JP3400362B2 - Method and apparatus for diagnosing life of electronic device - Google Patents

Method and apparatus for diagnosing life of electronic device

Info

Publication number
JP3400362B2
JP3400362B2 JP29866098A JP29866098A JP3400362B2 JP 3400362 B2 JP3400362 B2 JP 3400362B2 JP 29866098 A JP29866098 A JP 29866098A JP 29866098 A JP29866098 A JP 29866098A JP 3400362 B2 JP3400362 B2 JP 3400362B2
Authority
JP
Japan
Prior art keywords
value
life
control board
material performance
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29866098A
Other languages
Japanese (ja)
Other versions
JP2000131363A (en
Inventor
恵一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29866098A priority Critical patent/JP3400362B2/en
Publication of JP2000131363A publication Critical patent/JP2000131363A/en
Application granted granted Critical
Publication of JP3400362B2 publication Critical patent/JP3400362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、保守員等が、診断
対象電子装置が納入されている現地において、診断対象
電子装置の機能を損なうことなく非破壊で、経年使用電
子装置の余寿命を定量的に評価することが可能な電子装
置の寿命診断方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention allows maintenance personnel to non-destructively maintain the function of the electronic device to be diagnosed at the site where the electronic device to be diagnosed is delivered and to reduce the remaining life of the electronic device used over the years. The present invention relates to a method and apparatus for diagnosing a life of an electronic device that can be quantitatively evaluated.

【0002】[0002]

【従来の技術】電力プラントや産業プラント等に納めら
れている計器や制御装置を含む電子装置の異常診断分野
においては、各種電子装置毎にその入出力特性を時系列
に測定・監視し、定格値又は初期値と比較することによ
り、オンラインで電子装置の異常を検知する手法が一般
的に用いられている。
2. Description of the Related Art In the field of abnormality diagnosis of electronic devices including measuring instruments and control devices installed in electric power plants and industrial plants, the input / output characteristics of each electronic device are measured and monitored in time series and rated. A method of detecting an abnormality in an electronic device online by comparing with a value or an initial value is generally used.

【0003】一方、電子装置の劣化傾向を検出し、その
寿命期を判断する寿命診断の分野では、上記のような電
子装置の入出力特性をチェックするオンライン技術では
容易に劣化を検知することが難しいため、電子装置を構
成する電子化制御基板や電子部品の発熱や腐食などの物
理的・物性的劣化シグナルを高感度にとらえることが必
要である。そこで、劣化を高感度にとらえる手法とし
て、赤外線センサで診断対象電子装置を構成する電子化
制御基板の表面温度を測定したり、電子装置に実装され
ている電子部品を取り外してその電気的特性(入出力特
性、マージナルボルテージ、内部雑音等)をチェックし
たり、樹脂封止ICを取り外してそのAl配線腐食量を
評価したりして、それらの時系列変化曲線から余寿命を
定量的に推定することが、これまで行われてきている。
On the other hand, in the field of life diagnosis in which the deterioration tendency of an electronic device is detected and the life period thereof is judged, deterioration can be easily detected by the above-mentioned online technique for checking the input / output characteristics of the electronic device. Since it is difficult, it is necessary to detect with high sensitivity the physical and physical deterioration signals such as heat generation and corrosion of the electronic control board and electronic components that make up the electronic device. Therefore, as a method of catching the deterioration with high sensitivity, the surface temperature of the computerized control board that constitutes the electronic device to be diagnosed is measured by an infrared sensor, or the electronic parts mounted on the electronic device are detached and their electrical characteristics ( Input / output characteristics, marginal voltage, internal noise, etc.) are checked, or the resin-sealed IC is removed to evaluate the amount of Al wiring corrosion, and the remaining life is quantitatively estimated from those time-series change curves. Has been done so far.

【0004】[0004]

【発明が解決しようとする課題】従来の電子装置の寿命
診断技術では、電子装置の劣化傾向を検出するために、
電子装置を構成する電子化制御基板から実装部品を取り
外す、即ち電子装置を破壊した上で、取り外した電子部
品を現地から工場や研究所などの調査部門に引取り、そ
の電子部品の性能劣化や腐食などを調べていた。
In the conventional life diagnostic technology for electronic devices, in order to detect the tendency of deterioration of the electronic device,
The mounted parts are removed from the electronic control board that constitutes the electronic device, that is, the electronic device is destroyed, and then the removed electronic part is taken from the field to a research department such as a factory or a research laboratory, and performance deterioration of the electronic part I was looking for corrosion.

【0005】実際、樹脂封止ICのAl配線腐食を劣化
指標とした寿命診断法などでは、Al配線腐食を定量的
に評価するのに樹脂を薬液で開封してICチップの表面
写真を撮影し、これを画像診断しなければならない。そ
のため、現地で且つ、非破壊で診断を実施することは不
可能である。しかし、電子装置のユーザ側としては、診
断対象とする電子装置の機能を損なうことなく寿命診断
を行い、余寿命が十分あるとわかった場合には、その電
子装置を使い続けたいという要望がある。
Actually, in a life diagnosis method using Al wiring corrosion of a resin-encapsulated IC as a deterioration index, the resin is unsealed with a chemical solution to quantitatively evaluate Al wiring corrosion, and a surface photograph of the IC chip is taken. , This must be image-diagnosed. Therefore, it is impossible to carry out the diagnosis locally and non-destructively. However, there is a demand on the part of the user of the electronic device to continue to use the electronic device when performing life diagnosis without impairing the function of the electronic device to be diagnosed and finding that the remaining life is sufficient. .

【0006】本発明は、このような実情を考慮してなさ
れたもので、第1に電子装置の機能を維持したまま、非
破壊で電子装置の余寿命を容易且つ、的確に定量評価す
ることができ、第2に定期点検時などのオフライン時
に、保守員等が容易に診断パラメータの測定をすること
ができ、現地において余寿命の判定が可能な電子装置の
寿命診断方法及び装置を提供することを目的とする。
The present invention has been made in consideration of such circumstances. First, it is possible to quantitatively and easily evaluate the remaining life of an electronic device easily and accurately without destroying the function of the electronic device. Secondly, the present invention provides a method and a device for diagnosing the life of an electronic device, which allows maintenance personnel to easily measure the diagnostic parameters at the time of off-line such as at the time of periodic inspection, and can determine the remaining life on site. The purpose is to

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の電子装置の寿命診断方法は、計器や
制御装置を含む電子装置の寿命診断をする際に、診断対
象である前記電子装置を構成する電子化制御基板の全数
を各グループの枚数が略均等になるように複数のグルー
プに分割し、分割した中から幾つかのグループを任意に
抽出して基板材料性能測定を行い、各グループにおける
基板材料性能測定値の分布の極値統計をとることで前記
診断対象内における全基板母数の基板材料性能値の最小
もしくは最大値を推定し、この推定値の時系列変化と前
記基板材料性能値の所定の規格で定義される限界値とか
ら電子化制御基板の余寿命を定量的に評価することを要
旨とする。この構成により、電子装置の寿命を診断する
診断パラメータとして電子化制御基板の基板材料性能測
定値が採用され、全電子化制御基板から任意に抽出した
幾つかのグループについて基板材料性能測定が行われ
る。各グループにおけるこの基板材料性能測定値につき
極値統計法を用いて診断対象を構成する基板母数全体に
おける基板材料性能値の極値が推定される。そして、こ
の推定された極値の時系列変化曲線がJIS規格等の所
定の規格で定義される限界値を超える点が寿命点として
定量的に評価される。
In order to solve the above problems, the method of diagnosing the life of an electronic device according to claim 1 is an object to be diagnosed when diagnosing the life of an electronic device including an instrument and a control device. The total number of computerized control boards that make up the electronic device is divided into a plurality of groups so that the number of each group is substantially equal, and some groups are arbitrarily extracted from the divided areas to measure the substrate material performance. By performing extreme value statistics of the distribution of the measured values of the substrate material performance in each group, the minimum or maximum value of the substrate material performance values of all the substrate parameters in the diagnosis target is estimated, and the time series change of this estimated value is performed. The gist of the present invention is to quantitatively evaluate the remaining life of the computerized control board from the limit value defined by a predetermined standard of the board material performance value. With this configuration, the substrate material performance measurement value of the electronic control board is adopted as a diagnostic parameter for diagnosing the life of the electronic device, and the substrate material performance measurement is performed for some groups arbitrarily extracted from all the electronic control boards. . The extreme value of the substrate material performance value in the entire substrate parameter constituting the diagnosis target is estimated using the extreme value statistical method for the substrate material performance measurement value in each group. Then, a point where the estimated time series change curve of the extreme value exceeds the limit value defined by a predetermined standard such as JIS standard is quantitatively evaluated as a life point.

【0008】請求項2記載の電子装置の寿命診断方法
は、上記請求項1記載の電子装置の寿命診断方法におい
て、前記電子化制御基板の基板材料性能値の最小もくし
は最大値の推定値と前記電子化制御基板上に実装されて
いるICの腐食量との相関曲線を基に基板材料性能の推
定値から非破壊で実装ICの腐食量を求め、この実装I
C腐食量の時系列変化及び腐食量とIC故障の相関から
前記実装ICの余寿命を定量的に推定して電子化制御基
板の余寿命を評価することを要旨とする。この構成によ
り、電子化制御基板の種類と実装ICの種類を知ること
で、予め求めた基板材料性能値とICの腐食量の相関曲
線を用いて、基板材料性能測定値から実装ICの腐食量
が求められる。次いで、IC故障に至る腐食量から実装
ICの余寿命が定量的に推定されて電子化制御基板の余
寿命が評価される。
An electronic device life diagnosing method according to a second aspect is the electronic device life diagnosing method according to the first aspect, in which the minimum or maximum estimated value of the substrate material performance value of the computerized control substrate is estimated. Based on the correlation curve between the corrosion amount of the IC mounted on the computerized control board and the corrosion amount of the IC mounted on the electronic control board, the corrosion amount of the mounted IC is calculated nondestructively from the estimated value of the substrate material performance.
The gist of the present invention is to evaluate the remaining life of the electronic control board by quantitatively estimating the remaining life of the mounted IC from the time series change of the C corrosion quantity and the correlation between the corrosion quantity and the IC failure. With this configuration, by knowing the type of the electronic control board and the type of the mounted IC, the correlation curve between the substrate material performance value and the IC corrosion amount obtained in advance is used to measure the corrosion amount of the mounted IC from the measured substrate material performance value. Is required. Next, the remaining life of the mounted IC is quantitatively estimated from the amount of corrosion leading to the IC failure, and the remaining life of the electronic control board is evaluated.

【0009】請求項3記載の電子装置の寿命診断方法
は、上記請求項1記載の電子装置の寿命診断方法におい
て、前記電子化制御基板の基板材料性能値の最小もしく
は最大値の推定値と前記電子化制御基板上に実装されて
いるコンデンサの性能値との相関曲線を基に基板材料性
能の推定値から非破壊で実装コンデンサの性能値を求
め、この実装コンデンサ性能値の時系列変化とコンデン
サの故障判定基準とから前記実装コンデンサの余寿命を
定量的に推定して電子化制御基板の余寿命を評価するこ
とを要旨とする。この構成により、電子化制御基板の種
類と実装コンデンサの種類を知ることで、予め求めた基
板材料性能値と静電容量、誘電正接又は絶縁抵抗等のコ
ンデンサ性能値の相関曲線を用いて、基板材料性能測定
値から実装コンデンサの性能値が求められる。次いで、
その実装コンデンサの性能値の時系列変化とコンデンサ
の故障判定基準から実装コンデンサの余寿命が定量的に
推定されて電子化制御基板の余寿命が評価される。
According to a third aspect of the present invention, there is provided a method for diagnosing the lifetime of an electronic device, wherein the method for diagnosing the lifetime of the electronic device is the estimated value of the minimum or maximum value of the substrate material performance value of the computerized control substrate and the estimated value. Based on the correlation curve with the performance value of the capacitor mounted on the computerized control board, the performance value of the mounting capacitor is calculated nondestructively from the estimated value of the board material performance. The gist of the present invention is to quantitatively estimate the remaining life of the mounted capacitor from the failure judgment standard and evaluate the remaining life of the electronic control board. With this configuration, by knowing the type of computerized control board and the type of mounted capacitor, the correlation curve between the board material performance value and the capacitor performance value such as capacitance, dielectric loss tangent or insulation resistance that was obtained in advance can be used to The performance value of the mounted capacitor can be obtained from the measured material performance value. Then
The remaining life of the mounted capacitor is quantitatively estimated from the time-series change of the performance value of the mounted capacitor and the failure judgment criterion of the capacitor, and the remaining life of the electronic control board is evaluated.

【0010】請求項4記載の電子装置の寿命診断装置
は、診断対象である電子装置を構成する電子化制御基板
の基板材料性能値を測定する基板材料性能測定手段と、
基板材料性能測定時の構造、前処理を含む測定条件が基
板材料性能の限界値を定義する規格と異なる場合に前記
基板材料性能測定手段による測定値を補正する測定値補
正手段と、この測定値補正手段による補正後の基板材料
性能値について極値統計処理を実行する極値統計処理手
段と、この極値統計処理手段で求めた基板材料性能値の
最小・最大値の時系列変化と前記基板材料性能の限界値
から余寿命を判定する寿命判定手段と、前記補正を行う
ための補正データ、寿命判定のための前記限界値、前記
極値統計処理結果及び前記判定結果を保持するデータベ
ースと、一連の診断結果を表示する出力手段とを有する
ことを要旨とする。この構成により、基板材料性能測定
手段による基板材料性能値の測定時に基板材料性能の限
界値を定義する規格と異なる形態で基板材料性能測定を
行った場合でも、測定値補正手段により基板材料性能値
が規格下で測定した値に補正される。極値統計処理手段
でこの基板材料性能値について極値統計処理を行うの
で、全基板の基板材料性能値を測定しなくても診断対象
内の基板材料性能値の最小・最大値が推定される。そし
て、寿命判定手段により、推定された極値の時系列変化
と所定の規格で定義される限界値から余寿命が判定され
る。また、診断事例をデータベースに保存するので、診
断辞書として応用することが可能となる。
According to a fourth aspect of the present invention, there is provided an apparatus for diagnosing life of an electronic device, comprising: a substrate material performance measuring means for measuring a substrate material performance value of an electronic control board constituting the electronic device to be diagnosed.
Structure for measuring substrate material performance, measurement value correcting means for correcting the measurement value by the substrate material performance measuring means when the measurement conditions including pretreatment are different from the standard defining the limit value of the substrate material performance, and the measured value Extreme value statistical processing means for executing extreme value statistical processing on the substrate material performance value after correction by the correcting means, time series change of the minimum and maximum values of the substrate material performance value obtained by the extreme value statistical processing means, and the substrate Life determining means for determining the remaining life from the limit value of material performance, correction data for performing the correction, the limit value for life determination, a database holding the extreme value statistical processing result and the determination result, The gist is to have an output means for displaying a series of diagnostic results. With this configuration, even when the substrate material performance measurement is performed in a form different from the standard that defines the limit value of the substrate material performance when measuring the substrate material performance value by the substrate material performance measurement means, the substrate material performance value is measured by the measurement value correction means. Is corrected to the value measured under the standard. Since the extreme value statistical processing means performs the extreme value statistical processing on the substrate material performance values, the minimum and maximum values of the substrate material performance values in the diagnosis target can be estimated without measuring the substrate material performance values of all the substrates. . Then, the life determining unit determines the remaining life from the estimated time series change of the extreme value and the limit value defined by a predetermined standard. Further, since the diagnosis case is stored in the database, it can be applied as a diagnosis dictionary.

【0011】請求項5記載の電子装置の寿命診断装置
は、請求項4記載の電子装置の寿命診断装置において、
前記極値統計処理手段で求めた基板材料性能値の最小・
最大値を、IC種毎の基板材料性能値−腐食量相関曲線
を基に前記電子化制御基板上に実装されているICの腐
食量に変換する腐食量変換手段を備え、前記寿命判定手
段は、この腐食量変換手段による腐食量の変換結果及び
各IC種毎の腐食量の時系列変化曲線を基に実装ICの
余寿命を定量的に評価し、前記データベースは、各種基
板材料性能値、前記IC種毎の基板材料性能値−腐食量
相関曲線及び前記各IC種毎の腐食量の時系列変化曲線
を蓄積することを要旨とする。この構成により、電子化
制御基板の種類と実装ICの種類がわかれば、腐食量変
換手段により、基板材料性能測定値から実装ICの腐食
進行状況が推定される。次いで、寿命判定手段により、
IC故障に至る腐食量から実装ICの余寿命が定量的に
評価される。腐食量変換手段で基板材料性能測定値から
実装ICの腐食進行状況を推定するための基板材料性能
値−腐食量相関曲線等は、データベースから得られる。
According to a fifth aspect of the present invention, there is provided an electronic device life diagnosing device according to the fourth aspect of the invention.
Minimum of the substrate material performance value obtained by the extreme value statistical processing means
Corrosion amount conversion means for converting the maximum value into the corrosion amount of the IC mounted on the electronic control board based on the substrate material performance value-corrosion amount correlation curve for each IC type is provided, and the life determination means is provided. The quantitative evaluation of the remaining life of the mounted IC based on the corrosion amount conversion result by the corrosion amount conversion means and the time-series change curve of the corrosion amount for each IC type, the database stores various board material performance values, The gist is to accumulate the substrate material performance value-corrosion amount correlation curve for each IC type and the time series change curve of the corrosion amount for each IC type. With this configuration, if the type of the electronic control board and the type of the mounted IC are known, the corrosion amount conversion means estimates the progress of corrosion of the mounted IC from the substrate material performance measurement value. Then, by the life determining means,
The remaining life of the mounted IC is quantitatively evaluated from the amount of corrosion leading to the IC failure. A substrate material performance value-corrosion amount correlation curve or the like for estimating the corrosion progress of the mounted IC from the substrate material performance measurement value by the corrosion amount conversion means is obtained from the database.

【0012】請求項6記載の電子装置の寿命診断装置
は、請求項4記載の電子装置の寿命診断装置において、
前記極値統計処理手段で求めた基板材料性能値の最小・
最大値を、コンデンサ種毎の基板材料性能値−コンデン
サ性能相関曲線を基に前記電子化制御基板上に実装され
ているコンデンサの性能値に変換するコンデンサ性能変
換手段を備え、前記寿命判定手段は、このコンデンサ性
能変換手段によるコンデンサ性能値の変換結果及び各コ
ンデンサ種毎の性能値の時系列変化曲線を基に実装コン
デンサの余寿命を定量的に評価し、前記データベース
は、各種基板材料性能値、前記コンデンサ種毎の基板材
料性能値−コンデンサ性能相関曲線及び前記各コンデン
サ種毎の性能値の時系列変化曲線を蓄積することを要旨
とする。この構成により、電子化制御基板の種類と実装
コンデンサの種類がわかれば、コンデンサ性能変換手段
により、基板材料性能測定値から実装コンデンサの性能
劣化進行状況が推定される。次いで、寿命判定手段によ
り、コンデンサ故障に至る性能劣化から実装コンデンサ
の余寿命が定量的に評価される。コンデンサ性能変換手
段で基板材料性能測定値から実装コンデンサの性能劣化
進行状況を推定するための基板材料性能値−コンデンサ
性能相関曲線等は、データベースから得られる。
According to a sixth aspect of the present invention, there is provided an electronic device life diagnosing device according to the fourth aspect of the invention.
Minimum of the substrate material performance value obtained by the extreme value statistical processing means
The maximum value, the substrate material performance value for each capacitor-capacitor performance conversion means for converting to the performance value of the capacitor mounted on the electronic control board based on the capacitor performance correlation curve, the life determining means, , Quantitatively evaluating the remaining life of the mounted capacitor based on the conversion result of the capacitor performance value by this capacitor performance conversion means and the time series change curve of the performance value for each capacitor type, and the database stores the performance value of various board materials. The summary is to accumulate a substrate material performance value-capacitor performance correlation curve for each capacitor type and a time series change curve of the performance value for each capacitor type. With this configuration, if the type of the electronic control board and the type of the mounted capacitor are known, the progress of performance deterioration of the mounted capacitor is estimated from the board material performance measurement value by the capacitor performance conversion means. Next, the life determining means quantitatively evaluates the remaining life of the mounted capacitor from the performance deterioration leading to the capacitor failure. A board material performance value-capacitor performance correlation curve or the like for estimating the progress of performance deterioration of the mounted capacitor from the board material performance measurement value by the capacitor performance conversion means is obtained from the database.

【0013】請求項7記載の電子装置の寿命診断装置
は、上記請求項4,5又は6記載の電子装置の寿命診断
装置において、前記基板材料性能測定手段は、絶縁抵抗
測定装置からなり、前記電子化制御基板の一部分の体積
抵抗率又は表面抵抗を測定することを要旨とする。この
構成により、基板材料性能は、実装部以外の余りスペー
スの小さい電子化制御基板においても容易に測定可能な
体積抵抗率又は表面抵抗とされ、これを測定する基板材
料性能測定手段は絶縁抵抗測定装置とされる。絶縁抵抗
測定装置とすることで、定期点検時等において現地の保
守員が容易に持ち運び、測定することが可能となる。
An electronic device life diagnosing device according to a seventh aspect is the electronic device life diagnosing device according to the fourth, fifth or sixth aspect, wherein the substrate material performance measuring means comprises an insulation resistance measuring device. The gist is to measure the volume resistivity or surface resistance of a part of the electronic control substrate. With this configuration, the board material performance is set to a volume resistivity or surface resistance that can be easily measured even in an electronic control board that has a small space other than the mounting part, and the board material performance measuring means for measuring this is insulation resistance measurement. The device. By using an insulation resistance measuring device, local maintenance personnel can easily carry and measure it at the time of periodic inspections.

【0014】請求項8記載の電子装置の寿命診断装置
は、上記請求項4,5又は6記載の電子装置の寿命診断
装置において、前記基板材料性能測定手段は、静電容量
測定装置からなり、前記電子化制御基板の一部分を電極
で挟むことにより当該電子化制御基板を誘電体としたコ
ンデンサを形成し、その静電容量を測定して前記電子化
制御基板の誘電率を算出することを要旨とする。この構
成により、基板材料性能は、実装部以外の余りスペース
の小さい電子化制御基板でも、その一部分で容易に測定
可能な静電容量とされ、これを測定する基板材料性能測
定手段は静電容量測定装置とされる。静電容量測定装置
とすることで、定期点検時等において現地の保守員が容
易に持ち運び、測定することが可能となる。
An electronic device life diagnosing device according to claim 8 is the electronic device life diagnosing device according to claim 4, 5 or 6, wherein the substrate material performance measuring means comprises a capacitance measuring device, A part of the electronic control board is sandwiched by electrodes to form a capacitor using the electronic control board as a dielectric, and the capacitance is measured to calculate the dielectric constant of the electronic control board. And With this configuration, the board material performance is set to a capacitance that can be easily measured by a part of the electronic control board that has a small space other than the mounting portion. It is used as a measuring device. By using the capacitance measuring device, it becomes possible for a local maintenance person to easily carry and measure it at the time of periodic inspection.

【0015】請求項9記載の電子装置の寿命診断装置
は、上記請求項4,5又は6記載の電子装置の寿命診断
装置において、前記基板材料性能測定手段は、色彩測定
システムからなり、前記電子化制御基板上のはんだ付け
部位のはんだの強度をはんだの色として評価することを
要旨とする。この構成により、基板材料性能は、はんだ
の強度を評価するはんだの色とされ、このはんだの色が
色彩測定システムにより、非接触かつ非破壊で測定され
る。
According to a ninth aspect of the present invention, there is provided an electronic device life diagnosing device according to the fourth, fifth or sixth aspect, wherein the substrate material performance measuring means comprises a color measuring system. The gist is to evaluate the strength of the solder at the soldering site on the chemical control board as the color of the solder. With this configuration, the substrate material performance is set as the color of the solder for evaluating the strength of the solder, and the color of the solder is measured by the color measurement system in a non-contact and non-destructive manner.

【0016】請求項10記載の電子装置の寿命診断装置
は、上記請求項4乃至9の何れかに記載の電子装置の寿
命診断装置において、前記基板材料性能測定手段による
電気的性能及び機械的性能を含む基板材料性能の測定が
可能なように、所要の規格に従った基板材料性能測定用
試験片を前記電子化制御基板の一部に予め組み込んでな
ることを要旨とする。この構成により、定期点検時等に
基板材料性能測定用試験片を取り出し、基板材料性能の
測定を所望の規格に準拠して行うことが可能となる。こ
れにより、電子装置の機能を損なわずに測定することが
可能となる。
An electronic device life diagnosing device according to a tenth aspect of the present invention is the electronic device life diagnosing device according to any one of the fourth to ninth aspects, in which the electrical performance and mechanical performance of the substrate material performance measuring means are determined. In order to be able to measure the substrate material performance including the above, the gist is that a substrate material performance measuring test piece according to a required standard is previously incorporated in a part of the electronic control substrate. With this configuration, it becomes possible to take out the test piece for measuring the substrate material performance at the time of regular inspection and to measure the substrate material performance in accordance with a desired standard. This enables measurement without impairing the function of the electronic device.

【0017】請求項11記載の電子装置の寿命診断方法
は、計器や制御装置を含む電子装置の寿命診断をする際
に、診断対象である前記電子装置を構成する電子化制御
基板上に、製造時に予め診断用のセラミックス湿度セン
サを実装しておき、このセラミックス湿度センサの抵抗
値変化を測定し、セラミックス湿度センサの抵抗値と前
記電子化制御基板上に実装される実装部品の特性値との
対応関係から前記電子化制御基板上に実装されている実
装部品の劣化度を推定し、電子化制御基板の余寿命を評
価することを要旨とする。この構成により、セラミック
ス湿度センサの抵抗値変化から実装部品の劣化度が推定
されて電子化制御基板の余寿命が評価される。
According to the eleventh aspect of the present invention, there is provided a method for diagnosing the life of an electronic device, wherein when diagnosing the life of an electronic device including a measuring instrument and a control device, the electronic device is manufactured on a computerized control board constituting the electronic device to be diagnosed. At this time, a ceramics humidity sensor for diagnosis is mounted in advance, the resistance value change of the ceramics humidity sensor is measured, and the resistance value of the ceramics humidity sensor and the characteristic value of the mounted component mounted on the electronic control board are measured. The gist is to estimate the degree of deterioration of the mounted components mounted on the computerized control board from the correspondence and evaluate the remaining life of the computerized control board. With this configuration, the degree of deterioration of the mounted component is estimated from the change in the resistance value of the ceramic humidity sensor, and the remaining life of the electronic control board is evaluated.

【0018】請求項12記載の電子装置の寿命診断方法
は、計器や制御装置を含む電子装置の寿命診断をする際
に、診断対象である電子装置を構成する電子化制御基板
上に、製造時に予め診断用のセラミックス湿度センサを
実装しておき、このセラミックス湿度センサの抵抗値変
化を測定し、セラミックス湿度センサの抵抗値と前記電
子化制御基板上に実装されるICの腐食量との対応関係
から前記電子化制御基板上に実装されている実装ICの
腐食量を推定し、電子化制御基板の余寿命を評価するこ
とを要旨とする。この構成により、セラミックス湿度セ
ンサの抵抗値変化から実装ICの腐食量が推定されて電
子化制御基板の余寿命が評価される。
According to a twelfth aspect of the present invention, there is provided a method for diagnosing the life of an electronic device, wherein when diagnosing the life of an electronic device including an instrument and a control device, it is mounted on an electronic control board constituting the electronic device to be diagnosed at the time of manufacturing. A ceramics humidity sensor for diagnosis is mounted in advance, the resistance value change of the ceramics humidity sensor is measured, and the correspondence between the resistance value of the ceramics humidity sensor and the corrosion amount of the IC mounted on the electronic control board is measured. From the above, the amount of corrosion of the mounted IC mounted on the computerized control board is estimated, and the remaining life of the computerized control board is evaluated. With this configuration, the corrosion amount of the mounted IC is estimated from the change in the resistance value of the ceramics humidity sensor to evaluate the remaining life of the electronic control board.

【0019】請求項13記載の電子装置の寿命診断方法
は、計器や制御装置を含む電子装置の寿命診断をする際
に、診断対象である電子装置を構成する電子化制御基板
上に、製造時に予め診断用のセラミックス湿度センサを
実装しておき、このセラミックス湿度センサの抵抗値変
化を測定し、セラミックス湿度センサの抵抗値と前記電
子化制御基板上に実装されるコンデンサの性能値との対
応関係から前記電子化制御基板上に実装されている実装
コンデンサの性能値を推定し、電子化制御基板の余寿命
を評価することを要旨とする。この構成により、セラミ
ックス湿度センサの抵抗値変化から実装コンデンサの静
電容量、誘電正接又は絶縁抵抗等の性能値が推定されて
電子化制御基板の余寿命が評価される。
According to a thirteenth aspect of the present invention, there is provided a method for diagnosing a life of an electronic device, wherein, when diagnosing the life of an electronic device including an instrument and a control device, it is mounted on an electronic control board constituting the electronic device to be diagnosed at the time of manufacturing. A ceramics humidity sensor for diagnosis is mounted in advance, the resistance value change of the ceramics humidity sensor is measured, and the correspondence between the resistance value of the ceramics humidity sensor and the performance value of the capacitor mounted on the electronic control board is measured. From the above, the gist is to estimate the performance value of the mounting capacitor mounted on the computerized control board and evaluate the remaining life of the computerized control board. With this configuration, performance values such as capacitance, dielectric loss tangent or insulation resistance of the mounted capacitor are estimated from changes in the resistance value of the ceramics humidity sensor to evaluate the remaining life of the computerized control board.

【0020】[0020]

【発明の実施の形態】本発明の骨子は、電子装置の寿命
診断において、電子装置を構成する電子化制御基板(プ
リント配線基板)の基板材料性能や実装部品の特性を、
電子装置の機能を損なわずに非破壊で測定又は推定する
こと、また診断パラメータとする基板材料性能極値の導
出に極値統計法を用いてサンプリング数を極力小さく
し、診断における測定作業の軽減を図ることにより、現
地寿命診断を可能にするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The essence of the present invention is that, in the life diagnosis of an electronic device, the board material performance of the electronic control board (printed wiring board) constituting the electronic device and the characteristics of the mounted parts are
Non-destructive measurement or estimation without impairing the function of the electronic device, and the extreme value statistical method is used to derive the extreme value of the substrate material performance as a diagnostic parameter, and the sampling number is minimized to reduce the measurement work in diagnosis. This will enable on-site life diagnosis.

【0021】以下、上記のような考え方に基づく本発明
の各実施の形態を図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention based on the above concept will be described in detail with reference to the drawings.

【0022】図1及び図2は、本発明に係る電子装置の
寿命診断方法の第1の実施の形態を説明するためのフロ
ーチャート及び具体的な手順を示す図である。これらの
図を用いて本実施の形態を説明する。基板材料性能測定
を行う前に、まず診断対象を構成する電子化制御基板の
全枚数を把握し、それを各グループの枚数が略均等にな
るように複数のグループに分割する(ステップ10
1)。分割した中から幾つかのグループを任意に抽出し
(ステップ102)、抽出したグループについて基板材
料性能測定を行う(ステップ103)。測定する基板材
料性能の例としては、プリント配線基板の表面抵抗、体
積抵抗率、誘電率、はんだ接合部強度等が挙げられる。
これらの基板材料性能はオンラインで監視してもよい
が、急激に変化するものではなく経年劣化に伴って起こ
ると考えられるので、定期点検時などのオフライン時に
対象基板を抜き取り、現地において非破壊で測定する。
測定の結果、特に劣化が認められなければ、定期点検後
は製品内に戻して通常使用する形態が現実的である。こ
こで、基板材料性能の測定の際、その測定方法及び条件
が、後述する余寿命評価の際の基板材料性能の限界値を
定義する規格に適合しているか否かが判断される(ステ
ップ104)。この規格には、基板材料性能の測定方法
や前処理条件などが規定されているので、採用する規格
に従った測定方法及び条件で測定を行わなければならな
い。定期点検時に現地で基板材料性能の測定を実施する
際に、この規定条件を満たすことができない場合には、
測定値の補正が行われる(ステップ105)。補正は、
予め測定方法の違いによる測定値のずれや前処理の有無
による基板材料性能値の違いなどを対象材料及び規定毎
にデータベースに蓄積しておき、必要時にデータベース
から補正データを呼び出して行う。測定した基板材料性
能値又は補正した基板材料性能値については極値統計処
理を実施し、診断対象を構成する基板全数における材料
性能値の極値(最大又は最小値)を推定する(ステップ
106)。具体的には、図2に示すような手順となる。
抽出した各グループ毎にデータをまとめ、各グループ内
における測定値の極値を求める。得られた各グループの
極値が最大値なら昇順、最小値ならば降順に並べ替え、
これをガンベル確率紙にプロットする。プロットした点
の回帰近似直線と再帰期間との交点から診断対象内の基
板全数における基板材料性能の極値を推定し、この値が
規格から外れていれば、診断対象を構成する電子化制御
基板の集合全体を不適合とする。余寿命の推定は、全基
板の極値の時系列変化を調べ、この時系列変化曲線が、
データベースから読み込んだ所望の規格で定義される限
界値(閾値)(ステップ107)を超える点を寿命点と
定義することにより、定量的に行うことができる(ステ
ップ108)。即ち、電子化制御基板の表面抵抗や体積
抵抗率、はんだ接合部強度等は劣化とともに減少する
が、ある下限値以上をキープしなければならない。そこ
で、極値統計法により全対象基板内における最小値を推
定し、これが閾値を下回る点を寿命とする。一方、誘電
率は劣化に伴う上昇に対して、ある上限値以下をキープ
しなければならない。そこで、極値統計法により全対象
基板内における最大値を推定し、これが閾値を上回る点
を寿命とする。余寿命の評価結果等はモニタやプリン
タ、記憶装置などに出力する(ステップ109)。
FIGS. 1 and 2 are a flow chart and a concrete procedure for explaining the first embodiment of the method for diagnosing the life of an electronic device according to the present invention. This embodiment will be described with reference to these drawings. Before performing the substrate material performance measurement, first, the total number of computerized control boards constituting the diagnosis target is grasped and divided into a plurality of groups so that the numbers of the respective groups are substantially equal (step 10).
1). Some groups are arbitrarily extracted from the divided groups (step 102), and the substrate material performance is measured for the extracted groups (step 103). Examples of the substrate material performance to be measured include surface resistance, volume resistivity, dielectric constant, solder joint strength, etc. of the printed wiring board.
These substrate material performances may be monitored online, but since they do not change suddenly and are thought to occur with aging, the target substrate should be pulled off during offline inspections such as during periodic inspections and non-destructive at the site. taking measurement.
If there is no particular deterioration as a result of the measurement, it is realistic to return the product to the product after regular inspection and use it normally. Here, at the time of measuring the substrate material performance, it is judged whether or not the measuring method and conditions conform to the standard that defines the limit value of the substrate material performance at the time of evaluating the remaining life described later (step 104). ). Since this standard defines the measurement method of substrate material performance, pretreatment conditions, etc., it is necessary to perform the measurement according to the measurement method and conditions according to the adopted standard. If the specified conditions cannot be met when the substrate material performance is measured locally during regular inspections,
The measurement value is corrected (step 105). The correction is
Differences in measured values due to differences in measurement methods and differences in substrate material performance values due to the presence or absence of pretreatment are stored in a database for each target material and regulation, and correction data is called from the database when necessary. An extreme value statistical process is performed on the measured substrate material performance value or the corrected substrate material performance value, and the extreme value (maximum or minimum value) of the material performance value in all the substrates constituting the diagnosis target is estimated (step 106). . Specifically, the procedure is as shown in FIG.
The data is collected for each extracted group, and the extreme value of the measured value in each group is obtained. If the obtained extreme value of each group is the maximum value, it is sorted in ascending order, and if it is the minimum value, it is sorted in descending order,
This is plotted on the Gumbel probability paper. Estimate the extreme value of the substrate material performance for the total number of substrates in the diagnosis target from the intersection of the regression approximation line of the plotted points and the recurrence period, and if this value is out of the standard, the electronic control board that constitutes the diagnosis target The entire set of is irrelevant. The remaining life is estimated by examining the time series change of the extreme values of all the boards, and this time series change curve is
By defining a point that exceeds the limit value (threshold value) (step 107) defined by a desired standard read from the database as a life point, it can be quantitatively performed (step 108). That is, although the surface resistance, volume resistivity, solder joint strength, etc. of the electronic control board decrease with deterioration, they must be kept above a certain lower limit. Therefore, the minimum value in all the target substrates is estimated by the extreme value statistical method, and the point at which this value falls below the threshold value is the life. On the other hand, the dielectric constant must be kept below a certain upper limit with respect to the rise due to deterioration. Therefore, the maximum value in all the target substrates is estimated by the extreme value statistical method, and the point at which it exceeds the threshold is set as the life. The evaluation result of the remaining life is output to a monitor, a printer, a storage device, etc. (step 109).

【0023】図3乃至図6は、本発明に係る電子装置の
寿命診断装置の第1の実施の形態を示す図である。本実
施の形態の電子装置の寿命診断装置は、上記電子装置の
寿命診断方法の第1の実施の形態を実行するための装置
に相当する。まず、図3のブロック図を用いて全体構成
を説明する。電子装置の寿命診断装置1は、電子化制御
基板上の空きスペースで基板材料性能を非破壊で測定す
る基板材料性能測定手段2と、基板材料性能測定条件が
所望の規格に従えない場合に測定データを補正する測定
値補正手段3と、測定もしくは補正した基板材料性能値
から診断対象を構成する電子化制御基板全数に対する基
板材料性能値の極値を推定する極値統計処理手段4と、
基板材料性能測定値を補正するための補正データ、診断
対象種及び診断パラメータ(測定基板材料性能種)毎に
寿命診断アルゴリズムを蓄積するデータベース5と、デ
ータベース5から寿命診断アルゴリズムを読み込み、余
寿命を定量的に評価する寿命判定手段6と、診断結果等
を出力する出力手段7とから構成されている。
FIGS. 3 to 6 are views showing a first embodiment of a life diagnostic device for an electronic device according to the present invention. The electronic device life diagnosing apparatus according to the present embodiment corresponds to an apparatus for executing the first embodiment of the electronic device life diagnosing method. First, the overall configuration will be described with reference to the block diagram of FIG. An electronic device life diagnosis device 1 measures a substrate material performance measuring means 2 for non-destructively measuring substrate material performance in an empty space on an electronic control substrate, and a substrate material performance measurement condition when the conditions cannot meet a desired standard. A measured value correction means 3 for correcting the data, and an extreme value statistical processing means 4 for estimating the extreme value of the substrate material performance value with respect to the total number of computerized control boards constituting the diagnosis object from the measured or corrected substrate material performance value,
Correction data for correcting the measured values of board material performance, database 5 that accumulates a life diagnosis algorithm for each diagnostic object type and diagnosis parameter (measurement board material performance type), and the life diagnosis algorithm is read from database 5 to determine the remaining life. It is composed of a life determining means 6 for quantitatively evaluating and an output means 7 for outputting a diagnosis result and the like.

【0024】次に、図4、図5及び図6を用いて、上記
基板材料性能測定手段2の具体例である絶縁抵抗測定装
置、静電容量測定装置及び色彩測定システムを順に説明
する。
Next, an insulation resistance measuring device, a capacitance measuring device and a color measuring system, which are specific examples of the substrate material performance measuring means 2, will be described in order with reference to FIGS. 4, 5 and 6.

【0025】図4は、基板材料性能測定手段2として、
絶縁抵抗測定装置12を使用した例を示している。基板
材料性能として電子化制御基板11の表面抵抗や体積抵
抗率を測定する場合は、絶縁抵抗測定装置12を用い
る。測定時の電子化制御基板11上の非実装部(空きス
ペース)11aに導電性シルバーペイントや接着銅箔で
円形の電極を作成し、体積抵抗測定では上部電極の内円
13aと下部電極13cに、表面抵抗測定では上部電極
の内円13aと外円13bの間に電圧を印加する。そし
て、回路図に示すような標準抵抗器Rs に対する比較法
等で体積抵抗及び表面抵抗を測定する。体積抵抗率ρv
は次式にしたがって計算で与えられる。 ρv =(πd2 /4t)・Rv …(1) d:上部電極の内円の外径 t:基板の厚さ Rv :体積抵抗
FIG. 4 shows the substrate material performance measuring means 2.
The example which used the insulation resistance measuring device 12 is shown. When measuring the surface resistance and volume resistivity of the electronic control board 11 as the board material performance, the insulation resistance measuring device 12 is used. A circular electrode was created on the non-mounting part (empty space) 11a on the electronic control board 11 at the time of measurement with conductive silver paint or adhesive copper foil, and in the volume resistance measurement, the inner circle 13a of the upper electrode and the lower electrode 13c were formed. In the surface resistance measurement, a voltage is applied between the inner circle 13a and the outer circle 13b of the upper electrode. Then, the volume resistance and the surface resistance are measured by a comparison method or the like with respect to the standard resistor R s as shown in the circuit diagram. Volume resistivity ρ v
Is calculated according to the following formula. ρ v = (πd 2 / 4t) · R v (1) d: outer diameter of inner circle of upper electrode t: substrate thickness R v : volume resistance

【0026】図5は、基板材料性能測定手段2として、
静電容量測定装置14を使用した例を示している。基板
材料性能として電子化制御基板11の誘電率や誘電正接
を測定する場合は、静電容量測定装置14を用いる。絶
縁抵抗測定と同様に、測定時に電子化制御基板11上の
非実装部(空きスペース)11aに導電性シルバーペイ
ントや接着銅箔で円形の電極15a,15bを作成し、
電子化制御基板11を誘電体としたコンデンサCx を形
成する。これを、静電容量測定装置14である変圧器ブ
リッジ法測定回路のCx の位置に接続し、測定用可変コ
ンデンサCs とコンダクタンスシフタgを調節すること
によって、ブリッジを平衡させたときのCs の値、コン
ダクタンスシフタgのm−d間のコンダクタンスS、l
−m間の抵抗値及びm−r間の抵抗値を測定する。そし
て、以下の式によって誘電率ε及び誘電正接tan δを算
出する。
FIG. 5 shows the substrate material performance measuring means 2.
An example using the capacitance measuring device 14 is shown. When measuring the permittivity or dielectric loss tangent of the electronic control substrate 11 as the substrate material performance, the capacitance measuring device 14 is used. Similar to the insulation resistance measurement, circular electrodes 15a and 15b are formed on the non-mounting part (empty space) 11a on the electronic control board 11 with conductive silver paint or adhesive copper foil,
The electronic control board 11 to form the capacitor C x with a dielectric. This is connected to the position of C x of the transformer bridge method measuring circuit which is the capacitance measuring device 14, and the variable capacitor C s for measurement and the conductance shifter g are adjusted to C when the bridge is balanced. The value of s , the conductance S, l between m and d of the conductance shifter g
The resistance value between −m and the resistance value between m and r are measured. Then, the dielectric constant ε and the dielectric loss tangent tan δ are calculated by the following formulas.

【0027】[0027]

【数1】 ε=Cx /C0 …(2) Cx :ブリッジが平衡になったときの測定用コンデンサ
s の容量 C0 :主電極の面積及び絶縁基板の厚さから算出したε
=1の静電容量 C0 =r2 /3.6t r:主電極の半径、t:基板の厚さ tan δ=Gx /(2πf・Cx ) …(3) Gx :絶縁基板のコンダクタンス Gx =G・(S/100) S:コンダクタンスシフタgのm−d間のコンダクタン
ス S/100:コンダクタンスシフタの平衡点の抵抗比 f:測定周波数
## EQU1 ## ε = C x / C 0 (2) C x : capacitance C 0 of the measuring capacitor C s when the bridge is in balance: ε calculated from the area of the main electrode and the thickness of the insulating substrate
= 1 capacitance C 0 = r 2 /3.6t r: radius of main electrode, t: thickness of substrate tan δ = G x / (2πf · C x ) ... (3) G x : of insulating substrate Conductance G x = G · (S / 100) S: Conductance between m and d of the conductance shifter S / 100: Resistance ratio at the equilibrium point of the conductance shifter f: Measurement frequency

【0028】図6は、基板材料性能測定手段2として、
はんだ付け部位のはんだの強度をはんだの色として評価
する色彩測定システムを使用した例を示している。基板
材料性能として、はんだ付け部位のはんだの強度を評価
する場合は、色彩測定システム16を用いる。取込み用
光学系16aにより電子化制御基板11上のあるはんだ
付け部位に光を入・反射させ、CCDカメラ等の測定系
16bで反射光を測定し、処理系16cではんだの色彩
値を分析する。XYステージ16dと取込み用光学系1
6aで所望の部位を観測できるよう光路を調節する。処
理系16cでは測定した光学信号から、図6(b)のグ
ラフに示すような、はんだ強度とはんだ色彩値の相関に
基づいてはんだ強度を導出する。
FIG. 6 shows, as the substrate material performance measuring means 2,
The example which uses the color measuring system which evaluates the strength of the solder of a soldering part as a color of a solder is shown. When evaluating the strength of the solder at the soldering site as the board material performance, the color measurement system 16 is used. Light is made to enter / reflect at a certain soldering portion on the electronic control board 11 by the taking-in optical system 16a, reflected light is measured by a measuring system 16b such as a CCD camera, and the color value of the solder is analyzed by a processing system 16c. . XY stage 16d and capturing optical system 1
The optical path is adjusted so that the desired portion can be observed at 6a. The processing system 16c derives the solder strength from the measured optical signal based on the correlation between the solder strength and the solder color value as shown in the graph of FIG. 6B.

【0029】また、上記の基板材料性能特性を測定する
ための試験片を電子装置の回路とは独立した形で、予め
電子化制御基板上に組み込んでおけば、所望の規格に準
拠した測定が実施でき、電子装置の機能を損なわずに測
定することも可能である。例えば、予め電子化制御基板
上の一部に絶縁抵抗測定用の端子や誘電率及び誘電正接
測定用の電極をつけておくとか、はんだ強度測定の引っ
張り試験用に引っ張りピンをはんだ付けした構造の試験
片を電子化制御基板の傍らに幾つか付けておき、定期点
検毎に試験片を切り取って試験を行うとか、もしくは、
試験片のみで構成された電子化制御基板を他の電子化制
御基板と一緒に装置内に差し込んでおく等の措置も考え
られる。
If the test piece for measuring the above-mentioned substrate material performance characteristics is incorporated in advance on the electronic control board in a form independent of the circuit of the electronic device, the measurement conforming to the desired standard can be carried out. It can be carried out and can be measured without impairing the function of the electronic device. For example, a terminal for insulation resistance measurement or an electrode for measurement of dielectric constant and dielectric loss tangent is attached to a part of the electronic control board in advance, or a pull pin is soldered for a pull test for solder strength measurement. Some test pieces are attached near the computerized control board, and the test pieces are cut out for each periodic inspection, or
Measures such as inserting an electronic control board composed only of test pieces into the device together with other electronic control boards may be considered.

【0030】このようにして測定した基板材料性能値
は、測定方法及び条件が、余寿命評価する際に材料性能
の限界値を定義する規格に従っている場合は、極値統計
処理手段4に送られ、従っていない場合は測定値補正手
段3に送られる。測定値補正手段3では、実際の測定条
件と所望の規格の規定に従った測定条件との間で発生す
るデータのずれを埋め合わせる。具体的には、加速試験
等で基板の劣化を進行させて、実際の測定方法と規格で
規定する測定方法の双方で基板材料性能を測定したデー
タをデータベース5に蓄積しておき、それぞれのデータ
の回帰近似関数を基にして測定値を補正する。極値統計
処理手段4は、前記図2で説明した処理を行い、推定し
た極値を寿命判定手段6に出力する。データベース5
は、診断対象種、規格種、基板材料性能種などをキーと
して、それぞれに適合する測定値補正データや寿命判定
用閾値を保存している。また、寿命診断結果が保存可能
で、診断辞書として参照できる。寿命判定手段6は、極
値統計処理手段4からは基板材料性能の推定極値を、デ
ータベース5からは所望の規格に定義されている基板材
料性能の限界値(閾値)を読み込み、推定極値の時系列
変化(回帰近似曲線)と基板材料性能の限界値(閾値)
によって定まる診断アルゴリズムによって、余寿命や劣
化度を定量的に評価し、評価結果を出力手段7に送る。
出力手段7は、寿命判定手段6の出力として診断対象の
余寿命や劣化度をモニタやプリンタ、記憶装置などに出
力する。
The substrate material performance value thus measured is sent to the extreme value statistical processing means 4 when the measuring method and conditions comply with the standard that defines the limit value of the material performance when the remaining life is evaluated. If not, it is sent to the measured value correcting means 3. The measurement value correction means 3 compensates for the data shift that occurs between the actual measurement conditions and the measurement conditions according to the specifications of the desired standard. Specifically, the deterioration of the substrate is accelerated by an accelerated test, etc., and the data obtained by measuring the substrate material performance by both the actual measurement method and the measurement method specified by the standard are accumulated in the database 5, and the respective data are stored. The measured values are corrected based on the regression approximation function of. The extreme value statistical processing means 4 outputs the estimated extreme value to the life determining means 6 by performing the processing described in FIG. Database 5
Stores the measured value correction data and the life determination threshold value that match each other, using the diagnostic target type, standard type, substrate material performance type, etc. as keys. Further, the life diagnosis result can be stored and can be referred to as a diagnosis dictionary. The life determining unit 6 reads the estimated extreme value of the substrate material performance from the extreme value statistical processing unit 4 and the limit value (threshold value) of the substrate material performance defined in a desired standard from the database 5, and estimates the estimated extreme value. Time series change (regression approximation curve) and substrate material performance limit value (threshold value)
The remaining life and the degree of deterioration are quantitatively evaluated by the diagnostic algorithm determined by and the evaluation result is sent to the output means 7.
The output unit 7 outputs the remaining life and the degree of deterioration of the diagnosis target to the monitor, the printer, the storage device, etc. as the output of the life determination unit 6.

【0031】このようにして、電子装置の寿命診断装置
の第1の実施の形態では、電子化制御基板上の空きスペ
ースを利用したり、診断用試験片などを組み込むので、
対象電子装置の機能を損なうことなく、非破壊で基板材
料性能を測定することができる。また、極値統計処理を
行うので、測定対象を対象内の一部に抑えることがで
き、診断に要する時間や手間を縮小することができる。
As described above, in the first embodiment of the electronic device life diagnosing device, the vacant space on the computerized control board is used, and the diagnostic test piece is incorporated.
The substrate material performance can be measured nondestructively without impairing the function of the target electronic device. Moreover, since the extreme value statistical processing is performed, the measurement target can be suppressed to a part of the target, and the time and effort required for diagnosis can be reduced.

【0032】図7、図8には、本発明に係る電子装置の
寿命診断装置の第2の実施の形態を示す。なお、図7に
おいて前記図3におけるブロックと同一ないし均等のも
のは、前記と同一符号を以って示し、重複した説明を省
略する。図7に示すように、本実施の形態の電子装置の
寿命診断装置10は、極値統計処理手段4と寿命判定手
段6との間に、測定した基板材料性能値と実装部品の状
態量の相関曲線に基づき極値統計処理手段4で求めた極
値に対応する実装部品の状態量を算出する実装部品の状
態量算出手段(状態量変換手段)8が接続されている。
またデータベース5には、診断対象種毎の寿命診断アル
ゴリズム等の他に、基板材料性能と実装部品の状態量の
相関曲線が蓄積されている。
FIG. 7 and FIG. 8 show a second embodiment of a life diagnostic device for an electronic device according to the present invention. In FIG. 7, the same or equivalent blocks as those in FIG. 3 are designated by the same reference numerals, and the duplicated description will be omitted. As shown in FIG. 7, the life diagnostic apparatus 10 for an electronic device according to the present embodiment is arranged between the extreme value statistical processing means 4 and the life determination means 6 to show the measured board material performance value and the state quantity of the mounted component. A state quantity calculating means (state quantity converting means) 8 for calculating the state quantity of the mounted component corresponding to the extreme value obtained by the extreme value statistical processing means 4 based on the correlation curve is connected.
In addition to the lifespan diagnosis algorithm for each diagnosis target type, the database 5 also stores a correlation curve between the board material performance and the state quantity of the mounted component.

【0033】上記のように構成された電子装置の寿命診
断装置において、実装部品の状態量算出手段8は、図8
に示すように、測定する基板材料性能をその基板上の実
装部品の状態量に変換する。例えば、基板材料性能とし
て絶縁抵抗値を考えると、経年劣化に伴い、絶縁抵抗値
が減少する。この絶縁抵抗値の減少が顕著で所望の規格
で定義されている限界値に至るほどであれば、余寿命の
推定は容易であり、寿命診断方法は第1の実施の形態に
従えばよいが、経年劣化が進行しているにも関わらず、
基板材料性能値の変化が微少な場合には、経年劣化を感
度よくとらえることができる指標を寿命診断パラメータ
にしなければいけない。このようなパラメータとして、
ICのAl配線腐食量や電解コンデンサの静電容量など
があるが、これらの値はICや電解コンデンサを電子化
制御基板上から取り外さなければ測定できない。そこ
で、非破壊でICのAl配線腐食量やコンデンサ静電容
量等といった実装部品の状態量を推定できるように、予
め、これらの状態量と非破壊で測定できる基板材料性能
値との相関を加速試験等で調べ、これをデータベース5
上に蓄積しておく。そして、極値統計処理手段4で得ら
れた診断対象内の基板材料性能の最大値もしくは最小値
を、前記相関に基づいてICのAl配線腐食量(図8
(a))や、コンデンサ静電容量(図8(c))等に変
換する。
In the electronic device life diagnosing device configured as described above, the mounted component state quantity calculating means 8 is shown in FIG.
As shown in, the measured board material performance is converted into the quantity of state of the mounted components on the board. For example, considering the insulation resistance value as the material performance of the substrate, the insulation resistance value decreases as it ages. If the decrease in the insulation resistance value is remarkable and reaches the limit value defined by the desired standard, the remaining life can be easily estimated, and the life diagnosis method may be according to the first embodiment. , Despite the deterioration over time,
When the change in the substrate material performance value is small, an index that can detect aging deterioration with high sensitivity must be used as a life diagnosis parameter. As such a parameter,
Although there are amounts of corrosion of Al wiring of IC and capacitance of electrolytic capacitor, these values cannot be measured unless the IC and electrolytic capacitor are removed from the electronic control board. Therefore, the correlation between these state quantities and the substrate material performance values that can be measured nondestructively is accelerated in advance so that the state quantities of mounted parts such as the Al wiring corrosion amount of the IC and the capacitor capacitance can be estimated nondestructively. Examined by tests, etc., and database 5
Accumulate on top. Then, the maximum value or the minimum value of the performance of the substrate material in the diagnosis target obtained by the extreme value statistical processing means 4 is determined based on the correlation and the amount of Al wiring corrosion of the IC (FIG. 8).
(A)) and the electrostatic capacity of the capacitor (FIG. 8 (c)).

【0034】寿命判定手段6では、変換した値がデータ
ベース5に蓄積されるその状態量の時系列曲線のどの位
置に相当するかを調べ、余寿命や劣化度を推定する(図
8(b),(d))。推定した結果は、出力手段7にて
モニタやプリンタ、記憶装置などに出力する。
The life determining means 6 checks which position on the time series curve of the state quantity the converted value corresponds to, and estimates the remaining life and the degree of deterioration (FIG. 8 (b)). , (D)). The estimated result is output to a monitor, a printer, a storage device or the like by the output means 7.

【0035】このようにして、電子装置の寿命診断装置
の第2の実施の形態では、基板材料性能値からICのA
l配線腐食量やコンデンサ静電容量などの実装部品の状
態量を推定することができ、電子装置の機能を損なうこ
となく、非破壊で余寿命や劣化度を定量的に評価するこ
とができる。また、基板材料性能値が規格外に至らない
場合においても、基板材料性能値を、より変化量が大き
く寿命点を定義できるような状態に変換してやれば、余
寿命推定が可能となる。
As described above, in the second embodiment of the life diagnosing apparatus for electronic devices, the A
It is possible to estimate the amount of state of mounted components such as the amount of wiring corrosion and the capacitance of a capacitor, and it is possible to quantitatively evaluate the remaining life and the degree of deterioration in a nondestructive manner without impairing the function of the electronic device. Even when the substrate material performance value does not fall outside the standard, the remaining life can be estimated by converting the substrate material performance value into a state in which the change amount is larger and the life point can be defined.

【0036】次に、図9には、本発明に係る電子装置の
寿命診断方法の第2の実施の形態を示す。本実施の形態
の電子装置の寿命診断方法は、診断対象の電子装置を構
成する電子化制御基板上に、製造時に予め診断用のセラ
ミックス湿度センサを実装しておき、このセラミックス
湿度センサの抵抗変化を測定し、セラミックス湿度セン
サの抵抗値と実装部品の状態量との対応関係から電子化
制御基板の余寿命を評価するものである。診断用セラミ
ックス湿度センサは、多孔質セラミックからなってお
り、この気孔内に水蒸気が入ると、微結晶粒子の表面に
水分子が吸着する。一般的にセラミックス湿度センサ
は、水の吸脱着が容易な物理吸着を利用して湿度を検知
する。そのため、センサの劣化や経年変化に伴う化学吸
着を除くために、セラミックスを定期的に加熱すること
により化学吸着した水やガスを離脱させるが、本実施の
形態においては化学吸着の方に着目し、センサの劣化や
経年変化と実装部品の状態量の相関を予め加速試験など
で調べておき、データベースに保存しておく。セラミッ
クス湿度センサが環境からの水分やガスを化学吸着して
劣化すると、図9(c)に示すようにその抵抗値は時系
列的に減少する。一方、セラミックス湿度センサが化学
吸着により劣化するのと同様に、吸湿により実装ICの
Al配線腐食量が増大することがわかっている。したが
って、セラミックス湿度センサの抵抗値の変化と実装I
CのAl配線腐食量との相関を事前に調べ、IC種毎に
データベースに診断用データとして蓄積しておけば、実
装ICを基板から外すことなく、セラミックス湿度セン
サの抵抗値をモニタするだけで実装ICのAl配線腐食
量を推定することができる(図9(b))。そして、各
IC種毎に高加速試験などで故障に至る腐食量を求め、
この腐食量に到達するときのセラミックス湿度センサの
抵抗値を寿命点と定義して、余寿命を定量的に評価する
ことができる。同様に、経年劣化による実装コンデンサ
の静電容量の低下とセラミックス湿度センサの抵抗値の
相関を事前に調べ、コンデンサ種毎にデータベースに診
断用データとして蓄積しておけば、実装コンデンサを基
板から外すことなく、セラミックス湿度センサの抵抗値
をモニタするだけで実装コンデンサの静電容量を推定す
ることができ、コンデンサの故障判定基準に基づく静電
容量閾値を寿命点と定義して、余寿命を定量的に評価す
ることができる。具体的には、加速試験で調べたセラミ
ックス湿度センサの抵抗値の時系列変化曲線において、
セラミックス湿度センサの抵抗初期値、診断時における
セラミックス湿度センサ抵抗値、実装部品の状態量で定
義される寿命点のセラミックス湿度センサ抵抗値の3点
について比例配分計算を行い、余寿命を計算する。例え
ば、図9(c)に示すように、フィールドで10年使用
した電子装置から取り出した電子化制御基板上のセラミ
ックス湿度センサ抵抗値がb点で、その初期値がa点、
寿命点抵抗値がc点であったとすれば、 余寿命=10年×(bc/ac) …(4) と求められる。セラミックス湿度センサの抵抗値測定
は、オンラインでモニタすることもできるが、実用的に
は第1の実施の形態と同様、定期点検時にオフラインで
測定して極値統計処理を行い、診断対象を構成する電子
化制御基板全数におけるセラミックス湿度センサ抵抗最
小値を推定して、寿命点抵抗値の関係から余寿命を見積
もる。
Next, FIG. 9 shows a second embodiment of the method for diagnosing the life of an electronic device according to the present invention. The method for diagnosing the life of the electronic device of the present embodiment is such that a ceramics humidity sensor for diagnosis is mounted in advance on a computerized control board that constitutes the electronic device to be diagnosed at the time of manufacturing, and the resistance change of the ceramics humidity sensor is changed. Is measured and the remaining life of the electronic control board is evaluated from the correspondence between the resistance value of the ceramic humidity sensor and the state quantity of the mounted component. The diagnostic ceramic humidity sensor is made of porous ceramic, and when water vapor enters the pores, water molecules are adsorbed on the surface of the microcrystalline particles. Generally, a ceramics humidity sensor detects humidity by utilizing physical adsorption that allows easy adsorption and desorption of water. Therefore, in order to remove chemical adsorption due to sensor deterioration and aging, ceramics are heated regularly to release water and gas that have been chemically adsorbed.However, in the present embodiment, attention is paid to chemical adsorption. , Correlation between sensor deterioration and secular change and state quantity of mounted parts is checked in advance by an acceleration test or the like and stored in a database. When the ceramic humidity sensor is chemically adsorbed with moisture or gas from the environment and deteriorates, its resistance value decreases in time series as shown in FIG. 9C. On the other hand, it has been known that moisture absorption increases the amount of Al wiring corrosion of the mounted IC, in the same way that the ceramic humidity sensor deteriorates due to chemical adsorption. Therefore, the change of the resistance value of the ceramic humidity sensor and the mounting I
If the correlation with the amount of corrosion of Al wiring of C is checked in advance and accumulated as diagnostic data in the database for each IC type, it is possible to monitor the resistance value of the ceramic humidity sensor without removing the mounted IC from the substrate. The amount of Al wiring corrosion of the mounted IC can be estimated (FIG. 9B). Then, for each IC type, the amount of corrosion leading to a failure is calculated by a high acceleration test,
The remaining life can be quantitatively evaluated by defining the resistance value of the ceramics humidity sensor when reaching this amount of corrosion as the life point. Similarly, if the correlation between the decrease in the capacitance of the mounted capacitor due to deterioration over time and the resistance value of the ceramics humidity sensor is checked in advance and accumulated as diagnostic data in the database for each capacitor type, the mounted capacitor can be removed from the board. Without measuring the resistance value of the ceramics humidity sensor, the capacitance of the mounted capacitor can be estimated, and the capacitance threshold based on the failure criterion of the capacitor is defined as the life point to quantify the remaining life. Can be evaluated. Specifically, in the time series change curve of the resistance value of the ceramics humidity sensor examined in the acceleration test,
The remaining life is calculated by performing proportional distribution calculation on three points of the resistance value of the ceramics humidity sensor, the resistance value of the ceramics humidity sensor at the time of diagnosis, and the resistance value of the ceramics humidity sensor at the life point defined by the state quantity of the mounted component. For example, as shown in FIG. 9C, the resistance value of the ceramics humidity sensor on the computerized control board taken out from the electronic device used for 10 years in the field is point b, and its initial value is point a,
If the life point resistance value is point c, the remaining life is calculated as 10 years × (bc / ac) (4). The resistance value measurement of the ceramics humidity sensor can be monitored online, but practically, as in the first embodiment, offline measurement is performed at the time of regular inspection, and extreme value statistical processing is performed to configure the diagnosis target. Estimate the minimum value of the ceramic humidity sensor resistance in all electronic control boards to be used, and estimate the remaining life from the relationship of the life point resistance value.

【0037】このようにして、電子装置の寿命診断方法
の第2の実施の形態では、診断対象を構成する電子化制
御基板上に、製造時に予め実装しておくセラミックス湿
度センサの抵抗値を測定することにより、ICのAl配
線腐食量やコンデンサの静電容量などの実装部品の状態
量を推定することができ、装置の機能を損なうことな
く、非破壊で余寿命や劣化度を定量的に評価することが
できる。また、電子化制御基板上にセラミックス湿度セ
ンサの抵抗値をオンラインで測定する回路を組み込んで
おけば、電子装置のオンライン寿命診断が可能となる。
As described above, in the second embodiment of the method for diagnosing the life of the electronic device, the resistance value of the ceramics humidity sensor mounted in advance at the time of manufacturing is measured on the computerized control board constituting the diagnosis object. By doing so, it is possible to estimate the amount of state of mounted components such as the amount of corrosion of Al wiring of IC and the electrostatic capacity of capacitor, and to quantitatively determine the remaining life and the degree of deterioration without impairing the function of the device. Can be evaluated. Further, if a circuit for measuring the resistance value of the ceramics humidity sensor online is incorporated on the electronic control board, online life diagnosis of the electronic device becomes possible.

【0038】[0038]

【発明の効果】以上説明したように、請求項1記載の電
子装置の寿命診断方法によれば、計器や制御装置を含む
電子装置の寿命診断をする際に、診断対象である前記電
子装置を構成する電子化制御基板の全数を各グループの
枚数が略均等になるように複数のグループに分割し、分
割した中から幾つかのグループを任意に抽出して基板材
料性能測定を行い、各グループにおける基板材料性能測
定値の分布の極値統計をとることで前記診断対象内にお
ける全基板母数の基板材料性能値の最小もしくは最大値
を推定し、この推定値の時系列変化と前記基板材料性能
値の所定の規格で定義される限界値とから電子化制御基
板の余寿命を定量的に評価するようにしたため、寿命診
断のパラメータとして電子化制御基板の基板材料性能測
定値を採用しているので電子化制御基板から部品を取り
外したりする必要がなく、非破壊で測定することができ
る。極値統計法を用いて診断対象を構成する基板母数全
体における基板材料性能値の極値を推定するので、基板
母数全数の性能値測定を行う必要がなく、診断に要する
手間と時間を縮小することができる。また、寿命点を判
定する限界値をJIS規格等の所定の規格で定義してい
るので、予備実験でいちいち限界値を求めなくてもよ
く、その分診断を簡略化することができる。したがっ
て、定期点検時等において現地の保守員が容易に電子装
置の寿命診断を行うことができる。
As described above, according to the method of diagnosing the life of an electronic device according to the first aspect, when diagnosing the life of an electronic device including an instrument and a control device, the electronic device to be diagnosed Divide the total number of computerized control boards into multiple groups so that the number of boards in each group is approximately equal, and then extract some of the groups arbitrarily and measure the substrate material performance. In estimating the minimum or maximum of the substrate material performance value of the total substrate parameter in the diagnosis target by taking the extreme value statistics of the distribution of the substrate material performance measurement value in, the time series change of the estimated value and the substrate material Since the remaining life of the computerized control board is quantitatively evaluated from the limit value defined by the prescribed standard of performance value, the board material performance measurement value of the computerized control board is used as a parameter for life diagnosis. It is not necessary or removing a component from the electronic control board, so it can be measured by non-destructive. Since the extreme value of the board material performance value in the entire board parameter that constitutes the diagnosis target is estimated using the extreme value statistical method, it is not necessary to measure the performance value of all board parameters, and the labor and time required for diagnosis can be saved. Can be reduced. Further, since the limit value for determining the life point is defined by a predetermined standard such as JIS standard, it is not necessary to obtain the limit value by preliminary experiments, and the diagnosis can be simplified accordingly. Therefore, it is possible for a local maintenance staff to easily perform life diagnosis of the electronic device at the time of periodic inspection.

【0039】請求項2記載の電子装置の寿命診断方法に
よれば、前記電子化制御基板の基板材料性能値の最小も
くしは最大値の推定値と前記電子化制御基板上に実装さ
れているICの腐食量との相関曲線を基に基板材料性能
の推定値から非破壊で実装ICの腐食量を求め、この実
装IC腐食量の時系列変化及び腐食量とIC故障の相関
から前記実装ICの余寿命を定量的に推定して電子化制
御基板の余寿命を評価するようにしたため、電子化制御
基板の種類と実装ICの種類がわかれば、実装ICを取
り外すことなく、基板材料性能を非破壊で測定するだけ
で実装ICの腐食進行状況を推定することができ、それ
より実装ICの余寿命を定量的に推定して電子化制御基
板の余寿命を評価することができる。
According to the second aspect of the method for diagnosing the life of the electronic device, the minimum or maximum estimated value of the substrate material performance value of the electronic control board and the electronic control board are mounted on the electronic control board. The corrosion amount of the mounted IC is calculated nondestructively from the estimated value of the substrate material performance based on the correlation curve with the corrosion amount of the IC, and the mounted IC is calculated from the time series change of the corrosion amount of the mounted IC and the correlation between the corrosion amount and the IC failure. Since the remaining life of the electronic control board is evaluated by quantitatively estimating the remaining life of the electronic control board, if the type of electronic control board and the type of mounting IC are known, the board material performance can be determined without removing the mounting IC. The corrosion progress of the mounted IC can be estimated only by non-destructive measurement, and the remaining life of the mounted IC can be quantitatively estimated from it to evaluate the remaining life of the computerized control board.

【0040】請求項3記載の電子装置の寿命診断方法に
よれば、前記電子化制御基板の基板材料性能値の最小も
しくは最大値の推定値と前記電子化制御基板上に実装さ
れているコンデンサの性能値との相関曲線を基に基板材
料性能の推定値から非破壊で実装コンデンサの性能値を
求め、この実装コンデンサ性能値の時系列変化とコンデ
ンサの故障判定基準とから前記実装コンデンサの余寿命
を定量的に推定して電子化制御基板の余寿命を評価する
ようにしたため、電子化制御基板の種類と実装コンデン
サの種類がわかれば、実装コンデンサを取り外すことな
く、基板材料性能を非破壊で測定するだけで実装コンデ
ンサの性能劣化進行状況を推定することができ、それよ
り実装コンデンサの余寿命を定量的に推定して電子化制
御基板の余寿命を評価することができる。
According to a third aspect of the method for diagnosing the life of an electronic device, the estimated value of the minimum or maximum value of the substrate material performance value of the computerized control board and the capacitor mounted on the computerized control board. The non-destructive determination of the performance value of the mounted capacitor from the estimated value of the substrate material performance based on the correlation curve with the performance value, and the remaining life of the mounted capacitor based on the time-series change of the mounted capacitor performance value and the failure judgment criteria of the capacitor. Since the remaining life of the computerized control board is evaluated by quantitatively estimating the value, if the type of computerized control board and the type of mounting capacitor are known, the performance of the board material can be non-destructively without removing the mounting capacitor. The progress of performance deterioration of the mounted capacitor can be estimated only by measuring, and the remaining life of the mounted capacitor can be quantitatively estimated from it to estimate the remaining life of the electronic control board. Worth can be.

【0041】請求項4記載の電子装置の寿命診断装置に
よれば、診断対象である電子装置を構成する電子化制御
基板の基板材料性能値を測定する基板材料性能測定手段
と、基板材料性能測定時の構造、前処理を含む測定条件
が基板材料性能の限界値を定義する規格と異なる場合に
前記基板材料性能測定手段による測定値を補正する測定
値補正手段と、この測定値補正手段による補正後の基板
材料性能値について極値統計処理を実行する極値統計処
理手段と、この極値統計処理手段で求めた基板材料性能
値の最小・最大値の時系列変化と前記基板材料性能の限
界値から余寿命を判定する寿命判定手段と、前記補正を
行うための補正データ、寿命判定のための前記限界値、
前記極値統計処理結果及び前記判定結果を保持するデー
タベースと、一連の診断結果を表示する出力手段とを具
備させたため、基板材料性能測定時に基板材料性能の限
界値を定義する規格と異なる形態で測定を行った場合で
も、基板材料性能値を規格下で測定した値に補正できる
ので、所定の規格で定義される限界値を用いて余寿命を
的確に判定することができる。また、極値統計処理を行
うので、全基板の基板材料性能値を測定しなくても診断
対象内の基板材料性能値の極値が推定されて、診断に要
する手間と時間を縮小することができる。したがって、
定期点検時等において現地の保守員が容易且つ、的確に
電子装置の寿命診断を行うことができる。
According to the life diagnosing device of the electronic device of the fourth aspect, the substrate material performance measuring means for measuring the substrate material performance value of the computerized control substrate constituting the electronic device to be diagnosed, and the substrate material performance measuring And a measurement value correction means for correcting the measurement value by the substrate material performance measuring means when the measurement conditions including the structure and the pretreatment are different from the standard defining the limit value of the substrate material performance, and the correction by the measurement value correction means Extreme value statistical processing means for performing extreme value statistical processing on subsequent substrate material performance values, time-series changes of the minimum and maximum values of the substrate material performance values obtained by the extreme value statistical processing means, and the limit of the substrate material performance Life determining means for determining the remaining life from the value, correction data for performing the correction, the limit value for life determination,
Since the database for holding the extreme value statistical processing result and the determination result, and the output means for displaying a series of diagnostic results are provided, in a form different from the standard that defines the limit value of the substrate material performance at the time of measuring the substrate material performance. Even when the measurement is performed, the substrate material performance value can be corrected to the value measured under the standard, so that the remaining life can be accurately determined using the limit value defined by the predetermined standard. In addition, since the extreme value statistical processing is performed, the extreme value of the substrate material performance value in the diagnosis target can be estimated without measuring the substrate material performance value of all the boards, and the time and effort required for the diagnosis can be reduced. it can. Therefore,
A local maintenance staff can easily and accurately diagnose the life of the electronic device at the time of periodic inspection.

【0042】請求項5記載の電子装置の寿命診断装置に
よれば、前記極値統計処理手段で求めた基板材料性能値
の最小・最大値を、IC種毎の基板材料性能値−腐食量
相関曲線を基に前記電子化制御基板上に実装されている
ICの腐食量に変換する腐食量変換手段を備え、前記寿
命判定手段は、この腐食量変換手段による腐食量の変換
結果及び各IC種毎の腐食量の時系列変化曲線を基に実
装ICの余寿命を定量的に評価し、前記データベース
は、各種基板材料性能値、前記IC種毎の基板材料性能
値−腐食量相関曲線及び前記各IC種毎の腐食量の時系
列変化曲線を蓄積するようにしたため、電子化制御基板
の種類と実装ICの種類がわかれば、実装ICを取り外
すことなく、基板材料性能を非破壊で測定するだけで、
データベースから得た基板材料性能値−腐食量相関曲線
を用いて実装ICの腐食進行状況を推定することがで
き、IC故障に至る腐食量から実装ICの余寿命を定量
的に評価することができる。
According to the fifth aspect of the electronic device life diagnosis apparatus of the present invention, the minimum and maximum values of the substrate material performance value obtained by the extreme value statistical processing means are used as the substrate material performance value-corrosion amount correlation for each IC type. Corrosion amount conversion means for converting into a corrosion amount of the IC mounted on the electronic control board based on a curve is provided, and the life determination means includes the conversion result of the corrosion amount by this corrosion amount conversion means and each IC type. The remaining life of the mounted IC is quantitatively evaluated based on the time-series change curve of the corrosion amount for each, and the database is various board material performance values, the board material performance value-corrosion amount correlation curve for each IC type, and the above Since the time series change curve of the corrosion amount for each IC type is stored, if the type of electronic control board and the type of mounting IC are known, the material performance of the substrate can be measured nondestructively without removing the mounting IC. Alone
The progress of corrosion of the mounted IC can be estimated using the substrate material performance value-corrosion amount correlation curve obtained from the database, and the remaining life of the mounted IC can be quantitatively evaluated from the corrosion amount leading to the IC failure. .

【0043】請求項6記載の電子装置の寿命診断装置に
よれば、前記極値統計処理手段で求めた基板材料性能値
の最小・最大値を、コンデンサ種毎の基板材料性能値−
コンデンサ性能相関曲線を基に前記電子化制御基板上に
実装されているコンデンサの性能値に変換するコンデン
サ性能変換手段を備え、前記寿命判定手段は、このコン
デンサ性能変換手段によるコンデンサ性能値の変換結果
及び各コンデンサ種毎の性能値の時系列変化曲線を基に
実装コンデンサの余寿命を定量的に評価し、前記データ
ベースは、各種基板材料性能値、前記コンデンサ種毎の
基板材料性能値−コンデンサ性能相関曲線及び前記各コ
ンデンサ種毎の性能値の時系列変化曲線を蓄積するよう
にしたため、電子化制御基板の種類と実装コンデンサの
種類がわかれば、実装コンデンサを取り外すことなく、
基板材料性能を非破壊で測定するだけで、データベース
から得た基板材料性能値−コンデンサ性能相関曲線を用
いて実装コンデンサの性能劣化進行状況を推定すること
ができ、コンデンサ故障に至る性能劣化から実装コンデ
ンサの余寿命を定量的に評価することができる。
According to the life diagnosing device of the electronic device of the sixth aspect, the minimum and maximum values of the substrate material performance values obtained by the extreme value statistical processing means are used as the substrate material performance values for each capacitor type-
A capacitor performance conversion means for converting the performance value of the capacitor mounted on the computerized control board based on the capacitor performance correlation curve is provided, and the life determination means is the conversion result of the capacitor performance value by the capacitor performance conversion means. And the residual life of the mounted capacitors is quantitatively evaluated based on the time series change curve of the performance value for each capacitor type, and the database is various board material performance values, board material performance value for each capacitor type-capacitor performance. Since the correlation curve and the time series change curve of the performance value for each capacitor type are stored, if the type of the electronic control board and the type of the mounting capacitor are known, the mounting capacitor is not removed,
By simply measuring the board material performance non-destructively, the progress status of the performance deterioration of the mounted capacitor can be estimated using the board material performance value-capacitor performance correlation curve obtained from the database. The remaining life of the capacitor can be quantitatively evaluated.

【0044】請求項7記載の電子装置の寿命診断装置に
よれば、前記基板材料性能測定手段は、絶縁抵抗測定装
置からなり、前記電子化制御基板の一部分の体積抵抗率
又は表面抵抗を測定するようにしたため、基板材料性能
測定手段を絶縁抵抗測定装置としたことで、定期点検時
等において現地の保守員が容易に持ち運び、測定するこ
とができる。また、基板材料性能を電子化制御基板の一
部分の体積抵抗率又は表面抵抗としたことで、実装部以
外の余りスペースの小さい電子化制御基板でも容易に測
定することができ、さらには測定装置の電極形状を臨機
応変に変えることで対象基板の範囲を広げることができ
る。
According to a seventh aspect of the electronic device life diagnosing device, the substrate material performance measuring means comprises an insulation resistance measuring device, and measures the volume resistivity or surface resistance of a part of the computerized control substrate. Therefore, by using the insulation resistance measuring device as the substrate material performance measuring means, a local maintenance person can easily carry and measure it at the time of periodic inspection. Further, since the substrate material performance is defined as the volume resistivity or the surface resistance of a part of the electronic control board, it can be easily measured even in an electronic control board having a small space other than the mounting portion, The range of the target substrate can be expanded by changing the electrode shape flexibly.

【0045】請求項8記載の電子装置の寿命診断装置に
よれば、前記基板材料性能測定手段は、静電容量測定装
置からなり、前記電子化制御基板の一部分を電極で挟む
ことにより当該電子化制御基板を誘電体としたコンデン
サを形成し、その静電容量を測定して前記電子化制御基
板の誘電率を算出するようにしたため、基板材料性能測
定手段を静電容量測定装置としたことで、定期点検時等
において現地の保守員が容易に持ち運び、測定すること
ができる。また、基板材料性能を電子化制御基板の一部
分を電極で挟んだ静電容量としたことで、実装部以外の
余りスペースの小さい電子化制御基板でも容易に測定す
ることができ、さらには測定装置の電極形状を臨機応変
に変えることで対象基板の範囲を広げることができる。
According to another aspect of the present invention, there is provided an apparatus for diagnosing life of an electronic device, wherein the substrate material performance measuring means comprises a capacitance measuring device, and a part of the electronic control board is sandwiched by electrodes to perform the electronic conversion. Since a capacitor having a control board as a dielectric is formed and its capacitance is measured to calculate the dielectric constant of the electronic control board, it is possible to use a capacitance measuring device as the board material performance measuring means. The local maintenance staff can easily carry and measure it at the time of periodic inspection. In addition, by using the capacitance of the electronic control board as a part of the electronic control board for the substrate material performance, it is possible to easily measure even an electronic control board with a small space other than the mounting part, and a measuring device. The range of the target substrate can be expanded by changing the shape of the electrode according to circumstances.

【0046】請求項9記載の電子装置の寿命診断装置に
よれば、前記基板材料性能測定手段は、色彩測定システ
ムからなり、前記電子化制御基板上のはんだ付け部位の
はんだの強度をはんだの色として評価するようにしたた
め、診断対象電子装置の機能を損なうことなく、基板材
料性能値を非接触かつ非破壊で測定することができる。
According to a ninth aspect of the electronic device life diagnosing apparatus, the board material performance measuring means comprises a color measuring system, and the strength of the solder at the soldering portion on the computerized control board is determined by the color of the solder. Therefore, the substrate material performance value can be measured in a non-contact and non-destructive manner without impairing the function of the diagnosis target electronic device.

【0047】請求項10記載の電子装置の寿命診断装置
によれば、前記基板材料性能測定手段による電気的性能
及び機械的性能を含む基板材料性能の測定が可能なよう
に、所要の規格に従った基板材料性能測定用試験片を前
記電子化制御基板の一部に予め組み込んだため、現地で
の定期点検時等に基板材料性能測定用試験片を取り出
し、基板材料性能の測定を所望の規格に準拠して行うこ
とができる。これにより、電子装置の機能を損なわずに
基板材料性能値を測定することができる。
According to the life diagnosing device of the electronic device of the tenth aspect, according to the required standard, it is possible to measure the substrate material performance including the electrical performance and the mechanical performance by the substrate material performance measuring means. Since a test piece for measuring board material performance that has been incorporated into a part of the electronic control board in advance, the test piece for measuring board material performance is taken out at the time of on-site periodic inspection, etc. Can be done in accordance with. Thereby, the substrate material performance value can be measured without impairing the function of the electronic device.

【0048】請求項11記載の電子装置の寿命診断方法
によれば、計器や制御装置を含む電子装置の寿命診断を
する際に、診断対象である前記電子装置を構成する電子
化制御基板上に、製造時に予め診断用のセラミックス湿
度センサを実装しておき、このセラミックス湿度センサ
の抵抗値変化を測定し、セラミックス湿度センサの抵抗
値と前記電子化制御基板上に実装される実装部品の特性
値との対応関係から前記電子化制御基板上に実装されて
いる実装部品の劣化度を推定し、電子化制御基板の余寿
命を評価するようにしたため、実装部品を取り外すこと
なく、その特性劣化度をセラミックス湿度センサの抵抗
値変化として非破壊で検出することができ、この実装部
品の特性劣化度から電子化制御基板の余寿命を評価する
ことができる。また、セラミックス湿度センサの抵抗値
変化はオンラインでモニタリングすることができるの
で、オンライン診断を行うことができる。
According to the method of diagnosing the life of an electronic device according to claim 11, when diagnosing the life of an electronic device including an instrument and a control device, the electronic device control board constituting the electronic device to be diagnosed is provided. , A ceramics humidity sensor for diagnostics is mounted in advance at the time of manufacture, the resistance value change of the ceramics humidity sensor is measured, and the resistance value of the ceramics humidity sensor and the characteristic value of the mounted component mounted on the electronic control board are measured. The deterioration degree of the mounted components mounted on the electronic control board is estimated from the correspondence relationship with the electronic control board, and the remaining life of the electronic control board is evaluated. Can be detected non-destructively as a change in the resistance value of the ceramics humidity sensor, and the remaining life of the electronic control board can be evaluated from the degree of characteristic deterioration of the mounted components. Further, since the resistance value change of the ceramics humidity sensor can be monitored online, online diagnosis can be performed.

【0049】請求項12記載の電子装置の寿命診断方法
によれば、計器や制御装置を含む電子装置の寿命診断を
する際に、診断対象である電子装置を構成する電子化制
御基板上に、製造時に予め診断用のセラミックス湿度セ
ンサを実装しておき、このセラミックス湿度センサの抵
抗値変化を測定し、セラミックス湿度センサの抵抗値と
前記電子化制御基板上に実装されるICの腐食量との対
応関係から前記電子化制御基板上に実装されている実装
ICの腐食量を推定し、電子化制御基板の余寿命を評価
するようにしたため、実装ICを取り外すことなく、そ
の腐食量をセラミックス湿度センサの抵抗値変化として
非破壊で検出することができ、この実装ICの腐食量か
ら電子化制御基板の余寿命を評価することができる。
According to the method of diagnosing the life of an electronic device according to a twelfth aspect, when diagnosing the life of an electronic device including an instrument and a control device, the electronic control board constituting the electronic device to be diagnosed is provided with: A ceramics humidity sensor for diagnosis is mounted in advance at the time of manufacturing, and a change in the resistance value of the ceramics humidity sensor is measured to determine the resistance value of the ceramics humidity sensor and the corrosion amount of the IC mounted on the electronic control board. Since the corrosion amount of the mounting IC mounted on the electronic control board is estimated from the correspondence and the remaining life of the electronic control board is evaluated, the corrosion amount can be calculated without removing the mounting IC. It can be detected non-destructively as a change in the resistance value of the sensor, and the remaining life of the electronic control board can be evaluated from the corrosion amount of the mounted IC.

【0050】請求項13記載の電子装置の寿命診断方法
によれば、計器や制御装置を含む電子装置の寿命診断を
する際に、診断対象である電子装置を構成する電子化制
御基板上に、製造時に予め診断用のセラミックス湿度セ
ンサを実装しておき、このセラミックス湿度センサの抵
抗値変化を測定し、セラミックス湿度センサの抵抗値と
前記電子化制御基板上に実装されるコンデンサの性能値
との対応関係から前記電子化制御基板上に実装されてい
る実装コンデンサの性能値を推定し、電子化制御基板の
余寿命を評価するようにしたため、実装コンデンサを取
り外すことなく、その性能値をセラミックス湿度センサ
の抵抗値変化として非破壊で検出することができ、この
実装コンデンサの性能劣化度から電子化制御基板の余寿
命を評価することができる。
According to the method of diagnosing the life of an electronic device according to a thirteenth aspect, when diagnosing the life of an electronic device including an instrument and a control device, the electronic control board constituting the electronic device to be diagnosed is provided with: A ceramics humidity sensor for diagnosis is mounted in advance at the time of manufacturing, and a change in resistance value of the ceramics humidity sensor is measured, and the resistance value of the ceramics humidity sensor and the performance value of the capacitor mounted on the electronic control board are measured. The performance value of the mounting capacitor mounted on the computerized control board was estimated from the correspondence, and the remaining life of the computerized control board was evaluated. It can be detected non-destructively as a change in the resistance value of the sensor, and the remaining life of the electronic control board can be evaluated from the degree of performance deterioration of this mounted capacitor. It can be.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電子装置の寿命診断方法の第1の
実施の形態を説明するためのフローチャートである。
FIG. 1 is a flowchart for explaining a first embodiment of an electronic device life diagnosis method according to the present invention.

【図2】上記電子装置の寿命診断方法の第1の実施の形
態における極値統計処理の具体的な手順を示す図であ
る。
FIG. 2 is a diagram showing a specific procedure of extreme value statistical processing in the first embodiment of the method for diagnosing the life of the electronic device.

【図3】本発明に係る電子装置の寿命診断装置の第1の
実施の形態を示すブロック図である。
FIG. 3 is a block diagram showing a first embodiment of an electronic device life diagnosis device according to the present invention.

【図4】上記電子装置の寿命診断装置の第1の実施の形
態における基板材料性能測定手段の具体例である絶縁抵
抗測定装置を示す構成図である。
FIG. 4 is a configuration diagram showing an insulation resistance measuring device which is a specific example of a substrate material performance measuring means in the first embodiment of the electronic device life diagnosing device.

【図5】上記電子装置の寿命診断装置の第1の実施の形
態における基板材料性能測定手段の具体例である静電容
量測定装置を示す構成図である。
FIG. 5 is a configuration diagram showing a capacitance measuring device which is a specific example of the substrate material performance measuring means in the first embodiment of the electronic device life diagnosing device.

【図6】上記電子装置の寿命診断装置の第1の実施の形
態における基板材料性能測定手段の具体例である色彩測
定システムを示す構成図である。
FIG. 6 is a configuration diagram showing a color measuring system which is a specific example of the substrate material performance measuring means in the first embodiment of the electronic device life diagnosing apparatus.

【図7】本発明に係る電子装置の寿命診断装置の第2の
実施の形態を示すブロック図である。
FIG. 7 is a block diagram showing a second embodiment of an electronic device life diagnosis apparatus according to the present invention.

【図8】上記電子装置の寿命診断装置の第2の実施の形
態における実装部品の状態量算出手段の状態量算出の手
順を説明するための図である。
FIG. 8 is a diagram for explaining a procedure for calculating a state quantity of a state quantity calculating unit of a mounted component in the second embodiment of the life diagnostic apparatus for an electronic device.

【図9】本発明に係る電子装置の寿命診断方法の第2の
実施の形態における実装部品の状態量算出の手順を説明
するための図である。
FIG. 9 is a diagram for explaining the procedure for calculating the state quantity of the mounted component in the second embodiment of the method for diagnosing the life of the electronic device according to the present invention.

【符号の説明】[Explanation of symbols]

1,10 電子装置の寿命診断装置 2 基板材料性能測定手段 3 測定値補正手段 4 極値統計処理手段 5 データベース 6 寿命判定手段 7 出力手段 8 実装部品の状態量算出手段 11 電子化制御基板 12 絶縁抵抗測定装置 14 静電容量測定装置 16 色彩測定システム 1,10 Life diagnosis device for electronic devices 2 Substrate material performance measuring means 3 Measured value correction means 4 Extreme value statistical processing means 5 database 6 Life judgment means 7 Output means 8 State quantity calculation means for mounted components 11 Electronic control board 12 Insulation resistance measuring device 14 Capacitance measuring device 16 color measurement system

フロントページの続き (56)参考文献 特開 平6−11530(JP,A) 特開 平9−304461(JP,A) 特開 平7−249840(JP,A) 特開 平8−86826(JP,A) 実開 昭63−115771(JP,U) 実開 平2−672(JP,U) 佐々木恵一、南裕二、安達健二、熊丸 智雄,ICのアルミ配線腐食を劣化指標 とする診断法,日本信頼性学会誌 信頼 性 ,日本,日本信頼性学会,1996年11 月10日,1996年11月号Vol.18/N o.7/通巻77号,75−78 (58)調査した分野(Int.Cl.7,DB名) G01R 31/00 G01N 17/00 G01R 31/26 H01G 13/00 361 Continuation of the front page (56) Reference JP-A-6-11530 (JP, A) JP-A-9-304461 (JP, A) JP-A-7-249840 (JP, A) JP-A-8-86826 (JP , A) Actual development Sho 63-115771 (JP, U) Actual development 2-672 (JP, U) Saichi Keiichi, Minami Yuji, Adachi Kenji, Kumamaru Tomo, IC diagnostic method using aluminum wiring corrosion as a deterioration index , Reliability Society of Japan, Reliability, Japan, Reliability Society of Japan, November 10, 1996, November 1996, Vol. 18 / N o. 7 / Vol. 77, 75-78 (58) Fields investigated (Int.Cl. 7 , DB name) G01R 31/00 G01N 17/00 G01R 31/26 H01G 13/00 361

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 計器や制御装置を含む電子装置の寿命診
断をする際に、診断対象である前記電子装置を構成する
電子化制御基板の全数を各グループの枚数が略均等にな
るように複数のグループに分割し、分割した中から幾つ
かのグループを任意に抽出して基板材料性能測定を行
い、各グループにおける基板材料性能測定値の分布の極
値統計をとることで前記診断対象内における全基板母数
の基板材料性能値の最小もしくは最大値を推定し、この
推定値の時系列変化と前記基板材料性能値の所定の規格
で定義される限界値とから電子化制御基板の余寿命を定
量的に評価することを特徴とする電子装置の寿命診断方
法。
1. When diagnosing the life of an electronic device including a measuring instrument and a control device, a plurality of electronic control boards constituting the electronic device to be diagnosed are provided so that the number of electronic control boards in each group is substantially equal. In the diagnosis target by dividing the group into several groups, measuring the substrate material performance by arbitrarily extracting some groups from the divided, and taking the extreme value statistics of the distribution of the substrate material performance measurement values in each group. The minimum or maximum of the board material performance values of all board parameters is estimated, and the remaining life of the digitized control board is calculated from the time-series change of this estimated value and the limit value defined by the predetermined standard of the board material performance value. A method for diagnosing the life of an electronic device, which comprises quantitatively evaluating
【請求項2】 前記電子化制御基板の基板材料性能値の
最小もくしは最大値の推定値と前記電子化制御基板上に
実装されているICの腐食量との相関曲線を基に基板材
料性能の推定値から非破壊で実装ICの腐食量を求め、
この実装IC腐食量の時系列変化及び腐食量とIC故障
の相関から前記実装ICの余寿命を定量的に推定して電
子化制御基板の余寿命を評価することを特徴とする請求
項1に記載の電子装置の寿命診断方法。
2. A substrate material based on a correlation curve between an estimated minimum or maximum value of a substrate material performance value of the computerized control board and a corrosion amount of an IC mounted on the computerized control board. Non-destructively obtain the amount of corrosion of the mounted IC from the estimated value of performance,
2. The remaining life of the electronic control board is evaluated by quantitatively estimating the remaining life of the mounted IC from the time series change of the mounted IC corrosion quantity and the correlation between the corrosion quantity and the IC failure. A method for diagnosing the life of an electronic device as described.
【請求項3】 前記電子化制御基板の基板材料性能値の
最小もしくは最大値の推定値と前記電子化制御基板上に
実装されているコンデンサの性能値との相関曲線を基に
基板材料性能の推定値から非破壊で実装コンデンサの性
能値を求め、この実装コンデンサ性能値の時系列変化と
コンデンサの故障判定基準とから前記実装コンデンサの
余寿命を定量的に推定して電子化制御基板の余寿命を評
価することを特徴とする請求項1に記載の電子装置の寿
命診断方法。
3. A board material performance of the electronic control board based on a correlation curve between an estimated value of the minimum or maximum value of the board material performance value of the electronic control board and a performance value of a capacitor mounted on the electronic control board. The performance value of the mounted capacitor is calculated non-destructively from the estimated value, and the remaining life of the mounted capacitor is quantitatively estimated from the time-series change of the mounted capacitor performance value and the failure judgment criteria of the capacitor to estimate the remaining capacity of the electronic control board. The life diagnosis method for an electronic device according to claim 1, wherein the life is evaluated.
【請求項4】 診断対象である電子装置を構成する電子
化制御基板の基板材料性能値を測定する基板材料性能測
定手段と、基板材料性能測定時の構造、前処理を含む測
定条件が基板材料性能の限界値を定義する規格と異なる
場合に前記基板材料性能測定手段による測定値を補正す
る測定値補正手段と、この測定値補正手段による補正後
の基板材料性能値について極値統計処理を実行する極値
統計処理手段と、この極値統計処理手段で求めた基板材
料性能値の最小・最大値の時系列変化と前記基板材料性
能の限界値から余寿命を判定する寿命判定手段と、前記
補正を行うための補正データ、寿命判定のための前記限
界値、前記極値統計処理結果及び前記判定結果を保持す
るデータベースと、一連の診断結果を表示する出力手段
とを有することを特徴とする電子装置の寿命診断装置。
4. A substrate material performance measuring means for measuring a substrate material performance value of an electronic control board constituting an electronic device to be diagnosed, and a measuring condition including a structure at the time of measuring the substrate material performance and a pretreatment. Measured value correcting means for correcting the measured value by the substrate material performance measuring means when it is different from the standard defining the limit value of performance, and extreme value statistical processing is performed on the substrate material performance value after being corrected by the measured value correcting means. An extreme value statistical processing means, and a life determining means for determining the remaining life from the time-series change of the minimum and maximum values of the substrate material performance value obtained by the extreme value statistical processing means and the residual value of the substrate material performance, It has a correction data for correction, a limit value for life judgment, a database holding the extreme value statistical processing result and the judgment result, and an output means for displaying a series of diagnostic results. Life diagnosing device for electronic devices.
【請求項5】 前記極値統計処理手段で求めた基板材料
性能値の最小・最大値を、IC種毎の基板材料性能値−
腐食量相関曲線を基に前記電子化制御基板上に実装され
ているICの腐食量に変換する腐食量変換手段を備え、 前記寿命判定手段は、この腐食量変換手段による腐食量
の変換結果及び各IC種毎の腐食量の時系列変化曲線を
基に実装ICの余寿命を定量的に評価し、 前記データベースは、各種基板材料性能値、前記IC種
毎の基板材料性能値−腐食量相関曲線及び前記各IC種
毎の腐食量の時系列変化曲線を蓄積することを特徴とす
る請求項4に記載の電子装置の寿命診断装置。
5. The minimum / maximum value of the substrate material performance value obtained by the extreme value statistical processing means is used as the substrate material performance value-for each IC type.
Corrosion amount conversion means for converting the corrosion amount of the IC mounted on the computerized control board based on the corrosion amount correlation curve is provided, and the life determination means includes the conversion result of the corrosion amount by the corrosion amount conversion means and The remaining life of the mounted IC is quantitatively evaluated based on the time series change curve of the corrosion amount for each IC type, and the database is various board material performance values, the board material performance value for each IC type-corrosion amount correlation. The life diagnostic device for an electronic device according to claim 4, wherein a curve and a time-series change curve of the corrosion amount for each of the IC types are accumulated.
【請求項6】 前記極値統計処理手段で求めた基板材料
性能値の最小・最大値を、コンデンサ種毎の基板材料性
能値−コンデンサ性能相関曲線を基に前記電子化制御基
板上に実装されているコンデンサの性能値に変換するコ
ンデンサ性能変換手段を備え、 前記寿命判定手段は、このコンデンサ性能変換手段によ
るコンデンサ性能値の変換結果及び各コンデンサ種毎の
性能値の時系列変化曲線を基に実装コンデンサの余寿命
を定量的に評価し、 前記データベースは、各種基板材料性能値、前記コンデ
ンサ種毎の基板材料性能値−コンデンサ性能相関曲線及
び前記各コンデンサ種毎の性能値の時系列変化曲線を蓄
積することを特徴とする請求項4に記載の電子装置の寿
命診断装置。
6. The minimum and maximum values of the board material performance values obtained by the extreme value statistical processing means are mounted on the computerized control board based on a board material performance value-capacitor performance correlation curve for each capacitor type. A capacitor performance conversion means for converting to a performance value of the capacitor, the life determination means, based on the conversion result of the capacitor performance value by this capacitor performance conversion means and the time series change curve of the performance value for each capacitor type The remaining life of the mounted capacitor is quantitatively evaluated, and the database is various board material performance values, board material performance value for each capacitor type-capacitor performance correlation curve, and time series change curve of the performance value for each capacitor type. The life diagnostic device for an electronic device according to claim 4, wherein
【請求項7】 前記基板材料性能測定手段は、絶縁抵抗
測定装置からなり、前記電子化制御基板の一部分の体積
抵抗率又は表面抵抗を測定することを特徴とする請求項
4,5又は6記載の電子装置の寿命診断装置。
7. The substrate material performance measuring means comprises an insulation resistance measuring device, and measures the volume resistivity or surface resistance of a part of the electronic control substrate. Life diagnostic equipment for electronic devices.
【請求項8】 前記基板材料性能測定手段は、静電容量
測定装置からなり、前記電子化制御基板の一部分を電極
で挟むことにより当該電子化制御基板を誘電体としたコ
ンデンサを形成し、その静電容量を測定して前記電子化
制御基板の誘電率を算出することを特徴とする請求項
4,5又は6記載の電子装置の寿命診断装置。
8. The substrate material performance measuring means comprises a capacitance measuring device, and a part of the electronic control board is sandwiched by electrodes to form a capacitor using the electronic control board as a dielectric. 7. The life diagnostic device for an electronic device according to claim 4, 5 or 6, wherein an electrostatic capacitance is measured to calculate a dielectric constant of the electronic control board.
【請求項9】 前記基板材料性能測定手段は、色彩測定
システムからなり、前記電子化制御基板上のはんだ付け
部位のはんだの強度をはんだの色として評価することを
特徴とする請求項4,5又は6記載の電子装置の寿命診
断装置。
9. The board material performance measuring means comprises a color measuring system, and evaluates the strength of the solder at the soldering site on the computerized control board as the color of the solder. Alternatively, the electronic device life diagnosing device according to item 6.
【請求項10】 前記基板材料性能測定手段による電気
的性能及び機械的性能を含む基板材料性能の測定が可能
なように、所要の規格に従った基板材料性能測定用試験
片を前記電子化制御基板の一部に予め組み込んでなるこ
とを特徴とする請求項4乃至9の何れかに記載の電子装
置の寿命診断装置。
10. A substrate material performance measuring test piece according to a required standard is electronically controlled so that the substrate material performance including electrical and mechanical performance can be measured by the substrate material performance measuring means. The life diagnostic device for an electronic device according to any one of claims 4 to 9, wherein the life diagnostic device is incorporated in a part of a substrate in advance.
【請求項11】 計器や制御装置を含む電子装置の寿命
診断をする際に、診断対象である前記電子装置を構成す
る電子化制御基板上に、製造時に予め診断用のセラミッ
クス湿度センサを実装しておき、このセラミックス湿度
センサの抵抗値変化を測定し、セラミックス湿度センサ
の抵抗値と前記電子化制御基板上に実装される実装部品
の特性値との対応関係から前記電子化制御基板上に実装
されている実装部品の劣化度を推定し、電子化制御基板
の余寿命を評価することを特徴とする電子装置の寿命診
断方法。
11. When diagnosing the life of an electronic device including an instrument and a control device, a ceramics humidity sensor for diagnosis is mounted in advance on a computerized control board that constitutes the electronic device to be diagnosed at the time of manufacturing. The resistance value change of the ceramic humidity sensor is measured, and the ceramic humidity sensor is mounted on the computerized control board from the correspondence relationship between the resistance value of the ceramic humidity sensor and the characteristic value of the mounting component mounted on the computerized control board. A method for diagnosing the life of an electronic device, which comprises estimating the degree of deterioration of mounted components and evaluating the remaining life of the electronic control board.
【請求項12】 計器や制御装置を含む電子装置の寿命
診断をする際に、診断対象である電子装置を構成する電
子化制御基板上に、製造時に予め診断用のセラミックス
湿度センサを実装しておき、このセラミックス湿度セン
サの抵抗値変化を測定し、セラミックス湿度センサの抵
抗値と前記電子化制御基板上に実装されるICの腐食量
との対応関係から前記電子化制御基板上に実装されてい
る実装ICの腐食量を推定し、電子化制御基板の余寿命
を評価することを特徴とする電子装置の寿命診断方法。
12. When diagnosing the life of an electronic device including an instrument and a control device, a ceramics humidity sensor for diagnosis is mounted in advance on a computerized control board constituting the electronic device to be diagnosed at the time of manufacturing. Then, the resistance value change of the ceramic humidity sensor is measured, and the ceramic humidity sensor is mounted on the computerized control board from the correspondence relationship between the resistance value of the ceramic humidity sensor and the corrosion amount of the IC mounted on the computerized control board. A method of diagnosing the life of an electronic device, which comprises estimating the amount of corrosion of a mounted IC and evaluating the remaining life of an electronic control board.
【請求項13】 計器や制御装置を含む電子装置の寿命
診断をする際に、診断対象である電子装置を構成する電
子化制御基板上に、製造時に予め診断用のセラミックス
湿度センサを実装しておき、このセラミックス湿度セン
サの抵抗値変化を測定し、セラミックス湿度センサの抵
抗値と前記電子化制御基板上に実装されるコンデンサの
性能値との対応関係から前記電子化制御基板上に実装さ
れている実装コンデンサの性能値を推定し、電子化制御
基板の余寿命を評価することを特徴とする電子装置の寿
命診断方法。
13. When diagnosing the life of an electronic device including an instrument and a control device, a ceramics humidity sensor for diagnosis is mounted in advance on a computerized control board constituting the electronic device to be diagnosed at the time of manufacturing. Every time, the resistance value change of this ceramic humidity sensor is measured, and it is mounted on the electronic control board from the correspondence relationship between the resistance value of the ceramic humidity sensor and the performance value of the capacitor mounted on the electronic control board. A method of diagnosing the life of an electronic device, which comprises estimating the performance value of a mounted capacitor and evaluating the remaining life of the electronic control board.
JP29866098A 1998-10-20 1998-10-20 Method and apparatus for diagnosing life of electronic device Expired - Fee Related JP3400362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29866098A JP3400362B2 (en) 1998-10-20 1998-10-20 Method and apparatus for diagnosing life of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29866098A JP3400362B2 (en) 1998-10-20 1998-10-20 Method and apparatus for diagnosing life of electronic device

Publications (2)

Publication Number Publication Date
JP2000131363A JP2000131363A (en) 2000-05-12
JP3400362B2 true JP3400362B2 (en) 2003-04-28

Family

ID=17862622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29866098A Expired - Fee Related JP3400362B2 (en) 1998-10-20 1998-10-20 Method and apparatus for diagnosing life of electronic device

Country Status (1)

Country Link
JP (1) JP3400362B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501235B2 (en) * 2000-06-29 2010-07-14 パナソニック株式会社 Manufacturing method of ceramic electronic component
JP4501315B2 (en) * 2001-06-15 2010-07-14 三菱電機株式会社 Insulation diagnostic sensor for power distribution facility and remaining life diagnostic method
GB2456567B (en) * 2008-01-18 2010-05-05 Oxford Biosignals Ltd Novelty detection
JP4599439B2 (en) * 2008-08-07 2010-12-15 株式会社日立製作所 Control device deterioration diagnosis system
CZ306726B6 (en) * 2016-06-30 2017-05-24 Univerzita Palackého v Olomouci A method of measuring rapid changes of low values of surface conductivity of dielectrics in the environment of electromagnetic interference of mains voltage and a device for performing this method of measuring
US11341588B2 (en) * 2019-09-04 2022-05-24 Oracle International Corporation Using an irrelevance filter to facilitate efficient RUL analyses for utility system assets
JP2022077370A (en) * 2020-11-11 2022-05-23 オムロン株式会社 Insulation resistance monitoring device
WO2022210151A1 (en) * 2021-03-31 2022-10-06 日鉄ステンレス株式会社 Method for predicting amount of corrosion in steel material, system for predicting amount of corrosion in steel material, program for predicting amount of corrosion in steel material, and method for proposing steel material
WO2023248299A1 (en) * 2022-06-20 2023-12-28 三菱電機株式会社 Degradation diagnosis method and degradation diagnosis device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐々木恵一、南裕二、安達健二、熊丸智雄,ICのアルミ配線腐食を劣化指標とする診断法,日本信頼性学会誌 信頼性 ,日本,日本信頼性学会,1996年11月10日,1996年11月号Vol.18/No.7/通巻77号,75−78

Also Published As

Publication number Publication date
JP2000131363A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
US20020072878A1 (en) Deterioration diagnostic method and equipment thereof
JP3400362B2 (en) Method and apparatus for diagnosing life of electronic device
WO2007104229A1 (en) Method and system for evaluating the corrosion risk of a circuit board
Levikari et al. Acoustic phenomena in damaged ceramic capacitors
JPH0275948A (en) Non-destructive method for evaluating printed wiring board
CN111380771A (en) Method for determining long-term storage product storage life with two-stage failure mechanism
CN111289566A (en) Method for efficiently detecting quality of conductive film
Schwarz et al. Diagnostic methods for transformers
US6333633B1 (en) Method for inspecting a flexible printed circuit
CN112801445B (en) Multi-parameter-based oil paper insulation capacitive bushing damp risk assessment method
DE10114230A1 (en) Detecting condensation on a surface, comprises analyzing changes in dielectric constant in stray field of capacitor
US5612621A (en) Method for monitoring cracks and critical concentration by using phase angle
KR20140108968A (en) Apparatus for crack detection of contact unit of electronic device and system for performance test system having thesame
CN112668145A (en) FDS and exponential decay model-based transformer oiled paper insulation moisture assessment method
Pham et al. Characterization of Wetting behavior of commercial flux systems by impedance measurement technique
CN112114009A (en) Humidity sensor chip with self-diagnosis function and self-diagnosis method of humidity sensor chip
JP3106945B2 (en) Air conditioner moisture inspection device
CN113466660B (en) Method for detecting reliability of board-level BGA package under fire smoke
JP2000266710A (en) Circuit board deterioration diagnostic device
RU2794392C1 (en) Method for determining the area of damage to the skin of an aircraft
JPH10313034A (en) Method for diagnosing deterioration and life of electronic device and device therefor
CN112989629B (en) Reliability evaluation method based on tantalum capacitor multi-performance degradation
CN219657806U (en) High-precision temperature chip parallel testing device
CN116087759B (en) Method for inspecting conductive path of circuit board and circuit system
KR102355439B1 (en) Evaluation and calibration method for dew sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees