JP3383802B2 - Reflecting mirror and manufacturing method thereof - Google Patents

Reflecting mirror and manufacturing method thereof

Info

Publication number
JP3383802B2
JP3383802B2 JP02050393A JP2050393A JP3383802B2 JP 3383802 B2 JP3383802 B2 JP 3383802B2 JP 02050393 A JP02050393 A JP 02050393A JP 2050393 A JP2050393 A JP 2050393A JP 3383802 B2 JP3383802 B2 JP 3383802B2
Authority
JP
Japan
Prior art keywords
silicon carbide
base material
mirror
polishing
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02050393A
Other languages
Japanese (ja)
Other versions
JPH06216049A (en
Inventor
暁 野上
佳弘 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP02050393A priority Critical patent/JP3383802B2/en
Publication of JPH06216049A publication Critical patent/JPH06216049A/en
Application granted granted Critical
Publication of JP3383802B2 publication Critical patent/JP3383802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザー光用反射鏡、同
じく光路構成用反射鏡及びその製造方法に関し、特に短
波長光用の大型反射鏡及びその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflecting mirror for laser light, a reflecting mirror for forming an optical path and a method for manufacturing the same, and more particularly to a large reflecting mirror for short wavelength light and a method for manufacturing the same.

【0002】[0002]

【従来の技術】周知の通り、レーザーは各分野において
広く使用され、その利用は益々多岐にわたっている。と
くに、より波長の短い真空紫外光領域、軟X線領域の発
生と光路構成用の反射鏡は、科学技術研究用及び未来産
業用の必須要具として早急な開発が望まれている。
2. Description of the Related Art As is well known, lasers are widely used in various fields and their applications are becoming more and more diverse. Particularly, a mirror for generating a vacuum ultraviolet light region and a soft X-ray region having a shorter wavelength and for forming an optical path is required to be developed immediately as an essential tool for scientific research and future industry.

【0003】しかし従来用いられていたアルミニウムや
金、白金等の蒸着膜反射鏡は、耐熱性低く、またこのよ
うな短波長域の光に対して反射率が低い欠点があった。
However, conventionally used vapor-deposition film reflecting mirrors of aluminum, gold, platinum, etc. have the drawbacks of low heat resistance and low reflectance for light in such a short wavelength range.

【0004】次いで反射率が比較的高く、若干の耐熱性
のある材料として、石英ガラス、単結晶シリコン、単結
晶モリブデンの表面を高精度研磨した反射鏡や、それ等
の表面にさらに誘電体多層膜を修飾した反射鏡も検討さ
れている。しかしこれ等は耐熱性及び反射率の点でなお
不充分で、全エネルギーの点では、50m、ピーク出
力の点では5MWが得られているに過ぎない。
Next, as a material having a relatively high reflectance and a little heat resistance, quartz glass, single crystal silicon, single crystal molybdenum, a reflecting mirror obtained by polishing the surface with high precision, or a dielectric multilayer on the surface thereof. Reflective mirrors with modified membranes are also being considered. But this like insufficient noted in terms of heat resistance and reflectance, in terms of the total energy, 50 m J, in terms of peak power is only 5MW is obtained.

【0005】このように短波長(一般には約200ナノ
メートル以下)光用の反射鏡としては、通常の可視光線
用や、赤外、遠赤外線用の反射鏡と異なり、高融点、優
れた耐熱性、高い熱伝導性、高反射率、鏡体全体として
の物理的、化学的諸特性が均質(等方的)であること等
が望まれる。従来このような諸々の要求特性を具備する
反射鏡は開発されていない。
As described above, the reflector for short wavelength light (generally, about 200 nanometers or less) has a high melting point and excellent heat resistance, unlike ordinary reflectors for visible light, infrared rays, and far infrared rays. Properties, high thermal conductivity, high reflectivity, and uniform (isotropic) physical and chemical properties of the entire mirror body are desired. Conventionally, no reflecting mirror having such various required characteristics has been developed.

【0006】[0006]

【発明が解決しようとする課題】従って本発明が解決し
ようとする課題は、上記の要求特性を具備する短波長光
用の高出力反射鏡を開発することである。
Therefore, the problem to be solved by the present invention is to develop a high-power reflecting mirror for short-wavelength light, which has the above-mentioned required characteristics.

【0007】このような要請から、近時、炭化珪素(S
iC)質材料を基材とし、その表面にCVD法により緻
密な炭化珪素質膜を形成、高精度研磨した反射鏡(以下
SiC/SiC系反射鏡と略称)が提案されている。こ
のSiC/SiC系反射鏡によって、従来他の材料を用
いた反射鏡に比較して、著しく耐熱性と反射率が向上し
た。しかしこの材料系の反射鏡の場合、いくつかの欠点
が挙げられる。即ち基材となる炭化珪素質材料は、一般
に別途製造された粉状炭化珪素を、適宜なバインダー成
分を用いて、加圧成形し、加圧下又は非加圧下にて高温
焼成して炭化珪素質基材を得、その表面にCVD法炭化
珪素質膜を形成したものである。
In response to such a request, silicon carbide (S
A reflective mirror (hereinafter referred to as SiC / SiC-based reflective mirror) in which a dense silicon carbide film is formed on the surface of an iC) -based material as a base material by a CVD method and is highly accurately polished has been proposed. With this SiC / SiC-based reflecting mirror, the heat resistance and the reflectivity are remarkably improved as compared with the reflecting mirrors using other conventional materials. However, in the case of this material-based reflecting mirror, there are some drawbacks. That is, the silicon carbide-based material that is the base material is a silicon carbide-based material that is produced by separately molding powdery silicon carbide under pressure using an appropriate binder component and firing at high temperature with or without pressure. A base material is obtained, and a CVD method silicon carbide film is formed on the surface thereof.

【0008】従って、(イ)深部からのバインダ成分の滲
出・拡散による表面の鏡面の汚染と劣化、(ロ)成形焼結
装置の経費負担、(ハ)炭化珪素質焼結体の硬さに原因す
る形状加工性の困難性及び形状任意性の制約、(ニ)炭化
珪素質焼結体の熱拡散特性の低さによる局部的昇温及び
それに原因する基材の破損現象等が挙げられる。
Therefore, (a) contamination and deterioration of the mirror surface of the surface due to the leaching and diffusion of the binder component from the deep part, (b) the cost burden of the molding and sintering apparatus, and (c) the hardness of the silicon carbide sintered body. Examples of such problems include difficulty in shape processability and restrictions on shape independence, (d) localized temperature rise due to low thermal diffusion characteristics of the silicon carbide based sintered body, and the resulting phenomenon of damage to the base material.

【0009】このようなSiC/SiC系反射鏡の欠点
を補う目的で本発明者等は先に、高密度等方性黒鉛材
(C)を基材とし、その表面にCVD法により形成され
た炭化珪素質膜を高精度研磨した反射鏡(以下C/Si
C系反射鏡と略称)を開発し、出願を行った(特願昭6
2−255192号)。
In order to make up for the drawbacks of the SiC / SiC-based reflecting mirror, the present inventors previously formed a high-density isotropic graphite material (C) as a base material and formed it on the surface by the CVD method. A reflecting mirror (hereinafter C / Si) obtained by polishing a silicon carbide film with high precision.
We have developed and filed an application for a C-type reflector (abbreviated as C-mirror)
2-255192).

【0010】その結果として、(A)黒鉛材は高融点で耐
熱性が高い、(B)熱伝導性、熱拡散特性に優れ、部分昇
温が少ない、(C)全灰分が10ppm以下という高純度で、
異方比1.10以下の等方性黒鉛材を使用することによ
り反射鏡としての特性と均一性が確保され、(D)また等
方性材料であるため、金属と同様に任意に形状加工が為
し得る、(E)黒鉛材の膨張係数をCVD法炭化珪素質膜
のそれと同じくすることにより、表層鏡面の剥離、ヒビ
割れを防止することが出来る。ことなどの特徴が確かめ
られた。
As a result, (A) graphite material has a high melting point and high heat resistance, (B) is excellent in thermal conductivity and thermal diffusion characteristics, has a small partial temperature rise, and (C) has a high total ash content of 10 ppm or less. With purity,
By using an isotropic graphite material with an anisotropic ratio of 1.10 or less, the characteristics and uniformity as a reflecting mirror are secured. (D) Since it is an isotropic material, it can be arbitrarily shaped like metal. By making the expansion coefficient of the (E) graphite material which is possible to be the same as that of the CVD silicon carbide film, peeling and cracking of the surface mirror surface can be prevented. The characteristics such as things were confirmed.

【0011】しかし、光学技術の進歩と共に、反射鏡の
鏡面の精度ではさらに高度なものが要請され、また益々
大形のものが要望されるに至った。
However, with the progress of optical technology, the precision of the mirror surface of the reflecting mirror is required to be higher, and more and more large is required.

【0012】このような大形(例えば鏡体の長軸側が5
0〜150cm)かつ高精度(例えば部分的な凹凸を示す
粗度では10オングストロームr.m.s以下、全体として
の平坦性を示す表面精度では1/10〜1/3λ以下)
の鏡面の製作に当って、前記のC/SiC系反射鏡にお
いては、基材として用いた等方性黒鉛材の硬度と剛性が
不足する難点が見出された。
[0012] Such a large size (for example, the long axis side of the mirror body is 5
0 to 150 cm) and high accuracy (for example, roughness with partial unevenness is 10 angstroms rms or less, surface accuracy showing overall flatness is 1/10 to 1/3 λ or less)
In the production of the mirror surface, it was found that in the above C / SiC-based reflecting mirror, the hardness and rigidity of the isotropic graphite material used as the base material were insufficient.

【0013】更に説明すると、CVD法炭化珪素質層を
高精度研磨する場合、サブミクロン径の球状ダイヤモン
ド粒、その他の研磨材を用いて順次、粗研磨、中研磨、
精研磨と精度を上げてゆく過程で、基材の剛性不足によ
り、研磨時の押圧力に基材そのものが抗しかね、所謂腰
くだけ現象が生じ、所定の精度と平坦性が満たされない
ことがあった。この現象は、反射鏡のサイズが比較的小
さい、例えば5cm〜20cm長の反射鏡においてはそれほ
ど大きくなく、無視できる程であったが、反射鏡の長さ
が50cm以上、1m〜1.5mの巨大反射鏡の場合に
は、研磨のため押圧した時に全体的な撓み、部分的な窪
み現象などが発生し鏡面精度と平坦性不足の現象となっ
た。
To further explain, in the case of highly accurate polishing of the CVD silicon carbide layer, rough polishing, medium polishing, spherical polishing with submicron diameter, and other polishing agents are sequentially performed.
In the process of precision polishing and increasing precision, due to insufficient rigidity of the base material, the base material itself cannot withstand the pressing force during polishing, a so-called stiff phenomenon occurs, and the predetermined accuracy and flatness may not be satisfied. there were. This phenomenon was not so large and was negligible in a reflector having a relatively small size, for example, a reflector having a length of 5 cm to 20 cm, but the length of the reflector was 50 cm or more, 1 m to 1.5 m. In the case of a giant reflecting mirror, when it is pressed for polishing, it causes a total bending and a partial depression phenomenon, resulting in a phenomenon of insufficient mirror surface accuracy and flatness.

【0014】[0014]

【課題を解決するための手段】このような現象を解決
し、高精度大型鏡製作を可能とする手段として下地とな
る黒鉛基材を、部分的に炭化珪素化し、基材の剛性と硬
度を高めたのち、その上に、従来と同様にCVD法炭化
珪素質層を形成させる方法を採用したところ、著効を見
出し、高精度反射面を有する超大型反射鏡製作も可能と
なった。
[Means for Solving the Problems] As a means for solving such a phenomenon and enabling the production of a high-precision large-sized mirror, the underlying graphite base material is partially silicon carbide to improve the rigidity and hardness of the base material. When the method of forming a silicon carbide layer by the CVD method on top of it was adopted after it was raised, a remarkable effect was found and it became possible to manufacture an ultra-large reflecting mirror having a highly accurate reflecting surface.

【0015】[0015]

【発明の構成並びに作用】ここに黒鉛材(反射鏡基材)
を部分的に炭化珪素化する方法は、これまでいくつかの
方法が知られており、それ等の従来の方法がすべて単独
又は組合せて本発明に適用可能である。
[Structure and operation of the invention] Graphite material (reflector base material)
Several methods of partially converting the above into silicon carbide have been known so far, and any of these conventional methods can be applied to the present invention alone or in combination.

【0016】例えば特開平1−264969号、特開平
1−249679号、特開平1−242408号などに
示されている方法を例示できる。これ等を化学式に基づ
いて表すと下記に大別することができる。 (イ)CVR法
For example, the methods described in JP-A-1-264969, JP-A-1-249679, JP-A-1-242408 and the like can be exemplified. These can be roughly classified into the followings based on chemical formulas. (A) CVR method

【0017】[0017]

【化1】 [Chemical 1]

【0018】(ロ)Si含浸法又はSi蒸気との反応法 (B) Si impregnation method or reaction method with Si vapor

【0019】[0019]

【化2】 [Chemical 2]

【0020】(ハ)CVR法+Si含浸法(C) CVR method + Si impregnation method

【0021】[0021]

【化3】 [Chemical 3]

【0022】但し[化1]中※※は別途に添加した原料
であり、[化1]〜[化3]中※は基材である。また
[化3]中※※※は基材中に残存するCである。
However, in [Chemical formula 1], * is a raw material added separately, and in [Chemical formula 1] to [Chemical formula 3] is a base material. Also, in [Chemical 3], ** is C that remains in the substrate.

【0023】これ等の方法により得られた反射鏡基材
は、原材である黒鉛(C)が部分的に炭化珪素(Si
C)に改質、転換された材質、即ち(C+SiC)混合
質のものに改質される。
In the reflector substrate obtained by these methods, the raw material graphite (C) is partially contained in silicon carbide (Si).
The material is reformed and converted to C), that is, a material of (C + SiC) mixture is reformed.

【0024】炭化珪素化された層の厚さは、基材である
黒鉛材の質やポアサイズ、SiOガスとの接触条件やS
i含浸量等の条件によって差異が生じるが、表層から2
〜3mm程度改質されたものから深部まで均質に改質され
たものまで、反応の条件の選択によって制御することが
できる。
The thickness of the silicon carbide layer depends on the quality and pore size of the graphite material as the base material, the contact conditions with the SiO gas and the S
i Depending on the conditions such as the amount of impregnation, the difference from the surface layer is 2
It can be controlled by selecting the reaction conditions from the one modified to about 3 mm to the one uniformly modified to the deep part.

【0025】また改質された層のSiCとCの比率は、
反応条件の選択により適宜制御が可能であるが、20〜
95%の範囲、特に反射鏡基材としての物性を総合的に
考慮する場合30〜80%の範囲であれば目的を達成す
るに充分である。
The ratio of SiC to C in the modified layer is
It can be controlled as appropriate by selecting the reaction conditions.
In the range of 95%, particularly in the range of 30 to 80% when considering the physical properties of the reflector substrate, it is sufficient to achieve the purpose.

【0026】この比率が20%未満の場合には、実質的
に黒鉛質のみからなる反射鏡基材の場合と異ならなくな
り、逆に95%を超える組成の場合には実質的に炭化珪
素質のみからなる基材に近くなる。
When the ratio is less than 20%, it does not differ from the case of the reflecting mirror base material which is substantially composed of only graphite, and conversely, when the ratio exceeds 95%, substantially only silicon carbide is contained. It becomes close to the base material.

【0027】前記のような黒鉛基材としての良好な特性
を残しつつ、これの硬度と剛性を増強させ、要求特性と
の折束範囲として30〜80%の範囲が特に好ましい。
It is particularly preferable that the hardness and rigidity of the graphite base material are enhanced while leaving the good characteristics as the graphite base material as described above, and the folding range with the required characteristics is 30 to 80%.

【0028】また反応条件の選択により、反射鏡基材の
表層付近の[SiC/C]比率を70%、基材の深部の
比率を30%と変化させた、所謂傾斜的組成を有するも
のも製作可能である。
Also, depending on the reaction conditions selected, there is also a so-called gradient composition in which the [SiC / C] ratio near the surface layer of the reflector substrate is changed to 70% and the ratio of the deep portion of the substrate is changed to 30%. It can be manufactured.

【0029】このように改質された黒鉛基材(C+Si
C)に対して、その表面にさらに緻密なCVD法による
炭化珪素膜を形成させ、それを高精度研磨して反射鏡
(以下(C+SiC)/SiC系反射鏡と略称する)を
得る。
The graphite base material thus modified (C + Si
For C), a more dense silicon carbide film is formed on the surface by CVD, and the silicon carbide film is polished with high precision to obtain a reflecting mirror (hereinafter referred to as (C + SiC) / SiC-based reflecting mirror).

【0030】CVD法によるSiC膜の形成方法につい
ては公知の方法、例えば特開平1−265203号に開
示する方法等によって行われる。
The SiC film is formed by the CVD method by a known method, for example, the method disclosed in Japanese Patent Laid-Open No. 1-265203.

【0031】このようにその表層付近を部分的に珪化し
た[炭素と炭化珪素]混合質の基材を用いることによ
り、前記の所期の効果の他に、最表層を形成するCVD
法炭化珪素質膜層と基材との接合性が一層強固なものと
なり、剥離等が皆無になる副次的効果も認められた。
By using a base material of [carbon and silicon carbide] mixture in which the vicinity of the surface layer is partially silicidized as described above, the CVD for forming the outermost surface layer is achieved in addition to the desired effect described above.
It was also confirmed that the bondability between the method silicon carbide film layer and the base material was further strengthened and peeling was eliminated.

【0032】以下、本発明の実施の態様を例示的に説明
する。
The embodiments of the present invention will be exemplarily described below.

【0033】[1]基材の形状加工工程 高密度等方性黒鉛(C)材料[東洋炭素株式会社製SI
C−120]を長さ1000mm×100mm×60m
mの長方形状に切削加工した[基材C]。この材料は通
常の金属用加工機械により容易に、任意の形状に加工す
ることができた。
[1] Substrate shape processing step High density isotropic graphite (C) material [SI manufactured by Toyo Tanso Co., Ltd.
C-120] length 1000 mm x 100 mm x 60 m
[Substrate C] cut into a rectangular shape of m. This material could be easily processed into an arbitrary shape by an ordinary metal processing machine.

【0034】[2]基材の珪化工程 上記基材(C)に対して特開平1−264969号に記
す方法により珪化処理(SiC化)を行った。即ち、黒
鉛ルツボに石英粉末(SiO)と黒鉛小片(原料とし
て費消されるC)を入れ、1900〜2300Kで反応
させ、SiOガスを発生、そのSiOガスと反射鏡基材
(C)と反応させ、表層附近を珪化(SiC化)させ
た。珪化された層の厚さは反応条件、特に時間の選択に
より表層から約2〜8mmの深さに制御された。その表
面及び切断面をSEM写真により観察すると、表層は9
5%がSiC化され、深部に至る程SiC化されている
程度が少なくなり、傾斜的組成となっていた。また表層
より10mm以上深い部分は珪化されず、黒鉛質のまま
で存在していることが判った[以下、基材(C+Si
C)と称す]。
[2] Silicification Step of Base Material The above base material (C) was subjected to a silicidation treatment (SiC conversion) by the method described in JP-A-1-264969. That is, quartz powder (SiO 2 ) and graphite pieces (C consumed as a raw material) are put into a graphite crucible and reacted at 1900 to 2300 K to generate SiO gas, and the SiO gas reacts with the reflector substrate (C). Then, the vicinity of the surface layer was silicified (SiC). The thickness of the silicified layer was controlled to a depth of about 2 to 8 mm from the surface layer by selecting the reaction conditions, particularly the time. When the surface and the cut surface are observed by the SEM photograph, the surface layer is 9
5% was converted to SiC, and the extent to which it was converted to SiC decreased to the deeper part, resulting in a graded composition. Further, it was found that the portion deeper than 10 mm deeper than the surface layer was not silicified and remained as graphite [hereinafter, referred to as the base material (C + Si
C)].

【0035】[3]CVD−SiC被膜形成工程 上記[2]の方法で処理した反射鏡基材に対して常法に
よりCVC法により、緻密・均質な炭化珪素質層を形成
させた。一つの例として、特開平1−265203号に
記す方法、即ち[基材(C+SiC)]をCVD反応炉
に入れ、珪素系原料としてSiH、SiCl、Si
HCl、(CHSiCl、など、また炭素系原
料として素材である炭素材を関与させることができる
他、別途炭素源としてCCl、CH、C、C
などを導入することも出来る。
[3] CVD-SiC Coating Forming Step A dense and homogeneous silicon carbide layer was formed on the reflecting mirror substrate treated by the above method [2] by the CVC method according to a conventional method. As one example, the method described in Japanese Patent Application Laid-Open No. 1-265203, that is, [base material (C + SiC)] is placed in a CVD reaction furnace, and SiH 4 , SiCl 4 , Si as silicon-based raw materials are used.
In addition to HCl 3 , (CH 3 ) 3 SiCl, etc., and a carbon material as a raw material can be involved as a carbon-based raw material, CCl 4 , CH 4 , C 3 H 8 , C as a separate carbon source.
It is also possible to introduce 3 H 6 or the like.

【0036】これ等の他必要に応じて、H2、Ar等の
キャリアガスを適宜導入することができる。反応温度は
1300〜1800Kが好ましい。このような方法で約
300〜400μmの厚さに形成されたCVD法炭化珪
素質層はβ系SiCのみから成り、緻密、均質であっ
た。
In addition to these, if necessary, a carrier gas such as H 2 or Ar can be appropriately introduced. The reaction temperature is preferably 1300 to 1800K. The CVD silicon carbide layer formed to a thickness of about 300 to 400 μm by such a method was composed of β-type SiC only, and was dense and homogeneous.

【0037】また基材として使用した等方性黒鉛材の熱
膨張係数は、β系CVD法炭化珪素質膜のそれと殆ど同
じものを使用していること、及び基材の表層附近をさら
に全部又は部分的に珪化(SiC化)した結果と相俟っ
て、全長1メートルに及ぶ大型鏡体においても、鏡面に
なるCVD法炭化珪素質層においてヒビ割れ、剥離等の
現象は皆無であった。
Further, the thermal expansion coefficient of the isotropic graphite material used as the base material is almost the same as that of the β-based CVD method silicon carbide film, and the entire vicinity of the surface layer of the base material or In combination with the result of partial silicidation (SiC conversion), even in a large-sized mirror body having a length of 1 meter, there were no phenomena such as cracking or peeling in the CVD-processed silicon carbide layer which becomes a mirror surface.

【0038】[4]鏡面研磨工程 研磨は常法により、セリヤ粉、クロミア粉等により押圧
法粗研磨を行い、先ず鏡面の平坦性を出した後、0.1
μm球状ダイヤモンド粒を用い、押圧法及び浮遊法等に
よる高精度研磨を行う。
[4] Mirror-polishing step Polishing is carried out by a conventional method such as ceria powder, chromia powder, etc., and roughening is carried out by a pressing method.
Using μm spherical diamond grains, high-precision polishing is performed by the pressing method and the floating method.

【0039】本発明方法にかかる基材[C]表層付近
予め珪化する工程(前記[])を施した基材(C+S
iC)の場合、研磨時に強い力で押圧して擦っても、基
材の撓みによる変形が殆ど発生せず充分な剛性を有し、
鏡体全体として平坦性が損なわれることは無かった。
Substrate (C + S) which has been subjected to the step of silicifying the vicinity of the surface layer of the substrate [C] according to the method of the present invention (the above [ 2 ]).
In the case of iC), even if pressed and rubbed with a strong force at the time of polishing, there is almost no deformation due to bending of the base material, and sufficient rigidity is obtained,
The flatness of the entire mirror body was not impaired.

【0040】この本発明の効果は、鏡体のサイズが大き
くなる程顕著に認められた。また表面精度についても基
材(C+SiC)の硬度が、基材(C)に比べて非常に
高いので、研磨時の押圧力に抗して窪み量が少なく良好
な表面精度が得られた。
The effect of the present invention was remarkably recognized as the size of the mirror body increased. Regarding the surface accuracy, since the hardness of the base material (C + SiC) is much higher than that of the base material (C), the amount of dents was small against the pressing force during polishing, and good surface accuracy was obtained.

【0041】[0041]

【比較例1】実施例1の第(I)工程で得られた基材
(C)と同種、同形の基材を、第(II)工程(基材の珪
化工程)を施すことなく、以後第(III)工程、第(I
V)工程は実施例1と同様に処理して得られた鏡体は、
基材全体としての剛性と、表面の硬度が不足して、研磨
時の押圧力に抗し得ず、全体としての撓みや部分的な窪
みが発生して鏡面の平坦性や精度が不充分であった。こ
れを補うため押圧力を弱めると多大の研磨時間と労力を
要し、かつ最終的に得られる鏡面も、本発明方法の実施
によって得られた鏡面に比べ劣るものであった。
[Comparative Example 1] A base material of the same type and shape as the base material (C) obtained in the step (I) of Example 1 was used without performing the step (II) (base material silicidation step). Step (III), Step (I
In the step V), the mirror body obtained by treating in the same manner as in Example 1 is
The rigidity of the substrate as a whole and the hardness of the surface are insufficient, and the pressing force during polishing cannot be resisted. As a result, bending and partial depressions occur as a whole, and the flatness and precision of the mirror surface are insufficient. there were. If the pressing force is weakened to compensate for this, much polishing time and labor are required, and the mirror surface finally obtained is inferior to the mirror surface obtained by carrying out the method of the present invention.

【0042】前記実施例1及び比較例1によって得られ
た鏡面の平坦性及び表面精度を測定した結果を表1に示
す。
Table 1 shows the results of measuring the flatness and surface accuracy of the mirror surfaces obtained in Example 1 and Comparative Example 1 .

【0043】[0043]

【表1】 [Table 1]

【0044】但し表1中の(注1)〜(注3)は以下の
ことを示す。
However, (Note 1) to (Note 3) in Table 1 indicate the following.

【0045】(注1)長形鏡体の中心軸上5点測定値及
び平均値。 単位:オングストローム、r.m.s. ZYGO粗さ計法による測定
(Note 1) Measured values and average values at 5 points on the central axis of the elongated mirror body. Unit: Angstrom, rms ZYGO Roughness measurement method

【0046】(注2)回折像法による測定値 但しλ=632.8nm(ナノメートル) ZYGO干渉計による測定(He−Ne光使用)(Note 2) Measurement value by diffraction image method However, λ = 632.8 nm (nanometer) Measurement by ZYGO interferometer (using He-Ne light)

【0047】(注3)400倍光学式顕微鏡による表面
目視観察所見
(Note 3) Visual observation of surface by 400 times optical microscope

【0048】[0048]

【発明の効果】黒鉛を基材とし、表面にCVD法SiC
を被覆、研磨して得られる反射鏡において、黒鉛基材の
表層付近を部分的に珪素化することにより、基材の剛性
と硬度が増し、研磨時操作が容易かつ、得られた鏡面の
平坦性及び鏡面の精度共に著しく向上させることができ
た。
EFFECT OF THE INVENTION Graphite is used as the base material, and the surface is CVD method SiC
In the reflection mirror obtained by coating and polishing, the surface and the vicinity of the surface of the graphite base material is partially siliconized to increase the rigidity and hardness of the base material, and the polishing operation is easy and the obtained mirror surface is flat. It was possible to remarkably improve both the property and the precision of the mirror surface.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G21K 1/06 G02B 5/08 H01S 3/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G21K 1/06 G02B 5/08 H01S 3/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】等方性黒鉛材を基材とし、その表面にCV
D法により炭化珪素膜を形成せしめ、それを高精度研磨
して得られた鏡面を有する反射鏡において、基材となる
等方性黒鉛材を部分的に炭化珪素質に転換せしめた後
に、その表面にCVD法により炭化珪素膜を形成せし
め、これを高精度研磨して得られた鏡面を有する反射
鏡。
1. An isotropic graphite material as a base material, the surface of which is CV.
In a reflecting mirror having a mirror surface obtained by forming a silicon carbide film by the D method and polishing it with high precision, after the isotropic graphite material as a base material is partially converted to silicon carbide, A reflecting mirror having a mirror surface obtained by forming a silicon carbide film on the surface by a CVD method and polishing this with high precision.
【請求項2】等方性黒鉛材を基材とし、その表面にCV
D法により炭化珪素膜を形成せしめ、それを高精度研磨
して得られた鏡面を有する反射鏡において、基材となる
等方性黒鉛材を部分的に炭化珪素質に転換せしめた後
に、その表面にCVD法により炭化珪素膜を形成せし
め、これを高精度研磨して得られた鏡面を有する反射鏡
を製造するに際し、基材となる等方性黒鉛材に、一酸化
珪素蒸気(SiOガス)を接触せしめ、等方性黒鉛材を
部分的に炭化珪素質に転換した後に、その表面にCVD
法により炭化珪素膜を形成し、高精度研磨することを特
徴とする反射鏡の製造方法。
2. An isotropic graphite material as a base material, the surface of which is CV
In a reflecting mirror having a mirror surface obtained by forming a silicon carbide film by the D method and polishing it with high precision, after the isotropic graphite material as a base material is partially converted to silicon carbide, When a silicon carbide film is formed on the surface by a CVD method, and a mirror having a mirror surface obtained by polishing the silicon carbide film with high precision is manufactured, an isotropic graphite material as a base material is coated with silicon monoxide vapor (SiO gas). ) Is contacted to partially convert the isotropic graphite material into silicon carbide, and then CVD is performed on the surface.
A method of manufacturing a reflecting mirror, which comprises forming a silicon carbide film by a method and polishing it with high precision.
【請求項3】等方性黒鉛材を基材とし、その表面にCV
D法により炭化珪素膜を形成せしめ、それを高精度研磨
して得られた鏡面を有する反射鏡において、基材となる
等方性黒鉛材を部分的に炭化珪素質に転換せしめた後
に、その表面にCVD法により炭化珪素膜を形成せし
め、これを高精度研磨して得られた鏡面を有する反射鏡
を製造するに際し、基材となる等方性黒鉛材に、珪素を
含浸、または珪素蒸気と反応せしめ、等方性黒鉛材を部
分的に炭化珪素質に転換した後に、その表面にCVD法
により炭化珪素膜を形成し、高精度研磨することを特徴
とする反射鏡の製造方法。
3. An isotropic graphite material as a base material, the surface of which is CV
In a reflecting mirror having a mirror surface obtained by forming a silicon carbide film by the D method and polishing it with high precision, after the isotropic graphite material as a base material is partially converted to silicon carbide, When a silicon carbide film is formed on the surface by a CVD method, and a reflecting mirror having a mirror surface obtained by polishing this with high precision is manufactured, an isotropic graphite material as a base material is impregnated with silicon or silicon vapor. And a part of the isotropic graphite material is converted into a silicon carbide material, a silicon carbide film is formed on the surface by a CVD method, and high-precision polishing is performed.
【請求項4】波長が200ナノメートル以下の短波長光
に用いられる反射鏡である請求項1に記載の反射鏡。
4. The reflecting mirror according to claim 1, which is a reflecting mirror used for light having a short wavelength of 200 nm or less.
JP02050393A 1993-01-13 1993-01-13 Reflecting mirror and manufacturing method thereof Expired - Fee Related JP3383802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02050393A JP3383802B2 (en) 1993-01-13 1993-01-13 Reflecting mirror and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02050393A JP3383802B2 (en) 1993-01-13 1993-01-13 Reflecting mirror and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06216049A JPH06216049A (en) 1994-08-05
JP3383802B2 true JP3383802B2 (en) 2003-03-10

Family

ID=12028970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02050393A Expired - Fee Related JP3383802B2 (en) 1993-01-13 1993-01-13 Reflecting mirror and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3383802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103756A1 (en) * 2005-11-08 2007-05-10 Poco Graphite, Inc. System, method, and apparatus for conversion bonding of precursor subcomponents into a unitary monolith
EP3071899A4 (en) * 2013-11-19 2017-06-21 Tokyo Ohka Kogyo Co., Ltd. Reflective mirror for light concentrating system, and light concentrating system

Also Published As

Publication number Publication date
JPH06216049A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
US9321647B2 (en) Polycrystalline aluminum nitride material and method of production thereof
JP2918860B2 (en) Specular
JP3383802B2 (en) Reflecting mirror and manufacturing method thereof
JP3147977B2 (en) Substrate for reflecting mirror made of sintered silicon carbide and method of manufacturing the same
JP2738629B2 (en) Composite members
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JP3857742B2 (en) Glass mold for optical element molding
US5273825A (en) Article comprising regions of high thermal conductivity diamond on substrates
JPH0585892A (en) Diamond thin film and its production
JP2939297B2 (en) Laser reflecting mirror and method of manufacturing the same
JPH0336402B2 (en)
JP2006188415A (en) Ceramic for glass forming mold
JP3058601B2 (en) Silicon carbide coating material
JPH0832592B2 (en) Composite material
JPH0316923A (en) Composite mold for forming optical part and production thereof
JP2006182641A (en) Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same
JP2000154064A (en) Electrically conductive silicon nitride-base sintered compact and its production
Lindsey et al. Ceramic materials as mirrors for synchrotron radiation
US20100209608A1 (en) Film formation method, die, and method of manufacturing the same
JPH11103106A (en) Reflector mirror for laser
JP3696843B2 (en) Reflector
JP3347475B2 (en) Covering member
JP3605774B2 (en) Glass press mold
JPH04358068A (en) Member coated with sic by cvd
JPH07187689A (en) Mold for glass-made optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees