円柱の熱伝導計測を根拠としており、長手
方向の熱伝導率の分布は考慮していない。また、熱伝導
率以外の熱物性についての考慮および、熱伝導以外の熱
輸送についての考慮がされていない。
The needle probe method is based on the measurement of the thermal conductivity of a semi-infinite cylinder, and does not consider the distribution of thermal conductivity in the longitudinal direction. Further, no consideration is given to thermophysical properties other than thermal conductivity, and no consideration is given to heat transport other than heat conduction.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するために、地中の地盤・岩盤に長距離にわたり配置
され、温度計測用光ファイバー及び該光ファイバーの外
部金属被覆から成る地盤熱物性量計測センサーを有し、
上記地盤熱物性量計測センサーに通電することにより上
記光ファイバーを発熱させ、地盤・岩盤に熱量を供給
し、上記光ファイバ−によりその温度応答が計測できる
ことを特徴とする地盤熱物性量計測装置を提供する。
In order to solve the above-mentioned problems, the present invention provides a geothermophysical property which is arranged over a long distance on the ground or rock in the ground and comprises an optical fiber for temperature measurement and an outer metal coating of the optical fiber. Has a quantity measuring sensor,
Provide a geothermophysical property measuring device characterized in that the optical fiber is caused to generate heat by supplying electricity to the geothermal property measuring sensor to supply heat to the ground / rock, and the temperature response can be measured by the optical fiber. To do.

【0005】上記熱物性量計測センサーは、該熱物性量
計測センサーの長手方向に沿った地盤・岩盤の熱伝導
率、熱慣性量、対流熱輸送量及び熱拡散係数を含む熱物
性量の違いを計測し、また、上記熱物性量の変化によ
り、地下水の浸透を検知し監視可能な構成である。
The above-mentioned thermophysical quantity measuring sensor has a difference in thermophysical quantity including thermal conductivity, thermal inertia, convective heat transport quantity and thermal diffusion coefficient of the ground / rock along the longitudinal direction of the thermophysical quantity measuring sensor. In addition, it is possible to detect and monitor the infiltration of groundwater by measuring the above-mentioned changes in the thermophysical properties.

【0006】上記熱物性量計測センサーは、面状又は線
状に配置してもよい。
The thermophysical quantity measuring sensor may be arranged in a plane or a line.

【0007】上記熱物性量計測センサーに一定電圧入力
を加えることにより発熱させ、その発熱による上記熱物
性量計測センサーの長手方向に沿った地盤・岩盤の温度
変化を、上記光ファイバーにより測定し、上記熱物性量
計測センサーの長手方向に沿った地盤・岩盤の熱物性量
を測定できる。
Heat is generated by applying a constant voltage input to the thermophysical quantity measuring sensor, and the temperature change of the ground and rock along the longitudinal direction of the thermophysical quantity measuring sensor due to the heat generation is measured by the optical fiber, It is possible to measure the thermophysical properties of the ground and rock along the longitudinal direction of the thermophysical property measurement sensor.

【0008】上記地盤熱物性量計測センサーに正弦波の
変調電圧入力を加えることにより地盤・岩盤に熱量を供
給させ、その熱量供給に伴う熱物性量計測センサーの長
手方向に沿った地盤・岩盤の温度振幅及び供給熱量との
位相差を上記光ファイバーにより測定し、上記熱物性量
計測センサーの長手方向に沿った熱物性量を測定でき
る。
A sine wave modulated voltage input is applied to the ground thermophysical quantity measuring sensor to supply a heat quantity to the ground / rock, and the ground / rock shape along the longitudinal direction of the thermophysical quantity measuring sensor accompanying the heat quantity supply By measuring the phase difference between the temperature amplitude and the supplied heat quantity with the optical fiber, the thermophysical quantity along the longitudinal direction of the thermophysical quantity measuring sensor can be measured.

【0009】さらに、本発明は、上記課題を解決するた
めに、地中の地盤・岩盤に長距離にわたり設置され、熱
水・冷水循環用同軸円筒状パイプライン内部に、温度計
測用光ファイバーを設置して成る地盤熱物性量計測セン
サーを有し、上記パイプライン中に熱水・冷水を注水す
ることにより、上記パイプラインから地盤・岩盤に熱量
を供給し、上記光ファイバ−によりその温度応答が計測
できることを特徴とする地盤熱物性量計測装置を提供す
る。
Further, in order to solve the above-mentioned problems, the present invention installs a temperature measuring optical fiber inside a coaxial cylindrical pipeline for hot / cold water circulation, which is installed over a long distance on the ground or rock. Having a ground thermophysical quantity measuring sensor consisting of, by injecting hot water / cold water into the pipeline, the heat quantity is supplied from the pipeline to the ground / rock, and the temperature response is obtained by the optical fiber. Provided is a ground thermophysical property measuring device characterized by being capable of measuring.

【0010】上記パイプラインによる熱物性量計測セン
サーは、上記熱物性量計測センサーの長手方向に沿った
地盤・岩盤の熱伝導率、熱慣性量、対流熱輸送量及び熱
拡散係数を含む熱物性量の違いを計測し、また、上記熱
物性量の変化により、地下水の浸透を検知し監視可能な
構成である。
The thermophysical quantity measurement sensor using the pipeline has a thermophysical property including thermal conductivity, thermal inertia quantity, convective heat transport quantity and thermal diffusion coefficient of the ground / rock along the longitudinal direction of the thermophysical quantity measurement sensor. The configuration is such that it is possible to measure the difference in the amount of water and detect and monitor the infiltration of groundwater by the change in the amount of thermophysical properties.

【0011】上記パイプラインによる熱物性量計測セン
サーは、面状又は線状に配置されている。
The thermophysical quantity measurement sensor using the pipeline is arranged in a plane or a line.

【0012】上記パイプラインによる熱物性量計測セン
サーに一定温度の熱水又は冷水を加えることにより上記
パイプラインから地盤・岩盤に熱量を供給し、その供給
熱量による熱物性量計測センサーの長手方向に沿った地
盤・岩盤の温度変化を、上記温度計測用ファイバーによ
り測定し、上記熱物性量計測センサーの長手方向に沿っ
た熱物性量が測定可能である。
[0012] By adding hot water or cold water at a constant temperature to the thermophysical quantity measuring sensor by the pipeline, the calorie is supplied from the pipeline to the ground / rock, and the thermophysical quantity measuring sensor is provided in the longitudinal direction by the supplied calorie. It is possible to measure the temperature change along the longitudinal direction of the thermophysical property measurement sensor by measuring the temperature change of the ground / rock along the temperature measurement fiber.

【0013】上記パイプラインによる地盤熱物性量計測
センサーに、一定周期で温度が変化する熱水・冷水を加
えることにより地盤に熱量を供給させ、その熱量供給に
伴う上記熱物性量計測センサーの長手方向に沿った地盤
・岩盤の温度振幅及び供給熱量との位相差を上記温度計
測用ファイバーにより測定し、上記熱物性量計測センサ
ーの長手方向に沿った地盤・岩盤の熱物性量を測定でき
る。
A heat quantity is supplied to the ground by adding hot water or cold water whose temperature changes in a constant cycle to the ground thermophysical quantity measuring sensor by the pipeline, and the length of the thermophysical quantity measuring sensor accompanying the heat quantity supply is increased. By measuring the temperature amplitude of the ground / rock along the direction and the phase difference with the supplied heat quantity with the temperature measuring fiber, the thermophysical quantity of the ground / rock along the longitudinal direction of the thermophysical quantity measuring sensor can be measured.

【0014】[0014]

【発明の実施の形態】本発明に係る地盤熱物性量計測の
実施の形態を実施例に基づいて図面を参照して説明す
る。図1は、本発明に係る地盤熱物性量計測装置及び該
装置により計測を行う方法の全体的な概念を示す図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of ground physical property measurement according to the present invention will be described based on embodiments with reference to the drawings. FIG. 1 is a diagram showing the overall concept of a ground thermophysical property measuring apparatus and a method of performing measurement by the apparatus according to the present invention.

【0015】本発明に係る地盤熱物性量計測装置は、地
中で電気的に発熱する電気加熱式の地盤熱物性量センサ
ー1を有する。この地盤熱物性量センサー1の構成を図
2(a)、及びその要部拡大図である図2(b)に示
す。ここで、本発明の熱物性量は、熱伝導率、熱慣性
量、対流熱輸送量及び熱拡散係数である。
The ground thermophysical property measuring device according to the present invention has an electrically heated ground thermophysical property sensor 1 that electrically generates heat in the ground. The structure of the ground thermophysical quantity sensor 1 is shown in FIG. 2 (a) and FIG. 2 (b) which is an enlarged view of a main part thereof. Here, the thermophysical properties of the present invention are thermal conductivity, thermal inertia, convective heat transport, and thermal diffusion coefficient.

【0016】また、本発明に係る地盤熱物性量計測装置
の別形態として、地中に熱水・冷水を注入する同軸円筒
型の地盤熱物性量センサー2を有する。このセンサーの
構成を図3(a)及びその要部拡大図である図3(b)
に示す。
As another form of the ground thermophysical property measuring device according to the present invention, there is provided a coaxial cylindrical ground thermophysical property sensor 2 for injecting hot water or cold water into the ground. The structure of this sensor is shown in FIG. 3 (a) and an enlarged view of the main part of FIG.
Shown in.

【0017】電気加熱式の地盤熱物性量計測センサー1
は、温度計測用光ファイバー及び該光ファイバーの外部
金属被覆から成り、具体的には、地盤熱物性量計測セン
サー1の中心には、単位長さあたりの発熱量が均一な、
絶縁被膜4で覆われた熱源外皮膜8を持つ温度計測用光
ファイバー3が設置されている。地表面の熱量供給装置
6から、熱源外部被膜8に定常電流を給電することによ
り、熱源外部被膜8を発熱させる。発熱した熱源外部被
膜8は、電気加熱式の地盤熱物性量計測センサー1及び
周辺の地盤・岩盤5を加熱し、地中に熱が伝わってい
く。
Electric heating type ground thermophysical property measuring sensor 1
Is composed of an optical fiber for temperature measurement and an outer metal coating of the optical fiber. Specifically, in the center of the ground thermophysical property measurement sensor 1, the calorific value per unit length is uniform,
An optical fiber 3 for temperature measurement having a heat source outer coating 8 covered with an insulating coating 4 is installed. By supplying a constant current to the heat source outer coating 8 from the heat supply device 6 on the ground surface, the heat source outer coating 8 is caused to generate heat. The heat-source external coating 8 that has generated heat heats the electrically-heated ground thermophysical quantity measuring sensor 1 and the surrounding ground / rock 5, and the heat is transmitted to the ground.

【0018】同軸円筒型の地盤熱物性量計測センサー2
の場合も同様に、同軸円筒型パイプラインに熱水・冷水
を注水し、地盤に熱量を供給する。ただし、同軸円筒型
の地盤熱物性量計測センサー2の場合には、地盤への単
位長さあたりの供給熱量は、電気加熱式の地盤熱物性量
計測センサー1の場合のようにセンサー長手方向にわた
ってすべて一定でなく、単位長さあたりの熱水・冷水の
温度降下量(上昇量)とパイプライン中の単位長さあた
りの熱水・冷水の熱容量の積で表される。
Coaxial cylindrical type ground thermophysical property measuring sensor 2
Similarly, in the case of, hot water or cold water is poured into the coaxial cylindrical pipeline to supply heat to the ground. However, in the case of the coaxial cylindrical ground thermophysical property measurement sensor 2, the amount of heat supplied to the ground per unit length is the same as in the case of the electrically heated ground thermophysical property measurement sensor 1 over the longitudinal direction of the sensor. All are not constant, and are expressed by the product of the temperature drop (increase) of hot / cold water per unit length and the heat capacity of hot / cold water per unit length in the pipeline.

【0019】ここで、電気加熱式の地盤熱物性量計測セ
ンサー1の周辺の地盤熱伝導率が高い場合には、地中に
熱が伝わりやすく、電気加熱式の地盤熱物性量計測セン
サー1の温度はあまり上がらないが、電気加熱式の地盤
熱物性量計測センサー1周辺の地盤・岩盤5の熱伝導率
が低い場合には、地中に熱が伝わりにくく、電気加熱式
の地盤熱物性量計測センサー1の温度が上昇する。
Here, when the ground thermal conductivity around the electrically heated ground thermophysical property measuring sensor 1 is high, heat is easily transferred to the ground, and the ground thermophysical property measuring sensor 1 of the electrically heating type is Although the temperature does not rise very much, if the thermal conductivity of the ground / bedrock 5 around the electric heating type ground thermophysical property measurement sensor 1 is low, it is difficult to transfer heat to the ground, and the electric heating type ground thermophysical properties The temperature of the measurement sensor 1 rises.

【0020】ここで、電気加熱式の地盤熱物性量計測セ
ンサー1の内部に設置した温度計測用光ファイバー3に
より、センサー長手方向の温度分布およびその時間変化
を計測し、それよりセンサー長手方向の熱物性量が計測
できる。同軸円筒型の地盤熱物性量計測センサー2の場
合は、地盤の熱伝導率が高い場合には、センサー表面の
温度の降下が大きくなり、その部分の熱量供給が増大す
る。
Here, the temperature distribution in the sensor longitudinal direction and its change over time are measured by the temperature measuring optical fiber 3 installed inside the electrically heated ground thermophysical property measuring sensor 1, and the temperature in the sensor longitudinal direction is measured from the temperature distribution. The physical properties can be measured. In the case of the coaxial cylindrical type ground thermophysical quantity measuring sensor 2, when the thermal conductivity of the ground is high, the temperature drop on the sensor surface becomes large, and the heat quantity supply to that portion increases.

【0021】(実施例)本発明に係る地盤熱物性量計測
装置の実施例を以下説明する。本発明の実施例として、
熱物性量計測装置について小型の試験装置を製作し、具
体的に地盤熱物性量計測法の実験を行った。この実施例
に係る実験用地盤熱物性量計測センサー13を、図4に
示すが、直径89mm、長さ約2mの塩ビパイプ9に外
部皮膜PVC11で覆われた外部金属皮膜8を持つ温度
計測用光ファイバ−3を巻き付けたものである。
(Embodiment) An embodiment of the ground thermophysical property measuring apparatus according to the present invention will be described below. As an example of the present invention,
About the thermophysical property measuring device, a small test device was manufactured and the experiment of the ground thermophysical property measuring method was concretely conducted. An experimental ground thermophysical property measuring sensor 13 according to this embodiment is shown in FIG. 4, and has a diameter of 89 mm and a length of about 2 m, and has a metal pipe 8 covered with an outer film PVC 11 on a PVC pipe 9 for temperature measurement. The optical fiber-3 is wound around.

【0022】外部金属皮膜8は、厚さ0.4mmのステ
ンレスパイプであり、このステンレスパイプに通電する
ことにより、発熱源として利用する。温度計測用光ファ
イバー13には、日立電線(株)製の GI-200/250 光
ファイバーを用いた。
The outer metal film 8 is a stainless pipe having a thickness of 0.4 mm, and is used as a heat source by energizing the stainless pipe. As the optical fiber 13 for temperature measurement, GI-200 / 250 optical fiber manufactured by Hitachi Cable, Ltd. was used.

【0023】また、光ファイバー温度計には、日立電線
(株)製の、FTR070を用いた。この光ファイバー
温度計の温度分解能は1mである。光ファイバーは、長
さ2mの塩ビパイプ9に127m分巻き付けてあり、電
気加熱式の熱物性センサーの深度方向の分解能として
は、1.57cmとなっている。また、本光ファイバー
温度計の温度分解能は、0.1度である。
As the optical fiber thermometer, FTR070 manufactured by Hitachi Cable, Ltd. was used. The temperature resolution of this optical fiber thermometer is 1 m. The optical fiber is wound around a vinyl chloride pipe 9 having a length of 2 m for 127 m, and the resolution in the depth direction of the electrically heated thermophysical property sensor is 1.57 cm. The temperature resolution of this optical fiber thermometer is 0.1 degree.

【0024】この実施例に係る実験用地盤熱物性量計測
センサー13を地中に挿入し、加熱して地中の深さ方向
の温度測定を実施した。この実験により得られた地中の
昇温プロファイルを図5に示す。ただし、時間0での温
度を初期温度としている。図5から明らかなように、垂
直方向の温度変化の違いが現れている。これらは、周辺
土壌の熱伝導率の相違に起因するものであり、事実、土
壌サンプリングでも異なった種類の土壌が採取されてい
る。
The experimental ground thermophysical quantity measuring sensor 13 according to this embodiment was inserted into the ground and heated to measure the temperature in the depth direction of the ground. The temperature rise profile in the ground obtained by this experiment is shown in FIG. However, the temperature at time 0 is the initial temperature. As is clear from FIG. 5, the difference in temperature change in the vertical direction appears. These are due to the difference in the thermal conductivity of the surrounding soil, and in fact, different types of soil are also collected in soil sampling.

【0025】図5に示した地中内の昇温分布の違いから
も分かるように、本発明では、垂直方向の熱物性量の相
違から地層判別が可能である。また、外部金属皮膜8に
給電する電力と温度計測用光ファイバー3の温度との関
係を使うことにより、熱伝導率を算出することが可能で
ある。
As can be seen from the difference in the temperature rise distribution in the ground shown in FIG. 5, in the present invention, the stratum can be discriminated from the difference in the thermophysical quantity in the vertical direction. Further, the thermal conductivity can be calculated by using the relationship between the electric power supplied to the external metal film 8 and the temperature of the temperature measuring optical fiber 3.

【0026】以下に非定常熱伝導における供給熱量と昇
温温度関係式を用いて熱伝導率を算出する次の(1)式
を示す。
The following equation (1) for calculating the thermal conductivity using the relational expression of the amount of heat supplied and the temperature rise temperature in unsteady heat conduction is shown below.

【0027】[0027]

【数1】 [Equation 1]

【0028】(1)式で、a2/κtが十分小さい条件下
(十分な時間が経過した後)では、次の(2)式のよう
に近似することができる。
In the equation (1), under the condition that a 2 / κt is sufficiently small (after a sufficient time has elapsed), the following equation (2) can be approximated.

【0029】[0029]

【数2】 [Equation 2]

【0030】(2)式の近似が十分に成立したかどうか
の判断は、片対数グラフに log(t)と温度との関係をプ
ロットし、その温度勾配の傾きにより判断する。ここ
で、(2)式の関係が成り立つ領域で、log(t)と温度と
の勾配は、Q/(4πK)を示す。
Whether or not the approximation of the equation (2) is sufficiently satisfied is determined by plotting the relationship between log (t) and temperature on a semi-logarithmic graph and judging by the slope of the temperature gradient. Here, in the region where the relation of the expression (2) is established, the gradient between log (t) and temperature indicates Q / (4πK).

【0031】上式を用いて、熱伝導率の算出を行った。
図6に示すのが、log(t)と温度との勾配を示した例であ
る。図6に示すように、十分時間が経過し、log(t)と温
度との関係に線形関係が成り立つと判断できた領域で、
最小自乗近似を行って、log(t)と温度との勾配を算出し
ている。
The thermal conductivity was calculated using the above equation.
FIG. 6 shows an example showing the gradient between log (t) and temperature. As shown in FIG. 6, in a region where it has been determined that a linear relationship holds in the relationship between log (t) and temperature after sufficient time has passed,
Least-squares approximation is performed to calculate the gradient between log (t) and temperature.

【0032】深さ方向の各点で上記の解析を行い算出し
た熱伝導率分布を、図7に示す。図7に示されるよう
に、深度ごとの熱伝導プロファイルが示されている。こ
のように本発明は、簡単な装置及び方法により、地中内
の温度の測定ないし地下の深さ方向の熱物性量の測定が
可能である。
FIG. 7 shows the thermal conductivity distribution calculated by performing the above analysis at each point in the depth direction. As shown in FIG. 7, the heat conduction profile for each depth is shown. As described above, according to the present invention, it is possible to measure the temperature in the ground or the thermophysical quantity in the depth direction of the underground with a simple device and method.

【0033】また、正弦波熱流を用いた場合の、光ファ
イバー表面温度の応答を利用した手法についての適用例
を挙げる。正弦波熱流を用いた方法では、地盤の熱慣性
という地盤の熱容量と密接な関係にある物性量を利用す
る。地盤の熱慣性とは、物質表面の温度変化に対する抵
抗の度合いを示し、(λρc)1/2で表される。ここ
で、λ:熱伝導率、ρ:密度、c:比熱であり、単位は
J m-2 K-1 s-(1/2) である。
An example of application of a method utilizing the response of the optical fiber surface temperature when a sinusoidal heat flow is used will be given. In the method using the sinusoidal heat flow, a physical quantity that is closely related to the heat capacity of the ground, which is the thermal inertia of the ground, is used. The thermal inertia of the ground indicates the degree of resistance to the temperature change of the material surface, and is represented by (λρc) 1/2 . Here, λ: thermal conductivity, ρ: density, c: specific heat, the unit is
It is J m -2 K -1 s- (1/2) .

【0034】今、地盤熱物性量計測センサーの直径をD
とした場合の、単位長さあたりの熱流をA sin(ωt+φ)
/πDで与えた場合における、センサー表面の温度応答
Tは、次の(3)式で表される。
Now, the diameter of the ground thermophysical quantity measuring sensor is set to D
, The heat flow per unit length is A sin (ωt + φ)
The temperature response T of the sensor surface when given by / πD is expressed by the following equation (3).

【0035】[0035]

【数3】 [Equation 3]

【0036】ここで、ωは、任意の角振動数であり、t
は時間、φは任意の位相、Aは単位長さあたりの熱流の
振幅である。
Where ω is an arbitrary angular frequency and t
Is time, φ is arbitrary phase, and A is amplitude of heat flow per unit length.

【0037】(3)式から分かるように、定常周期の熱
伝導では、与えられる熱流に応じて、π/4だけ位相が
遅れる。
As can be seen from the equation (3), in the heat conduction of the steady cycle, the phase is delayed by π / 4 according to the applied heat flow.

【0038】また、地盤が熱伝導にのみに従い、熱流が
移動する場合には、(3)式より、センサーに与える熱
流の振幅とセンサー表面温度の応答より、熱慣性量を求
めることが可能である。
Further, when the heat flow moves only when the ground follows the heat conduction, the thermal inertia amount can be obtained from the response of the amplitude of the heat flow given to the sensor and the sensor surface temperature according to the equation (3). is there.

【0039】(3)式に示したように、地盤の熱輸送が
熱伝導にのみ従う場合、熱流と表面温度の位相がπ/4
ずれる。しかしながら、地盤内の熱輸送は、熱伝導にの
み支配されるものでなく、この問題を解決するために、
熱流を電流、温度を電圧、熱容量をコンデンサとし、地
盤の熱容量と熱抵抗の二つの成分を持つR−C並列回路
にプローブから地盤への熱抵抗が加わった図8に示すよ
うなR−RC直・並列等価熱回路モデルを導入する。
As shown in the equation (3), when the heat transport of the ground follows only heat conduction, the phase of the heat flow and the surface temperature is π / 4.
It shifts. However, heat transfer in the ground is not controlled only by heat conduction, and in order to solve this problem,
R-RC as shown in FIG. 8 in which heat resistance is added to the RC parallel circuit having two components of heat capacity and heat resistance of ground, with heat flow as current, temperature as voltage, and heat capacity as capacitor Introduce a series / parallel equivalent thermal circuit model.

【0040】本モデルの並列回路部では、コンデンサ成
分による位相遅れ成分はπ/2であるので、熱伝導型の
場合、熱流と表面温度の位相がπ/4ずれるためには、
地盤内でコンデンサ成分と同インピーダンスの熱抵抗を
並列回路に加えればよい。ここで、プローブ表面の温度
をT、プローブから十分離れた位置での地中温度を恒温
温度Tとする。
In the parallel circuit part of this model, the phase delay component due to the capacitor component is π / 2. Therefore, in the case of the heat conduction type, in order to deviate the phase between the heat flow and the surface temperature by π / 4,
In the ground, a thermal resistance having the same impedance as the capacitor component may be added to the parallel circuit. Here, the temperature of the probe surface is T, and the underground temperature at a position sufficiently distant from the probe is a constant temperature T 0 .

【0041】図8において、R1は、プローブから地盤
への熱抵抗であり、R2は、対流熱伝達等による非伝導
型熱輸送に伴う熱抵抗の減分で、伝導型地盤では0とな
る。また、プローブから地盤への熱抵抗(R1)が、0
とみなせる場合には、上記モデルをR−C並列回路とし
て考えることができる。
In FIG. 8, R1 is the thermal resistance from the probe to the ground, and R2 is the decrement of the thermal resistance associated with non-conducting heat transfer due to convective heat transfer or the like, which is 0 in the conducting ground. In addition, the thermal resistance (R1) from the probe to the ground is 0
If it can be regarded as, the above model can be considered as an RC parallel circuit.

【0042】上記のモデルを検証するために、室内実験
を行った。実験は、図9に示すように、縦70cm×横
40cm×高さ25cmのアクリル製水槽に、砂を詰
め、直径15mmの棒ヒーターを挿入し、ヒーターに矩
形波の電圧制御を加えて加熱した。ヒーターに加えた電
圧は、最大値10Vの矩形波である。
Laboratory experiments were conducted to verify the above model. In the experiment, as shown in FIG. 9, sand was packed in an acrylic water tank having a length of 70 cm, a width of 40 cm, and a height of 25 cm, a rod heater having a diameter of 15 mm was inserted, and the heater was heated by applying rectangular wave voltage control. . The voltage applied to the heater is a rectangular wave with a maximum value of 10V.

【0043】ここで、乾燥砂と水で飽和させた湿潤砂と
の対流熱伝達に伴い発生する位相差の違いを示す。図1
0(a)が乾燥砂に90分周期の矩形波を加えた場合で
あり、図10(b)が上記乾燥砂に水を加え飽和させた
場合である。なお、解析では、DC成分を取り除き、位
相差の検出には、フーリエ級数1次成分を利用した。
Here, the difference in phase difference caused by convective heat transfer between dry sand and wet sand saturated with water will be shown. Figure 1
0 (a) is the case where a rectangular wave with a 90-minute cycle is added to the dry sand, and FIG. 10 (b) is the case where water is added to the dry sand to saturate it. In the analysis, the DC component was removed, and the Fourier series first-order component was used to detect the phase difference.

【0044】図10(a)より、乾燥砂の場合の位相遅
れは669秒、図10(b)より飽和湿潤砂の場合が4
24秒であることが分かる。実験では90分周期のヒー
ター加熱を加えたが、地盤内の熱輸送が熱伝導にのみ支
配される場合では、理論上、位相差は、π/4(675
秒)遅れるはずである。
From FIG. 10 (a), the phase delay in the case of dry sand is 669 seconds, and from FIG. 10 (b) it is 4 in the case of saturated wet sand.
It turns out that it is 24 seconds. In the experiment, heating with a 90-minute cycle was added, but in the case where heat transfer in the ground is governed only by heat conduction, theoretically, the phase difference is π / 4 (675).
Seconds) should be delayed.

【0045】乾燥砂の場合は、理論値にほぼ等しく、飽
和湿潤砂の場合は、理論値よりもかなり小さい値を示し
ている。これは、飽和湿潤砂の場合は、水による対流熱
伝達が生じているため、R2に示される熱抵抗成分の減
分が効いているためである。
In the case of dry sand, the value is almost equal to the theoretical value, and in the case of saturated wet sand, the value is considerably smaller than the theoretical value. This is because in the case of saturated wet sand, convective heat transfer due to water occurs, so that the reduction of the thermal resistance component indicated by R2 is effective.

【0046】以上に示したように、正弦波熱流を地盤熱
物性量計測センサーに加え、地盤熱物性量計測センサー
の温度応答を計測することにより、地盤の熱物性量及び
対流熱伝達成分の寄与を推定できる。この場合の対流熱
熱伝達成分は、地盤中の水の熱輸送成分を示しており、
これから地盤中の水の存在及びその水流の流速を求める
ことが可能だと考えられる。
As described above, by adding the sinusoidal heat flow to the ground thermophysical quantity measuring sensor and measuring the temperature response of the ground thermophysical quantity measuring sensor, the contribution of the ground thermophysical quantity and the convective heat transfer component Can be estimated. The convective heat transfer component in this case indicates the heat transfer component of water in the ground,
From this, it is considered possible to determine the existence of water in the ground and the flow velocity of the water flow.

【0047】以上本発明の実施の形態を実施例に基づい
て図面を参照して説明したが、本発明はこのような実施
例に限定されることなく、上記特許請求の範囲の技術的
事項の範囲内であればいろいろな実施の形態があること
はいうまでもない。
Although the embodiments of the present invention have been described with reference to the drawings based on the embodiments, the present invention is not limited to the embodiments and the technical matters of the above claims are not limited. It goes without saying that there are various embodiments within the range.

【0048】[0048]

【発明の効果】本発明では、簡易にセンサー長手方向の
地層の熱物性量を求めることが可能であり、また熱物性
量の相違により、地層の種別判別が可能である。本発明
により、地下の熱的物性の把握が可能になるため、地下
蓄熱・廃熱システムの設計・評価に使用することが可能
である。また、地層の熱物性量の違いを利用して簡易に
地質調査を行うことが可能である。
According to the present invention, it is possible to easily determine the thermophysical property amount of the stratum in the longitudinal direction of the sensor, and it is possible to discriminate the stratum type by the difference in the thermophysical property amount. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to grasp the thermal physical properties of the underground, and therefore it can be used for designing and evaluating an underground heat storage / waste heat system. In addition, it is possible to easily perform geological surveys by utilizing the difference in thermophysical properties of the stratum.

【0049】また、本発明は、線状・面状・空間状に配
置することが可能である。このため、周辺地盤の熱物性
量の変化を通して、含水率の変化などを使うことによ
り、核廃棄物処理施設や産業廃棄物処理施設・トンネル
などの地下水浸透の様子を監視することが可能である。
Further, the present invention can be arranged in a linear shape, a plane shape, or a space shape. Therefore, it is possible to monitor the state of groundwater infiltration in nuclear waste treatment facilities, industrial waste treatment facilities, tunnels, etc. by using changes in the water content through changes in the thermophysical properties of the surrounding ground. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概念図である。本発明は、地盤熱物性
量計測センサーおよび地上部の光ファイバー温度計およ
び熱源外部被膜供給用の電源部から構成され、地下の地
盤及び岩盤に長距離にわたって設置される。
FIG. 1 is a conceptual diagram of the present invention. The present invention comprises a ground thermophysical property measuring sensor, an optical fiber thermometer above the ground, and a power supply unit for supplying a heat source external coating, and is installed over a long distance in the underground ground and rock.

【図2】本発明で使用する電気加熱型の地盤熱物性量計
測センサーの見取り図である。センサーは、絶縁皮膜で
覆われた熱源外部被膜および温度計測用光ファイバーで
構成される。
FIG. 2 is a sketch of an electrically heating type ground thermophysical property measuring sensor used in the present invention. The sensor consists of a heat source external coating covered with an insulating coating and an optical fiber for temperature measurement.

【図3】本発明で使用する同軸円筒型の地盤熱物性量計
測センサーの見取り図である。センサーは、熱水・供給
水を循環させる同軸・円筒型のパイプラインで構成さ
れ、パイプライン内部に温度計測用光ファイバーが配置
される。
FIG. 3 is a sketch of a coaxial cylindrical type ground thermophysical property measuring sensor used in the present invention. The sensor consists of a coaxial / cylindrical pipeline that circulates hot water and supply water, and an optical fiber for temperature measurement is placed inside the pipeline.

【図4】本発明の適用例として試作したセンサーであ
る。本センサーは、直径89mm、長さ2mの塩ビパイ
プに金属被覆を持つ光ファイバーを巻き付けたものであ
る。
FIG. 4 is a sensor prototyped as an application example of the present invention. The sensor is a PVC pipe having a diameter of 89 mm and a length of 2 m wound with an optical fiber having a metal coating.

【図5】地中に加温した際の、地中の温度昇温プロファ
イルである。地中の熱伝導率の差異により、温度上昇プ
ロファイルに差異が出ている様子が分かる。
FIG. 5 is a temperature rise profile in the ground when the ground is heated. It can be seen that there is a difference in the temperature rise profile due to the difference in underground thermal conductivity.

【図6】熱伝導率算出のために用いた対数温度−温度プ
ロファイルである。熱伝導率は、このプロファイルの温
度勾配から算出する。
FIG. 6 is a logarithmic temperature-temperature profile used for calculation of thermal conductivity. The thermal conductivity is calculated from the temperature gradient of this profile.

【図7】垂直方向の熱伝導率プロファイルである。深さ
方向に対して、熱伝導率の差異が計測できている。
FIG. 7 is a vertical thermal conductivity profile. The difference in thermal conductivity can be measured in the depth direction.

【図8】R−RC熱交流回路の概念図である。ここで、
R1はセンサーから地盤への熱抵抗、R2は地盤の熱抵
抗である。なお、対象地盤外側の温度は、恒温温度T
としている。
FIG. 8 is a conceptual diagram of an R-RC thermal AC circuit. here,
R1 is the thermal resistance from the sensor to the ground, and R2 is the thermal resistance of the ground. The temperature outside the target ground is the constant temperature T 0.
I am trying.

【図9】実験に用いた実験土槽である。土槽内部に砂試
料を詰め、土槽中心に棒ヒーターを設置して外部から熱
量を供給した。また、棒ヒーターの表面温度は、熱電対
によって計測した。
FIG. 9 is an experimental soil tank used for the experiment. A sand sample was packed inside the soil tank, and a bar heater was installed at the center of the soil tank to supply heat from the outside. The surface temperature of the rod heater was measured with a thermocouple.

【図10】乾燥砂と飽和湿潤の場合の位相差を示したグ
ラフである。乾燥砂の場合の位相遅れは、669秒であ
り、飽和湿潤砂の場合の位相遅れは、424秒である。
FIG. 10 is a graph showing a phase difference between dry sand and saturated wet condition. The phase lag for dry sand is 669 seconds and for saturated wet sand is 424 seconds.

【符号の説明】[Explanation of symbols]

1 電気加熱式の地盤熱物性量計測センサー 2 同軸円筒型の地盤熱物性量計測センサー 3 温度計測用光ファイバー 4 絶縁被膜 5 地盤・岩盤 6 熱量供給装置 7 光ファイバー温度計 8 熱源外部被膜 9 塩ビパイプ 10 外部金属被膜 11 外部被膜PVC 12 温度計測用光ファイバー 13 実験用地盤熱物性量計測センサー 1 Electric heating type thermophysical property measurement sensor 2 Coaxial cylindrical ground thermophysical property measurement sensor 3 Temperature measurement optical fiber 4 insulating film 5 ground, bedrock 6 Heat supply device 7 Optical fiber thermometer 8 Heat source external coating 9 PVC pipe 10 External metal coating 11 External coating PVC 12 Optical fiber for temperature measurement 13 Experimental thermophysical property measurement sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01K 11/12 G01V 9/00 - 9/02 G02B 6/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01K 11/12 G01V 9/00-9/02 G02B 6/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地中の地盤・岩盤に長距離にわたり配
置され、温度計測用光ファイバーと、給電することによ
り発熱する上記光ファイバーの外部金属被膜とから成る
地盤熱物性量計測センサーを有する地盤熱物性量計測装
置であって、 上記地盤熱物性量計測センサーに正弦波の変調電圧入力
を加えることにより地盤・岩盤に熱量を供給し、その熱
量供給に伴う熱物性量計測センサーの長手方向に沿った
地盤・岩盤の温度分布及びその時間変化から、温度振幅
及び供給熱量との位相差を上記光ファイバーにより測定
し、上記熱物性量計測センサーの長手方向に沿った地盤
・岩盤の熱物性量を測定できることを特徴とする地盤熱
物性量計測装置。
1. A geothermophysical property having a geothermophysical property measuring sensor which is arranged over a long distance on the ground or rock in the ground, and which comprises an optical fiber for temperature measurement and an external metal coating of the optical fiber which generates heat when supplied with electricity. A quantity measuring device for supplying heat quantity to the ground / rock by applying a sinusoidal modulation voltage input to the ground thermophysical quantity measuring sensor, and along the longitudinal direction of the thermophysical quantity measuring sensor accompanying the heat quantity supply. From the temperature distribution of the ground / rock and its time change, the temperature amplitude and the phase difference with the supplied heat quantity can be measured by the optical fiber, and the thermophysical quantity of the ground / rock along the longitudinal direction of the thermophysical quantity measurement sensor can be measured. Geothermal physical property measurement device characterized by.
【請求項2】 上記熱物性量計測センサーは、該熱物
性量計測センサーの長手方向に沿った地盤・岩盤の熱伝
導率、熱慣性量、対流熱輸送量及び熱拡散係数を含む熱
物性量の違いを計測し、また、上記熱物性量の変化によ
り、地下水の浸透を検知し監視可能な構成であることを
特徴とする請求項1記載の地盤熱物性量計測装置。
2. The thermophysical quantity measuring sensor includes a thermophysical quantity including thermal conductivity, thermal inertia, convective heat transport quantity, and thermal diffusion coefficient of the ground / rock along the longitudinal direction of the thermophysical quantity measuring sensor. The ground thermophysical property measuring device according to claim 1, wherein the ground thermophysical property measuring device is configured to detect and monitor the infiltration of groundwater based on the change in the thermophysical property.
【請求項3】 上記熱物性量計測センサーは、面状又
は線状に配置されていることを特徴とする請求項1又は
2記載の地盤熱物性量計測装置。
3. The ground thermophysical property measuring device according to claim 1, wherein the thermophysical property measuring sensor is arranged in a plane or a line.
JP2000089434A 2000-03-28 2000-03-28 Long-distance geothermal property measurement device Expired - Lifetime JP3416728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089434A JP3416728B2 (en) 2000-03-28 2000-03-28 Long-distance geothermal property measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089434A JP3416728B2 (en) 2000-03-28 2000-03-28 Long-distance geothermal property measurement device

Publications (2)

Publication Number Publication Date
JP2001281071A JP2001281071A (en) 2001-10-10
JP3416728B2 true JP3416728B2 (en) 2003-06-16

Family

ID=18605198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089434A Expired - Lifetime JP3416728B2 (en) 2000-03-28 2000-03-28 Long-distance geothermal property measurement device

Country Status (1)

Country Link
JP (1) JP3416728B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792965A (en) * 2015-02-01 2015-07-22 山东科技大学 Drilling energy-based surrounding rock loosing circle test method
CN107966471A (en) * 2017-11-14 2018-04-27 东南大学 A kind of in-situ testing device and test method of soil body thermal conductivity and geothermic gradient

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8122951B2 (en) 2005-02-28 2012-02-28 Schlumberger Technology Corporation Systems and methods of downhole thermal property measurement
US7730936B2 (en) 2007-02-07 2010-06-08 Schlumberger Technology Corporation Active cable for wellbore heating and distributed temperature sensing
CN100543498C (en) * 2007-11-14 2009-09-23 山东大学 Tunnel tunnel face front exploring water inductor
JP2010164536A (en) * 2009-01-19 2010-07-29 Japan Oil Gas & Metals National Corp Flow detection method of underground gas
CN103018788B (en) * 2012-12-10 2016-04-06 山东大学 Profound tunnel unfavorable geology and Mechanical property forward probe device and method
CN106093109A (en) * 2016-06-02 2016-11-09 东南大学 Conduction of heat CPTU pops one's head in

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792965A (en) * 2015-02-01 2015-07-22 山东科技大学 Drilling energy-based surrounding rock loosing circle test method
CN104792965B (en) * 2015-02-01 2016-09-14 山东科技大学 Wall rock loosening ring method of testing based on boring energy
CN107966471A (en) * 2017-11-14 2018-04-27 东南大学 A kind of in-situ testing device and test method of soil body thermal conductivity and geothermic gradient
CN107966471B (en) * 2017-11-14 2020-01-31 东南大学 in-situ testing device and testing method for soil body thermal conductivity and geothermal gradient

Also Published As

Publication number Publication date
JP2001281071A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
Zhang et al. Thermal conductivity of quartz sands by thermo-time domain reflectometry probe and model prediction
Ciocca et al. Heated optical fiber for distributed soil‐moisture measurements: A lysimeter experiment
Low et al. A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications
Bristow 5.3 Thermal Conductivity
US8122951B2 (en) Systems and methods of downhole thermal property measurement
Bristow et al. Comparison of single and dual probes for measuring soil thermal properties with transient heating
Gil-Rodríguez et al. Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters
Cao et al. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers
Abuel-Naga et al. Thermal conductivity of soft Bangkok clay from laboratory and field measurements
Raymond et al. Field demonstration of a first thermal response test with a low power source
Alrtimi et al. An improved steady-state apparatus for measuring thermal conductivity of soils
Halloran et al. Heat as a tracer to quantify processes and properties in the vadose zone: A review
Lhendup et al. In-situ measurement of borehole thermal properties in Melbourne
CN111624227B (en) Distributed soil body heat conductivity coefficient test system and test method thereof
Nusier et al. Laboratory techniques to evaluate thermal conductivity for some soils
Zhang et al. Evaluation of the heat pulse probe method for determining frozen soil moisture content
JP3416728B2 (en) Long-distance geothermal property measurement device
Li et al. Study the performance of borehole heat exchanger considering layered subsurface based on field investigations
Christodoulides et al. A practical method for computing the thermal properties of a Ground Heat Exchanger
Urresta et al. Ground thermal conductivity estimation using the thermal response test with a horizontal ground heat exchanger
Simon et al. Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream
Liu et al. In-situ soil dry density estimation using actively heated fiber-optic FBG method
Rouleau et al. Inverse heat transfer applied to a hydrogeological and thermal response test for geothermal applications
Zhang et al. A non-destructive method to measure the thermal properties of frozen soils during phase transition
Sivaprasad et al. Comparative assessment of transient-and steady-state soil thermal conductivity using a specially designed consolidometer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3416728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term