JP3387580B2 - Rubber track core metal and method of manufacturing the same - Google Patents

Rubber track core metal and method of manufacturing the same

Info

Publication number
JP3387580B2
JP3387580B2 JP26408993A JP26408993A JP3387580B2 JP 3387580 B2 JP3387580 B2 JP 3387580B2 JP 26408993 A JP26408993 A JP 26408993A JP 26408993 A JP26408993 A JP 26408993A JP 3387580 B2 JP3387580 B2 JP 3387580B2
Authority
JP
Japan
Prior art keywords
core metal
uncured
rubber crawler
steel
sectional thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP26408993A
Other languages
Japanese (ja)
Other versions
JPH0796872A (en
Inventor
和英 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17398363&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3387580(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP26408993A priority Critical patent/JP3387580B2/en
Publication of JPH0796872A publication Critical patent/JPH0796872A/en
Application granted granted Critical
Publication of JP3387580B2 publication Critical patent/JP3387580B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴム履帯用芯金および
その製造方法に係わり、特に建設機械など高い機械的特
性を要求される部位での使用に好適なゴム履帯用芯金お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber crawler core bar and a method for manufacturing the same, and particularly to a rubber crawler core bar suitable for use in a site where high mechanical properties are required such as construction machinery, and its manufacture. Regarding the method.

【0002】[0002]

【従来の技術】従来、建設機械などに使用され、耐摩耗
性、強度など機械的特性が要求されるゴム履帯用芯金お
よびその製造方法は、次のものが知られている。 (イ)炭素鋼、低合金鋼などの棒鋼を切断等所定寸法に
加工後、熱間鍛造により成形し、所定温度に再度加熱後
焼入れを行い(再加熱焼入れ)、焼戻しを行ってゴム履
帯用芯金とする。この場合、芯金の硬化部組織は焼戻し
マルテンサイト主体となる。 (ロ)炭素鋼、低合金鋼などの棒鋼を切断等所定寸法に
加工し、熱間鍛造後、直接焼入れを行い、焼戻ししてゴ
ム履帯用芯金とする。なお、芯金の硬化部組織は焼戻し
マルテンサイト主体となる。
2. Description of the Related Art Conventionally, the following is known as a core metal for rubber crawler belts used for construction machines and the like, which is required to have mechanical properties such as wear resistance and strength, and a manufacturing method thereof. (A) After processing bar steel such as carbon steel or low alloy steel into a predetermined size such as by cutting, forming it by hot forging, heating it again to a predetermined temperature and then quenching (reheating quenching), tempering and rubber crawler Use core metal. In this case, the hardened part structure of the core metal is mainly tempered martensite. (B) A steel bar such as a carbon steel or a low alloy steel is processed into a predetermined size such as by cutting, hot forged, directly quenched, and tempered to obtain a rubber crawler core bar. The hardened part structure of the core metal is mainly tempered martensite.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術には次のような問題点がある。すなわち、上記
(イ)は、工程数が多く、多くのエネルギーと時間を要
し、不経済である。また、(ロ)は、上記(イ)と比べ
て焼入れ時の再加熱が不要な分コスト低減になるが、ま
だ工程が多く、不経済である。
However, the above-mentioned prior art has the following problems. That is, the above item (a) requires a large number of steps, requires a lot of energy and time, and is uneconomical. In addition, (B) reduces cost because reheating at the time of quenching is unnecessary as compared with the above (A), but is still uneconomical because of the large number of steps.

【0004】本発明は、上記従来技術の問題点に着目
し、工程数を低減しコスト改善を図るとともに、機械的
特性等の品質が従来と同等以上であるゴム履帯用芯金お
よびその製造方法を提供することを目的とする。
The present invention focuses on the above-mentioned problems of the prior art, reduces the number of steps and improves the cost, and the core metal for rubber crawler track whose quality such as mechanical characteristics is equal to or higher than the conventional one, and its manufacturing method. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係わるゴム履帯用芯金において、第1発明
は、表面から内部に向かって焼入れによる硬化部が形成
される、炭素鋼あるいは低合金鋼等の鋼を素材とするゴ
ム履帯用芯金において、芯金の長手方向中央部の高負荷
部分の内部に形成される未硬化部の上下方向の断面厚さ
が高負荷部分の上下方向の断面厚さに対して0.3〜
0.65であり、かつ、高負荷部分の硬化部の組織がマ
ルテンサイト主体であることを特徴とする。
In order to achieve the above object, in a rubber crawler belt core metal according to the present invention, a first aspect of the present invention is a carbon steel in which a hardened portion is formed by quenching from the surface to the inside. In a rubber crawler core made of steel such as low alloy steel, the vertical cross-section thickness of the uncured part formed inside the high load part in the longitudinal center part of the core bar is above and below the high load part. 0.3 to the cross-sectional thickness in the direction
It is 0.65, and the structure of the hardened part in the high load part is mainly composed of martensite.

【0006】さらに、本発明に係わるゴム履帯用芯金の
製造方法において、第2発明は、(イ)鋼系素材を所定
寸法に加工する第1工程、(ロ)加工素材を所定温度に
加熱後、熱間鍛造により成形する第2工程、(ハ)熱間
鍛造後、再加熱すること無しに、成形素材の表面から内
部に向かって硬化部を形成し、かつ、成形素材の芯金
長手方向中央部における高負荷部分の内部に形成される
未硬化部の上下方向の断面厚さが、高負荷部分の上下方
向の断面厚さに対して0.3〜0.65となる成形素材
の直接焼入れを行う第3工程、以上の工程からなること
を特徴とするゴム履帯用芯金の製造方法。本発明に係わ
るゴム履帯用芯金およびその製造方法は、以上の構成と
した。
Further, in the method for producing a rubber crawler core bar according to the present invention, the second invention is: (a) a first step of processing a steel-based material into a predetermined dimension; and (b) heating the processed material to a predetermined temperature. After that, the second step of forming by hot forging, (c) After hot forging, a hardened portion is formed from the surface of the forming material toward the inside without reheating , and the core metal of the forming material is formed .
The vertical cross-sectional thickness of the uncured portion formed inside the high load portion at the longitudinal center is the upper and lower portions of the high load portion.
A third step of directly quenching a molding material having a thickness of 0.3 to 0.65 with respect to the cross-sectional thickness in the opposite direction, and the above-mentioned steps, which is a method for producing a rubber crawler core bar. The rubber crawler belt core metal and the method for manufacturing the same according to the present invention have the above-described configurations.

【0007】[0007]

【作用】上記構成による本発明の作用を説明する。ゴム
履帯用芯金の表面部は焼入れによるマルテンサイト組織
主体の硬化部が形成されているので、要求される機械的
特性である耐摩耗性、強度を有している。また、芯金の
長手方向中央部の高負荷部分の内部に形成される未硬化
部の上下方向の断面厚さが高負荷部分の上下方向の所定
断面厚さに対する比率である未硬化率は0.3〜0.6
5であるので、未硬化部の寄与により高い靱性が得られ
る。さらに、硬化部と未硬化部との適切な構成比率によ
り、ゴム履帯用芯金全体として、要求される曲げ靱性、
曲げ剛性が得られる。上記の未硬化率を0.3〜0.6
5とすることで、炭素鋼、低合金鋼等の安価な材料が使
用可能となる。
The operation of the present invention having the above construction will be described. The surface of the core metal for rubber crawler belt has a hardened part mainly composed of martensite structure by quenching, so that it has required mechanical properties such as wear resistance and strength. In addition,
The uncured ratio, which is the ratio of the vertical cross-sectional thickness of the uncured portion formed inside the high-load portion at the central portion in the longitudinal direction to the predetermined vertical cross-sectional thickness of the high-load portion, is 0.3 to 0. 6
Since it is 5, high toughness can be obtained by the contribution of the uncured portion. Furthermore, by the appropriate composition ratio of the hardened part and the uncured part, the bending toughness required for the entire rubber crawler core metal,
Flexural rigidity is obtained. The uncured rate is 0.3 to 0.6
By setting it to 5, inexpensive materials such as carbon steel and low alloy steel can be used.

【0008】次に、ゴム履帯用芯金の製造方法の特徴
は、鋼系素材の所定寸法への加工工程、熱間鍛造工程お
よび直接焼入れ工程の3工程であり、従来方法における
焼戻し工程が省略され、製造コスト等が改善される。ま
た、未硬化率が0.3〜0.65となる直接焼入れは、
広範囲に焼入れ条件などの設定が可能であり、工程管理
が容易である。
Next, a characteristic of the method for manufacturing a rubber crawler core bar is three steps of a step of processing a steel material to a predetermined size, a hot forging step and a direct quenching step, and the tempering step in the conventional method is omitted. The manufacturing cost and the like are improved. Further, direct quenching with an uncured rate of 0.3 to 0.65 is
Hardening conditions can be set over a wide range, and process control is easy.

【0009】[0009]

【実施例】以下に、本発明に係わるゴム履帯用芯金およ
びその製造方法の実施例につき、図面を参照しつつ詳細
に説明する。本発明が適用される建設機械などのゴム履
帯の概要を図2に示す。ゴム履帯10は、トラックフレ
ーム1の両端に設けられたスプロケット2とアイドラ3
とに渡って外周に巻きかけてあり、スプロケット2と噛
合し走行するとともに、トラックフレーム1の下部に設
けられた下転輪4を介して車体重量とうの高荷重が加わ
る。ゴム履帯10の構成を、図2中のX−X断面である
図3に示すが、無端状のゴムシュー11の内側には、
金12の長手方向がゴム履帯10の幅方向となるよう
に、芯金12を多数埋設するように備えており、芯金1
2の近傍等のゴムシュー11内には円周方向に連続のス
チールコード13が多数埋設されている。
Embodiments of a rubber crawler belt core metal and a method of manufacturing the same according to the present invention will be described below in detail with reference to the drawings. An outline of a rubber crawler track for a construction machine or the like to which the present invention is applied is shown in FIG. The rubber track 10 includes a sprocket 2 and an idler 3 provided on both ends of the track frame 1.
It is wound around the outer periphery and runs while meshing with the sprocket 2, and a high load such as the weight of the vehicle body is applied through the lower rolling wheels 4 provided in the lower portion of the track frame 1. The structure of the rubber crawler belt 10 is shown in FIG. 3 which is a cross section taken along line XX in FIG. 2, but the inside of the endless rubber shoe 11 has a core.
The longitudinal direction of the gold 12 should be the width direction of the rubber track 10.
In addition, the core metal 1 is equipped with a large number of metal cores 12 embedded therein.
A large number of steel cords 13 continuous in the circumferential direction are embedded in the rubber shoe 11 in the vicinity of 2, for example.

【0010】この建設機械の走行等の作動時、ゴム履帯
10の芯金12はスプロケット2の外周に複数備えられ
たスプロケットティース2aと噛み合いつつ摺動すると
ともに、芯金12の転動面14(14a、14b)は下
転輪4から断続的な高荷重を受ける。したがって、転動
面14a、14bが2ヶ所あるので、線15近傍の芯金
12の略中央部は芯金12の中でも高負荷部分となり、
高応力、例えば高い曲げ応力が発生する。
During operation of the construction machine such as running, the core metal 12 of the rubber crawler track 10 slides while meshing with a plurality of sprocket teeth 2a provided on the outer periphery of the sprocket 2, and the rolling surface 14 ( 14a, 14b) receives intermittent high load from the lower wheel 4. Therefore, since there are two rolling surfaces 14a and 14b, the substantially central portion of the cored bar 12 near the line 15 is the high load part of the cored bar 12,
High stresses, for example high bending stresses, occur.

【0011】次に、本発明の製造方法により製造される
ゴム履帯用芯金について、工程に基づき説明する。本実
施例で芯金に使用した中炭素低合金鋼である材料S30
BCの主成分を表1に示す。
Next, the core metal for a rubber crawler belt manufactured by the manufacturing method of the present invention will be described based on steps. Material S30 which is a medium carbon low alloy steel used for the core metal in this example.
Table 1 shows the main components of BC.

【0012】[0012]

【表1】 [Table 1]

【0013】第1工程において、前記材料S30BCの
丸棒素材をシャリングで所定寸法に切断し、加工素材と
する。次に、第2工程において、電気炉等で1100〜
1300℃に加熱した加工素材を、熱間鍛造により所定
の形状・寸法に成形し、成形素材とする。続いて、第3
工程において、熱間鍛造による成形素材を、再加熱する
こと無く水槽に入れ、直接焼入れを行う。この焼入れの
主な条件は、焼入れ温度が965℃、焼入れ剤が水であ
り、冷却後の引き上げ温度は155℃である。
In the first step, the round bar material of the material S30BC is cut into a predetermined size by shearing to obtain a processed material. Next, in the second step, 1100 to 1100 in an electric furnace or the like.
A processing material heated to 1300 ° C. is formed into a predetermined shape and size by hot forging to obtain a forming material. Then, the third
In the process, the forming material by hot forging is put in a water tank without being reheated and directly quenched. The main conditions for this quenching are a quenching temperature of 965 ° C., a quenching agent of water, and a pulling temperature after cooling of 155 ° C.

【0014】以上の工程により得られる芯金断面の硬度
パターンを図1に示す。図1において、図1の(a)は
芯金12の長手方向を図1の(a)の左右方向に表し、
図3に示す芯金12と同じ断面であり、図1の(b)
は、(a)中のY−Y断面であり、芯金12の長手方向
中央部の断面を表す。芯金12は、その断面硬度の分布
から、概略構成は硬化部21と未硬化部22になる。こ
こで、硬化部21は硬度HRCが45以上の部分であ
り、未硬化部22は硬度HRCが45未満の部分であ
る。芯金12の高負荷部分の1例である、図1(b)の
線23における芯金12の断面硬度分布を図4に示す。
芯金12の点P1から点P2間(図1(b)参照)の測
定結果であるが、表面から内部に向かって焼入れによる
硬化部21が形成され、内部には未硬化部22が形成さ
れている。ここで、高負荷部分である芯金12の長手方
向中央部の上下方向の断面厚さをt、未硬化部22の
上下方向の断面厚さをtとすると、未硬化率α=t
/t=0.61となる。また、断面組織の観察結果、
硬化部21はマルテンサイト主体であり、未硬化部22
はフェライトとパーライトにマルテンサイトが少し観察
された。
The hardness pattern of the cross section of the core metal obtained by the above steps is shown in FIG. In FIG. 1, (a) of FIG.
The longitudinal direction of the cored bar 12 is shown in the left-right direction of FIG.
It has the same cross section as the core metal 12 shown in FIG.
Is the YY cross section in (a), and is the longitudinal direction of the cored bar 12.
The cross section of the central portion is shown. The core metal 12 has a hardened portion 21 and an uncured portion 22 in a schematic configuration based on the cross-sectional hardness distribution. Here, the hardened portion 21 is a portion having a hardness HRC of 45 or more, and the uncured portion 22 is a portion having a hardness HRC of less than 45. FIG. 4 shows a cross-sectional hardness distribution of the cored bar 12 taken along the line 23 in FIG. 1B, which is an example of the high load portion of the cored bar 12.
It is the measurement result between the point P1 and the point P2 of the cored bar 12 (see FIG. 1B). A hardened part 21 is formed by quenching from the surface toward the inside, and an uncured part 22 is formed inside. ing. Here, the longitudinal direction of the cored bar 12 which is a high load part
The vertical cross-sectional thickness of the central portion is t 0 , and the uncured portion 22
Assuming that the vertical sectional thickness is t 1 , the uncured rate α = t 1
/ T 0 = 0.61. In addition, the observation result of the cross-sectional structure,
The hardened part 21 is mainly composed of martensite, and the uncured part 22
A little martensite was observed in ferrite and pearlite.

【0015】前記ゴム履帯用芯金12は、下転輪4、ス
プロケットティース2a(図2参照)などと摺動するの
で、耐摩耗性が要求されるとともに、ゴム履帯10全体
の所定の強度と剛性を得るため、曲げ靱性と曲げ剛性が
同時に要求される。これら機械的性質のなかでも、重要
である曲げ靱性と曲げ剛性とを評価するため、図5に示
す3点曲げ試験方法により、芯金12の性能を調べた。
試験方法は、芯金12の両端を支持台31(31a、3
1b)にセット後、芯金12の略中央部に押し治具32
により、所定の負荷Pを下方向に加え、その後負荷Pを
除去する。評価方法および基準は、負荷以前に対する、
負荷Pを除去後の、芯金12の下面33の変化量である
永久変形量δが許容限界変形量以下であり、かつ、芯金
12に折損が無いことである。本実施例の芯金12は、
永久変形量δが2.9mm(許容限界変形量以下)、折
損が無く、合格であることが判明した。
Since the rubber crawler belt core metal 12 slides on the lower roller 4 and the sprocket teeth 2a (see FIG. 2), wear resistance is required and the rubber crawler belt 10 has a predetermined strength. In order to obtain rigidity, bending toughness and bending rigidity are required at the same time. Among these mechanical properties, in order to evaluate bending toughness and bending rigidity, which are important, the performance of the cored bar 12 was examined by the three-point bending test method shown in FIG.
The test method is as follows.
1b) and then press the jig 32 to the center of the core 12.
Thus, the predetermined load P is applied downward, and then the load P is removed. The evaluation method and criteria are before the load,
The permanent deformation amount δ, which is the change amount of the lower surface 33 of the cored bar 12 after removing the load P, is equal to or less than the allowable limit deformation amount, and the cored bar 12 is not broken. The core metal 12 of this embodiment is
It was found that the permanent deformation amount δ was 2.9 mm (below the allowable limit deformation amount), there was no breakage, and it passed.

【0016】本発明の1実施例を詳述したが、さらに、
直接焼入れの条件を種々選択し、前記未硬化率αの異な
る芯金12を評価した。なお、未硬化率αは冷却能の調
整、例えば、冷却水に市販の冷却剤の添加、冷却時間の
調整等、により異なる値を得た。この直接焼入れの条件
変更以外は、上記実施例と同じである。上記実施例およ
び本実施例により得られた芯金12に関し、図6に未硬
化率αと永久変形量δとの関係を示す。図6より、未硬
化率αが0.65より大きい場合、すなわち、未硬化部
22の断面厚さが大きすぎると、曲げ剛性等が不足して
永久変形量δが許容限界変形量を超える値となる。一
方、未硬化率αが0.3より小さい場合、すなわち、未
硬化部22の断面厚さが小さすぎると、曲げ剛性等は大
きく永久変形量δは許容限界変形量以下であるが、曲げ
靱性等の不足により、折損が生じる。これらの結果、未
硬化率αが0.3〜0.65の範囲内になる場合、永久
変形量δが許容限界変形量以下であり、かつ、芯金12
に折損が無いことが判明した。したがって、未硬化率α
が0.3〜0.65の範囲であれば、建設機械などの極
めて高負荷になるゴム履帯用芯金でも、要求される機械
的特性を満足することが明らかになった。
Although one embodiment of the present invention has been described in detail,
Various conditions for direct quenching were selected, and the cored bars 12 having different uncured rates α were evaluated. The uncured rate α was obtained by varying the cooling capacity, for example, adding a commercially available coolant to the cooling water and adjusting the cooling time. Except for changing the conditions of this direct quenching, it is the same as the above embodiment. With respect to the cored bar 12 obtained in the above embodiment and this embodiment, FIG. 6 shows the relationship between the uncured rate α and the permanent deformation amount δ. From FIG. 6, when the uncured ratio α is larger than 0.65, that is, when the uncured portion 22 has an excessively large cross-sectional thickness, the bending rigidity is insufficient and the permanent deformation amount δ exceeds the allowable limit deformation amount. Becomes On the other hand, when the uncured rate α is less than 0.3, that is, when the cross-sectional thickness of the uncured portion 22 is too small, the bending rigidity is large and the permanent deformation amount δ is equal to or less than the allowable limit deformation amount, but the bending toughness is small. Breakage occurs due to lack of As a result, when the uncured rate α falls within the range of 0.3 to 0.65, the permanent deformation amount δ is equal to or less than the allowable limit deformation amount, and the core metal 12
It turned out that there was no breakage. Therefore, the uncured rate α
It was clarified that the range of 0.3 to 0.65 satisfies the required mechanical characteristics even for the core metal for rubber crawler belt, which has a very high load such as construction machinery.

【0017】上述の実施例から明らかなように、ゴム履
帯用芯金の製造方法において、高負荷部分の表面部に硬
化層を、内部には未硬化部を形成させ、さらに、未硬化
率αが0.3〜0.65の範囲であれば、直接焼入れ後
の焼戻し工程を省略することが可能である。
As is apparent from the above-mentioned embodiments, in the method of manufacturing a rubber crawler core metal, a hardened layer is formed on the surface of the high load portion and an uncured portion is formed inside, and the uncured rate α Is 0.3 to 0.65, it is possible to omit the tempering step after direct quenching.

【0018】以上、本発明に係わる実施例として、ゴム
履帯用芯金およびその製造方法を詳述したが、これらの
実施例によって限定されるものではない。すなわち、素
材は低合金鋼以外に通常使用される炭素鋼等でよく、所
定寸法に加工する手段も、各種機械加工、放電加工など
でよい。また、加工素材の加熱は電気炉以外の設備、例
えばガス炉、高周波加熱炉等でよく、冷却も冷却水スプ
レー法等でよい。この加熱温度あるいはー直接焼入れ温
度も1100〜1300℃あるいは965℃に限定する
ものでなく、素材の種類、熱間鍛造時の熱損失等から適
切な温度を選定して良い。さらに、高負荷部分として、
芯金の略中央部で評価したが、偏荷重等により高負荷部
分が略中央部と異なる場合は、その異なる部分が高負荷
部分となる。なお、直接焼入れ後で芯金完品になるが、
必要に応じてショットブラストなどで芯金に付着したス
ケールを除去しても良い。
Although the core metal for a rubber crawler belt and the method for manufacturing the core metal have been described in detail as the embodiments according to the present invention, the present invention is not limited to these embodiments. That is, the material may be carbon steel or the like which is normally used in addition to low alloy steel, and the means for processing to a predetermined size may be various types of machining, electric discharge machining or the like. The material to be processed may be heated by equipment other than the electric furnace, for example, a gas furnace, a high frequency heating furnace, or the like, and cooling may be performed by a cooling water spray method or the like. The heating temperature or the direct quenching temperature is not limited to 1100 to 1300 ° C. or 965 ° C., and an appropriate temperature may be selected depending on the type of material, heat loss during hot forging and the like. Furthermore, as a high load part,
The evaluation was made at the substantially central portion of the core metal, but if the high load portion is different from the substantially central portion due to an unbalanced load or the like, the different portion is the high load portion. After direct quenching, the core metal will be finished,
If necessary, the scale attached to the core metal may be removed by shot blasting or the like.

【0019】[0019]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。素
材の所定寸法への加工、熱間鍛造および直接焼入れの3
工程で芯金製造を可能としたので、焼戻し工程が省略さ
れ、焼戻し炉が不要となり、トータル製造時間も短縮さ
れるので、製造コスト等が改善される。ここで使用され
る素材は、炭素鋼、ボロン鋼等を含む低合金鋼などの使
用、つまり、低価格材料が使用可能である。次に、芯金
の高負荷部分における未硬化率は0.3〜0.65と広
範囲であり、直接焼入れ条件は種々の設定が可能であ
り、設備に応じた工程を選定できるとともに、工程管理
も容易である。また、芯金の高負荷部分の未硬化率は
0.3〜0.65であるので、未硬化部の寄与により高
い靱性が得られ、硬化部と未硬化部との適切な構成比率
により、芯金全体として、要求される曲げ靱性、曲げ剛
性が得られる。
Since the present invention is constructed as described above, it has the following effects. Processing of the material to the specified size, hot forging and direct quenching 3
Since the core metal can be manufactured in the process, the tempering process is omitted, the tempering furnace is not required, and the total manufacturing time is shortened, so that the manufacturing cost is improved. The material used here may be low alloy steel such as carbon steel or boron steel, that is, low cost material. Next, the uncured rate in the high load portion of the core metal is in a wide range of 0.3 to 0.65, various direct quenching conditions can be set, the process according to the equipment can be selected, and the process control can be performed. Is also easy. Further, since the uncured ratio of the high load portion of the core metal is 0.3 to 0.65, high toughness is obtained due to the contribution of the uncured portion, and by an appropriate composition ratio of the cured portion and the uncured portion, The required bending toughness and bending rigidity can be obtained as the core metal as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係わる芯金断面の硬度パターンを示
す図である。
FIG. 1 is a diagram showing a hardness pattern of a cross section of a cored bar according to the present embodiment.

【図2】本発明に係わるゴム履帯の概要図である。FIG. 2 is a schematic view of a rubber crawler belt according to the present invention.

【図3】図2中のX−X断面図である。FIG. 3 is a sectional view taken along line XX in FIG.

【図4】本実施例に係わる芯金の断面硬度分布図であ
る。
FIG. 4 is a sectional hardness distribution diagram of a cored bar according to the present embodiment.

【図5】本実施例に係わる3点曲げ試験方法を表す図で
ある。
FIG. 5 is a diagram showing a three-point bending test method according to this example.

【図6】本実施例に係わる未硬化率αと永久変形量δと
の関係を示す図である。
FIG. 6 is a diagram showing a relationship between an uncured rate α and a permanent deformation amount δ according to the present embodiment.

【符号の説明】[Explanation of symbols]

10 ゴム履帯 12 芯金 21 硬化部 22 未硬化部 α 未硬化率 δ 永久変形量 10 rubber tracks 12 core metal 21 Curing part 22 Unhardened part α uncured rate δ Permanent deformation

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面から内部に向かって焼入れによる硬
化部が形成される、炭素鋼あるいは低合金鋼等の鋼を素
材とするゴム履帯用芯金(12)において、前記芯金(12)の
長手方向中央部の高負荷部分の内部に形成される未硬化
(22)上下方向の断面厚さ(t 1 )前記高負荷部分の
下方向の断面厚さ(t 0 )に対して0.3〜0.65であ
り、かつ、前記高負荷部分の硬化部(21)の組織がマルテ
ンサイト主体であることを特徴とするゴム履帯用芯金。
1. A rubber crawler metal core bar (12) made of steel such as carbon steel or low alloy steel, in which a hardened part is formed by quenching from the surface toward the inside, wherein the core bar (12)
On the uncured portion is formed in the high-load portion of the longitudinal center vertical cross-sectional thickness of the (22) (t 1) is the high-load portion
Downward cross-sectional thickness (t 0) with respect to a 0.3 to 0.65, and the rubber crawler belt tissue hardened part of the high load part (21) is characterized in that it is a martensite mainly Core metal.
【請求項2】 (イ)鋼系素材を所定寸法に加工する第
1工程、 (ロ)加工素材を所定温度に加熱後、熱間鍛造により成
形する第2工程、 (ハ)熱間鍛造後、再加熱すること無しに、成形素材の
表面から内部に向かって硬化部を形成し、かつ、成形素
材の芯金(12) の長手方向中央部における高負荷部分の
内部に形成される未硬化部(22)上下方向の断面厚さ(t
1 )が、高負荷部分の上下方向の断面厚さ(t 0 )に対して
0.3〜0.65となる成形素材の直接焼入れを行う第
3工程、 以上の工程からなることを特徴とするゴム履帯用芯金の
製造方法。
2. (a) a first step of processing a steel-based material to a predetermined size; (b) a second step of heating the processed material to a predetermined temperature and then forming it by hot forging; (c) after hot forging , Uncured, which forms a hardened part from the surface of the molding material to the inside without reheating , and which is formed inside the high load part in the longitudinal central part of the core metal (12) of the molding material Part (22) vertical cross-sectional thickness (t
1), a third step of performing direct quenching of the molding material to be 0.3 to 0.65 with respect to the vertical direction of the cross-sectional thickness of the high-load portion (t 0), and characterized by having the above step A method for manufacturing a rubber crawler core metal.
JP26408993A 1993-09-29 1993-09-29 Rubber track core metal and method of manufacturing the same Ceased JP3387580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26408993A JP3387580B2 (en) 1993-09-29 1993-09-29 Rubber track core metal and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26408993A JP3387580B2 (en) 1993-09-29 1993-09-29 Rubber track core metal and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0796872A JPH0796872A (en) 1995-04-11
JP3387580B2 true JP3387580B2 (en) 2003-03-17

Family

ID=17398363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26408993A Ceased JP3387580B2 (en) 1993-09-29 1993-09-29 Rubber track core metal and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3387580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166863A (en) * 2000-12-04 2002-06-11 Ohtsu Tire & Rubber Co Ltd :The Crawler belt

Also Published As

Publication number Publication date
JPH0796872A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
CN100422576C (en) High-strength connecting rod and method of producing same
KR0153482B1 (en) Method for producing a vehicular endless track link
JP2008510070A (en) Method for producing hardened forged steel member
EP0933437A2 (en) Method of heat-treating a hollow cylindrical workpiece
EP1215292B1 (en) High-strength race and method of producing the same
JP3387580B2 (en) Rubber track core metal and method of manufacturing the same
JPS62256950A (en) High-strength steel wire rod excellent in wiredrawability
JPH0313522A (en) Heat treatment of cast iron
JPH0978134A (en) Manufacture of link for caterpillar belt
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP3351860B2 (en) Crawler track bushing and method of manufacturing the same
JP2009138261A (en) Heat-treatment method for columnar component
JPS6347773B2 (en)
JPH01272719A (en) Bushing hardened to large depth and production thereof
JP4272410B2 (en) Heat treatment method for pearlite rail
JPH03166320A (en) Track bushing and its production
JPH07116780A (en) Production of roll for continuous casting and roll for continuous casting manufactured by this method
JPS62136523A (en) Production of work roll for cold rolling
JPH01165725A (en) Track bushing hardened at high depth and its production
TW202030343A (en) Carbon alloy steel sheet and method for producing carbon alloy steel sheet
JP3856545B2 (en) Heat treatment method for crawler belt bush
JPS61199035A (en) Manufacture of composite roll having tough neck part
US5342457A (en) Method for the production of a switch diamond
US20020084009A1 (en) Method for making a roll shell of a roll used in the manufacture or further processing of paper and/or board
KR101299871B1 (en) Side guide liner and manufacturing method thereof

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition