JP3339221B2 - Surface direction detector - Google Patents

Surface direction detector

Info

Publication number
JP3339221B2
JP3339221B2 JP30560294A JP30560294A JP3339221B2 JP 3339221 B2 JP3339221 B2 JP 3339221B2 JP 30560294 A JP30560294 A JP 30560294A JP 30560294 A JP30560294 A JP 30560294A JP 3339221 B2 JP3339221 B2 JP 3339221B2
Authority
JP
Japan
Prior art keywords
light
intensity
led
surface direction
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30560294A
Other languages
Japanese (ja)
Other versions
JPH08136252A (en
Inventor
啓一 山田
倫明 中野
新 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP30560294A priority Critical patent/JP3339221B2/en
Publication of JPH08136252A publication Critical patent/JPH08136252A/en
Application granted granted Critical
Publication of JP3339221B2 publication Critical patent/JP3339221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鏡面における光の正反
射の性質を利用して鏡面の面方向を測定する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the direction of a mirror surface by utilizing the property of regular reflection of light on the mirror surface.

【0002】[0002]

【従来技術】鏡面での光の正反射の性質を利用して鏡面
の面方向を検出する方法は、対象物からの反射光が複数
の位置に設けられた光源のうちの何れの光源からの光に
対応しているのかを判定し、正反射では入射角と反射角
が等しいことを利用して、その光源の位置から反射面の
面方向を求めるものである。
2. Description of the Related Art A method of detecting the surface direction of a mirror surface by using the property of specular reflection of light on the mirror surface is disclosed in Japanese Patent Application Laid-Open No. H10-157,197. It is determined whether or not the light corresponds to the light, and in the regular reflection, the fact that the incident angle and the reflection angle are equal is used to determine the surface direction of the reflection surface from the position of the light source.

【0003】この従来技術では、反射光の光源を特定す
るために、複数の光源を順次点灯して反射光の有無を検
出し、検出された反射光の光を放射している光源の位置
を求めるものである(例えばA.C.Sanderson, L.E.Weiss
and S.K.Nayar:"Structuredhighlight inspection of
specular surfaces", IEEE Trans. Pattern Anal. &Mac
h. Intell., PAMI-10, 1, pp.44-55(1988)) 。しかし、
この方法では、光源を順次点灯して反射光を検出するの
で、測定に時間がかかるという問題点がある。特に、検
出する面方向の種類に比例して測定時間が長くなるとい
う問題点がある。
In this prior art, in order to specify a light source of reflected light, a plurality of light sources are sequentially turned on to detect the presence or absence of reflected light, and the position of the light source emitting the detected reflected light is determined. What you want (eg ACSanderson, LEWeiss
and SKNayar: "Structuredhighlight inspection of
specular surfaces ", IEEE Trans. Pattern Anal. & Mac
h. Intell., PAMI-10, 1, pp.44-55 (1988)). But,
In this method, since the light sources are sequentially turned on to detect the reflected light, there is a problem that the measurement takes time. In particular, there is a problem that the measurement time becomes longer in proportion to the type of the surface direction to be detected.

【0004】この方法の改良として、位置によって異な
る波長(色)の光源を用い、全ての光源を同時に点灯し
て、対象物からの反射光を受光し、その反射光の波長を
検出し、その波長により光源の位置を特定する方法があ
る。この方法は、一度に全ての光源を点灯することか
ら、測定時間を短縮することができる(例えば、秦清
治,西山雅子:「カラーストライプ照明下でのステレオ
視による鏡面形状の抽出」第8回産業における画像セン
シング技術シンポジウム講演論文集,pp.103-108(1992-
6)) 。しかし、この方法では、反射光を波長に分けて検
出する必要があるので、装置構成が複雑になる問題点が
あった。
As an improvement of this method, light sources having different wavelengths (colors) are used at different positions, all the light sources are turned on at the same time, light reflected from an object is received, and the wavelength of the reflected light is detected. There is a method of specifying a position of a light source by a wavelength. This method can reduce the measurement time because all light sources are turned on at the same time (for example, Seiji Hata and Masako Nishiyama: "Extraction of mirror surface shape by stereo vision under color stripe illumination", the 8th session) Proceedings of the Image Sensing Technology Symposium in Industry, pp.103-108 (1992-
6)). However, in this method, it is necessary to detect the reflected light by dividing it into wavelengths, so that there has been a problem that the device configuration becomes complicated.

【0005】又、投影光学系を用いて透過型の面光源を
作り、これを対象物体に十分近づけて配置し、物体に関
する拘束条件のもとで、物体面の法線方向と奥行き情報
を得る手法がある(西野悦二,白井良明,「投影光学系
を用いた光度差ステレオ法による金属面の形状決定」,
コンピュータビジョン32-2,(1984,7))。この方法は、透
過率がウェッジ状に変化するフィルタを用いて拡散板上
に投影して、拡散板上の明るさの分布をウェッジ状と
し、この拡散板を面光源として、拡散板からの反射光を
対象物に照射するようにしたものである。そして、対象
物からの反射光をテレビカメラで受光して、テレビカメ
ラの受光面での濃淡情報(反射光強度)をもとに画像上
の各画素に対応する面光源上の光源位置を一度に求めて
いる。
[0005] Further, a transmission type surface light source is produced using a projection optical system, this is placed sufficiently close to an object, and information on the normal direction and depth of the object surface is obtained under the constraint conditions for the object. There is a method (Etsuji Nishino, Yoshiaki Shirai, "Determination of metal surface shape by photometric stereo method using projection optical system",
Computer Vision 32-2, (1984, 7)). This method uses a filter whose transmittance changes in the form of a wedge, projects the light on a diffuser, and makes the distribution of brightness on the diffuser a wedge, and uses this diffuser as a surface light source to reflect light from the diffuser. The object is irradiated with light. Then, the reflected light from the object is received by the television camera, and the light source position on the surface light source corresponding to each pixel on the image is once determined based on the density information (reflected light intensity) on the light receiving surface of the television camera. Seeking to.

【0006】ただし、物体面の反射率などの影響を受け
ない様に、フィルタ無しの状態で投影光学系で拡散板上
に投影して作ったほぼ一様な明るさの面光源を用い、反
射光強度を規格化している。この方法では、規格化によ
って物体面の反射率などの影響を受けないようにしてい
るが、基本的には反射光強度をそのまま用いているた
め、カメラの雑音の影響を受け易い。そのため、対応点
決定の精度が良くないので、面方向の検出精度が良くな
いという問題点があった。
However, in order to avoid the influence of the reflectivity of the object surface, a surface light source of almost uniform brightness, which is produced by projecting onto a diffusion plate with a projection optical system without a filter, is used. Light intensity is standardized. In this method, the influence of the reflectance of the object surface is not affected by the normalization, but since the reflected light intensity is basically used as it is, it is easily affected by the noise of the camera. Therefore, there is a problem that the detection accuracy in the plane direction is not good because the accuracy of determining the corresponding point is not good.

【0007】即ち、投影光学系を用いた従来方法では、
ほぼ一様な明るさの面光源の反射光強度で規格化するの
で、位置毎に発光強度の比はほぼ1/Aから1の区間
(A>1)に分布する。このため、発光強度比のダイナ
ミックレンジが狭いので、カメラの雑音の影響を受け易
く、面方向の検出精度が良くないという問題点がある。
That is, in the conventional method using the projection optical system,
Since the normalized light intensity is standardized by the reflected light intensity of the surface light source having substantially uniform brightness, the ratio of the light emission intensity is distributed from 1 / A to 1 (A> 1) at each position. For this reason, since the dynamic range of the light emission intensity ratio is narrow, there is a problem that it is easily affected by the noise of the camera and the detection accuracy in the plane direction is not good.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の課題を
解決するために成されたものであり、その目的は、対象
物の面方向の測定に際し、測定時間を短縮し、装置構成
を簡略化し、検出精度を向上させることである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to reduce the measuring time and simplify the apparatus configuration when measuring the surface direction of an object. To improve the detection accuracy.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、反射光を用いて対象物の面方向を検出
する装置において、発光部の発光強度の発光部における
位置による分布を、A>1として、規格化した値として
ほぼ1/Aから1と1からほぼ1/Aの2通りのパター
ンに変化でき、位置に関する位置毎の2通りの発光強度
の比の分布を、ほぼ1/AからAの範囲で単調に増加す
る関数とし、対象物に対して2つのパターンで照射する
照明手段と、照明手段の発光部のある位置から対象物に
照射された入射光線の対象物からの反射光線の強度を、
2つのパターンに対して、それぞれ、測定する測定手段
と、測定手段により測定された2つのパターンに対する
2つの反射光線の強度比から、反射光線に対応する入射
光線の発光部上の放射位置を求め、その放射位置に基づ
いて、対象物の面方向を求める演算手段とを設けたこと
である。
According to an aspect of the present invention, there is provided an apparatus for detecting a surface direction of an object by using reflected light, wherein a distribution of a light emission intensity of a light emitting unit according to a position in the light emitting unit is determined. , A> 1, as a normalized value
The pattern can be changed from approximately 1 / A to 1 and from 1 to approximately 1 / A, and the distribution of the ratio of the two emission intensities for each position with respect to the position monotonically increases from approximately 1 / A to A. Illuminating means for irradiating the object in two patterns, and the intensity of the reflected light from the object of the incident light irradiating the object from a position of the light emitting unit of the illuminating means,
For each of the two patterns, the radiation position of the incident light beam corresponding to the reflected light beam on the light emitting portion is determined from the measuring means for measuring and the intensity ratio of the two reflected light beams to the two patterns measured by the measuring means. And calculating means for obtaining the surface direction of the object based on the radiation position.

【0010】他の発明は、照明手段を一列に複数設け、
各照明手段は、対象物の面方向の測定可能範囲の分割さ
れた各角度範囲の検出に用いられる入射光を発光するこ
とを特徴とする。他の発明は、照明手段を、測定手段の
光軸を中心軸とする半球または円錐の内面に沿って多数
個設け、各照明手段は、対象物の面方向の測定可能範囲
の分割された角度範囲の検出に用いられる入射光を発光
することを特徴とする。
According to another aspect of the present invention, a plurality of lighting means are provided in a row,
Each illumination unit emits incident light used for detecting each of the divided angular ranges of the measurable range in the plane direction of the object. According to another aspect of the invention, a large number of illumination means are provided along the inner surface of a hemisphere or a cone with the optical axis of the measurement means as a central axis, and each illumination means has a divided angle of a measurable range in the plane direction of the object. It emits incident light used for detecting a range.

【0011】[0011]

【発明の作用及び効果】照明手段は、各発光部の発光強
度を第1パターンと第2パターンとして発光することが
できる。その第1パターンと第2パターンの発光強度比
は、1/A〜Aの範囲で単調に増加するように第1パタ
ーン及び第2パターンの発光強度が調整されている。但
し、発光位置との関係で発光強度比が単調に増加する必
要はなく、値として同一値を取らないという意味であ
る。
The lighting means can emit light with the light emission intensity of each light emitting portion as a first pattern and a second pattern. The emission intensities of the first and second patterns are adjusted so that the emission intensity ratio between the first and second patterns monotonically increases in the range of 1 / A to A. However, it is not necessary to light emission intensity ratio in relation to the light emission position increases monotonically, it is meant that not take the same value as the value.

【0012】このような照明手段により、対象物に第1
パターンで照明し、対象物からの反射光強度が測定手段
によって測定される。この測定手段は、対象物の同一反
射位置に対しては、発光面の1位置から発光された光線
に対応する反射光線のみを受光できるように調整されて
いる。このときの反射光強度の測定値をS1とする。同
様に、第2パターンにより対象物に光を照射し、その反
射光の強度を測定する。このときの反射光強度の測定値
をS2とする。そして、上記の反射光強度の比S1/S
2を求め、発光面の発光強度において、第1パターンと
第2パターンとで、発光強度の比がS1/S2に最も近
い発光面上の位置が演算される。そして、その発光面上
の位置における対象物への入射光の光軸と、測定手段の
検出する反射光の光軸との関係から、対象物の反射面の
方向が演算される。
[0012] By such an illumination means, the first object is placed on the object.
The light is illuminated by the pattern, and the intensity of the reflected light from the object is measured by the measuring means. This measuring means is adjusted so that it can receive only the reflected light corresponding to the light emitted from one position on the light emitting surface at the same reflection position of the object. The measured value of the reflected light intensity at this time is defined as S1. Similarly, the object is irradiated with light according to the second pattern, and the intensity of the reflected light is measured. The measured value of the reflected light intensity at this time is defined as S2. Then, the ratio S1 / S of the above reflected light intensity is obtained.
2 is calculated, and the position on the light emitting surface where the ratio of the light emitting intensity is closest to S1 / S2 is calculated between the first pattern and the second pattern in the light emitting intensity of the light emitting surface. Then, the direction of the reflecting surface of the object is calculated from the relationship between the optical axis of the light incident on the object at the position on the light emitting surface and the optical axis of the reflected light detected by the measuring means.

【0013】以上のように、照明の発光強度パターンを
2通りに変化させて対象物に照射し、その対象物からの
反射光の強度の比を測定することで面方向の測定が可能
となるので、測定時間の短縮ができる効果がある。ま
た、光源の波長は同一でよいので、波長を変化させた場
合に比べて装置が簡単になる効果がある。反射光強度の
比を利用するので、対象物の面の反射率の影響や、照明
手段の光源の発光強度の絶対的な変化に影響されること
なく面方向が検出できる。又、第1パターンと第2パタ
ーンとにおいて、発光部上の発光強度比の分布をほぼ1
/AからAの間で単調に増加する関数としたので、ほぼ
一様な明るさの面光源の反射光強度で規格化する従来方
法に比べ、ダイナミックレンジが広がり、精度良く対応
点が決定でき、面方向の検出精度が良くなる。
As described above, the object can be measured in the plane direction by irradiating the object with the light emission intensity pattern of the illumination changed in two ways and measuring the ratio of the intensity of the reflected light from the object. Therefore, there is an effect that the measurement time can be reduced. Further, since the wavelengths of the light sources may be the same, there is an effect that the apparatus is simpler than when the wavelength is changed. Since the ratio of the reflected light intensity is used, the surface direction can be detected without being affected by the reflectance of the surface of the object or by the absolute change in the light emission intensity of the light source of the illumination means. Further, in the first pattern and the second pattern, the distribution of the light emission intensity ratio on the light emitting portion is substantially 1 unit.
Since the function is monotonically increasing between / A and A, the dynamic range is widened and the corresponding point can be determined with high accuracy as compared with the conventional method in which the reflected light intensity of the surface light source having almost uniform brightness is standardized. Thus, the detection accuracy in the plane direction is improved.

【0014】又、照明手段を一列に複数設けることで、
検出可能な角度範囲を分割することができ、面方向の検
出の分解能を向上させることができる。又、照明手段
を、測定手段の光軸を中心軸とする半球または円錐の内
面に沿って多数設けることで、任意方向を向いた面の方
位を検出することができる。
By providing a plurality of lighting means in a row,
The detectable angle range can be divided, and the resolution of detection in the plane direction can be improved. Further, by providing a large number of illumination means along the inner surface of a hemisphere or a cone with the optical axis of the measurement means as the central axis, it is possible to detect the azimuth of the surface facing any direction.

【0015】[0015]

【実施例】第1実施例 本発明の第1実施例を図1に示す。この装置は、法線ベ
クトルが紙面上に存在する面の面方向を測定するもので
ある。図1において、1は測定対象物、2はLED(発
光ダイオード)を一直線上に並べたLED照明装置、3
はLED照明装置2で照明された対象物1からの反射光
強度の分布を画像として検出するためのテレビカメラ、
4はテレビカメラ3のカメラレンズ、5はテレビカメラ
3で撮影した画像を計算機7に入力する画像入力装置、
6はLED照明装置2を駆動するLED駆動装置、7は
LED駆動装置6を制御するとともに画像入力装置5か
ら入力される画像データから対象物の面方向分布を計算
する計算機、8はテレビカメラ3とLED照明装置2を
固定する台座である。尚、LED照明装置2は、例え
ば、分割された各角度範囲の大きさを等しくするために
図7に示すように円弧上に並べてもよい。テレビカメラ
3とLED照明装置2が同一の台座に固定されているの
で、焦点深度の浅いカメラレンズを用いることにより、
台座の位置をテレビカメラの焦点が合うように調節する
ことで、対象物1とテレビカメラ3およびLED照明装
置2との位置決めを行うことが可能となる。
EXAMPLES first embodiment of the first embodiment the present invention shown in FIG. This apparatus measures the plane direction of a plane on which a normal vector exists on the paper surface. In FIG. 1, 1 is an object to be measured, 2 is an LED lighting device in which LEDs (light emitting diodes) are arranged in a straight line, 3
Is a television camera for detecting the distribution of the intensity of reflected light from the object 1 illuminated by the LED illumination device 2 as an image,
4 is a camera lens of the television camera 3, 5 is an image input device for inputting an image taken by the television camera 3 to the computer 7,
Reference numeral 6 denotes an LED driving device that drives the LED lighting device 2, 7 a computer that controls the LED driving device 6 and calculates a surface direction distribution of an object from image data input from the image input device 5, 8 denotes a television camera 3 And a pedestal for fixing the LED lighting device 2. Note that the LED lighting devices 2 may be arranged on an arc as shown in FIG. 7, for example, in order to equalize the size of each divided angle range. Since the TV camera 3 and the LED lighting device 2 are fixed to the same pedestal, by using a camera lens having a small depth of focus,
By adjusting the position of the pedestal so that the television camera is in focus, it is possible to position the object 1 with the television camera 3 and the LED lighting device 2.

【0016】図2に、LED照明装置2の構成を示す。
図2において、LED1からLED12はLEDで、そ
れぞれのLEDのカソード側は端子Gに接続されてい
る。R1,1からR1,12 は抵抗で、それぞれの抵抗の端子の
一方はLED1からLED12のアノードに、もう一方
の端子は端子V1に接続されている。R2,1からR2,12 は
抵抗で、それぞれの一方の端子はLED1からLED1
2のアノードに、もう一方の端子は端子V2に接続され
ている。
FIG. 2 shows the configuration of the LED lighting device 2.
In FIG. 2, LEDs 1 to 12 are LEDs, and the cathode side of each LED is connected to a terminal G. R1,1 to R1,12 are resistors. One terminal of each resistor is connected to the anode of LED1 to LED12, and the other terminal is connected to terminal V1. R2,1 to R2,12 are resistors, one terminal of each is LED1 to LED1
2 and the other terminal is connected to terminal V2.

【0017】抵抗R1,1からR1,12 は、理想的にはその抵
抗値が等比的に変化するものである。また、正順の抵抗
R2,1からR2,12 の抵抗値は、それぞれ、逆順の抵抗R1,1
2 からR1,1の抵抗値に等しいものである。抵抗値が厳密
に等比的に変化するような抵抗は入手が難しいので、ほ
ぼ等比的に変化する抵抗として例えばE−12系列やE
−24系列の抵抗を利用する。図3に、抵抗R1,1からR
1,12 およびR2,1から2,12の抵抗値を示す。LED1か
らLED12のLEDの発光強度は、これらの抵抗値で
決まるLEDの駆動電流の範囲で、駆動電流に比例する
ものとする。従って、抵抗R1,1からR1,12 を用いた場合
の各LEDの発光強度は等比級数的に増加し、抵抗R2,1
からR2,12 を用いた場合の各LEDの発光強度は等比級
数的に減少する。
The resistances of the resistors R1,1 to R1,12 ideally change in an equal ratio. Also, the positive resistance
The resistance values of R2,1 to R2,12
2 is equal to the resistance value of R1,1. Since it is difficult to obtain a resistor whose resistance value changes strictly and equidistantly, for example, an E-12 series or E
-24 series resistance is used. FIG. 3 shows that the resistors R1,1 to R
1,12 and R2,1 to 2,12 are shown. The light emission intensity of the LEDs 1 to 12 is proportional to the drive current within the range of the drive current of the LED determined by these resistance values. Therefore, the emission intensity of each LED when the resistors R1,1 to R1,12 are used increases geometrically, and the resistors R2,1
Therefore, the emission intensity of each LED when R2,12 is used decreases geometrically.

【0018】まず、面の角度を求める原理を説明する。
図4に、LED照明装置2の端子V1と端子G間に一定
電圧Vを印加したとき(第1パターン)および端子V2
と端子G間に一定電圧Vを印加したとき(第2パター
ン)のLEDの1軸方向の発光強度分布L1(i)およ
びL2(i)を示す。また、2つの発光強度L1(i)
とL2(i)の比L1(i)/L2(i)を図5に示
す。ここでiはLEDの識別番号で、i=1,2,・・
・,12がそれぞれLED1,LED2,・・・,LE
D12に対応する。
First, the principle of obtaining the angle of the surface will be described.
FIG. 4 shows a case where a constant voltage V is applied between the terminal V1 and the terminal G of the LED lighting device 2 (first pattern) and a case where the terminal V2
7 shows the light emission intensity distributions L1 (i) and L2 (i) in one axis direction of the LED when a constant voltage V is applied between the LED and the terminal G (second pattern). In addition, two emission intensities L1 (i)
FIG. 5 shows a ratio L1 (i) / L2 (i) between the ratio L1 (i) and L2 (i). Here, i is the identification number of the LED, i = 1, 2,.
, 12 are LED1, LED2, ..., LE respectively
Corresponds to D12.

【0019】i番目のLEDからの光が対象物の面で正
反射してテレビカメラに入射するとき、第1パターンお
よび第2パターンの何れの場合も、光は同一の光路でテ
レビカメラに入射する。従って、対象物の面での反射率
をrとするとき、テレビカメラへの入射光の強さは、第
1パターンL1(i)に対してはr・L1(i),第2
パターンL2(i)に対してはr・L2(i)となる。
よって、テレビカメラへの入射光強度の比は、{r・L
1(i)}/{r・L2(i)}すなわちL1(i)/
L2(i)であり、前述したi番目のLEDの発光強度
の比L1(i)/L2(i)に等しい。
When the light from the i-th LED is specularly reflected on the surface of the object and is incident on the television camera, the light is incident on the television camera on the same optical path in both the first pattern and the second pattern. I do. Therefore, when the reflectance on the surface of the object is r, the intensity of light incident on the television camera is r · L1 (i) for the first pattern L1 (i),
R · L2 (i) for the pattern L2 (i).
Therefore, the ratio of the intensity of light incident on the television camera is given by:
1 (i)} / {r · L2 (i)}, that is, L1 (i) /
L2 (i), which is equal to the above-described ratio L1 (i) / L2 (i) of the emission intensity of the i-th LED.

【0020】このように、テレビカメラ3への正反射光
の強度比が分かれば、その反射光に対応する入射光を発
光しているLEDの発光強度比が分かる。図5に示した
ように、LEDの発光強度比から、LEDの識別番号i
が一意に決まるので、対象物1の面からの正反射光がど
のLEDからの光なのかが分かる。尚、LED素子毎の
バラツキやLED発光面の汚れ等により、同一駆動電流
における発光強度がLED毎に異なる場合には、発光強
度の分布特性は図8のようになる。しかし、この場合に
も、LED毎の発光強度比は図9のようになり、図5と
等しくなるために何ら問題がない。
Thus, if the intensity ratio of the specularly reflected light to the television camera 3 is known, the light emission intensity ratio of the LED emitting the incident light corresponding to the reflected light can be known. As shown in FIG. 5, the LED identification number i
Is uniquely determined, so that it is possible to know from which LED the specularly reflected light from the surface of the target object 1 is emitted. When the light emission intensity at the same drive current differs for each LED due to the variation between the LED elements and the dirt on the LED light emission surface, the distribution characteristic of the light emission intensity is as shown in FIG. However, also in this case, the emission intensity ratio of each LED is as shown in FIG. 9 and is equal to that of FIG.

【0021】図6に、対象物1の面からの正反射光とな
る光源のLEDの位置から面の角度が求められる原理を
示す。テレビカメラ3の光軸zを基準としてLEDの放
射する入射光Bi の方向をθa度とすると、対象物1と
LED照明装置2との距離が対象物1の測定領域の大き
さおよびカメラレンズの開口より十分大きいとき、面方
向(面に垂直なベクトル)の紙面に平行な角度θは、図
に示すようにθa/2度となる。
FIG. 6 shows the principle that the angle of the surface is determined from the position of the LED of the light source which becomes the regular reflection light from the surface of the object 1. When the direction of the incident light B i to LED radiation relative to the optical axis z of the television camera 3 and θa degree, the distance between the object 1 and the LED lighting device 2 of the measurement region of the object 1 size and a camera lens When the aperture is sufficiently larger than the opening, the angle θ parallel to the paper surface in the plane direction (vector perpendicular to the plane) is θa / 2 degrees as shown in the figure.

【0022】尚、本方法によれば、一様な明るさで規格
化する従来の方法に比べ、LEDを識別するための情報
であるLEDの発光強度の比はL1(i)/L2(i)
のLEDによる違いが大きくなる。即ち、LEDの発光
強度の等比係数すなわち抵抗値の等比係数C(ただしC
>1)とするとき、発光強度の比L1(i)/L2
(i)の最小の変化は、従来方法ではC倍であるのに対
し、本方法ではCの2乗倍となる。従って、本方法によ
れば、テレビカメラの雑音の影響を受けにくくなるの
で、ほぼ一様な面光源の反射光強度で規格化する従来方
法に比べ、精度良く対応点が決定でき、面方向の検出精
度が良くなる。
According to the present method, the ratio of the light emission intensity of the LED, which is the information for identifying the LED, is L1 (i) / L2 (i, as compared with the conventional method of normalizing with uniform brightness. )
The difference between the LEDs increases. That is, the geometric coefficient of the light emission intensity of the LED, that is, the geometric coefficient C of the resistance value (C
> 1), the ratio of light emission intensity L1 (i) / L2
The minimum change in (i) is C times in the conventional method, but is 2 times C in the present method. Therefore, according to the present method, the influence of the noise of the TV camera is reduced, so that the corresponding point can be determined with higher accuracy than in the conventional method in which the reflected light intensity of the substantially uniform surface light source is standardized, and the surface direction can be determined. The detection accuracy is improved.

【0023】次に、図1の装置の動作を説明する。ま
ず、計算機7からLED駆動装置6を制御してLED照
明装置2の端子V1とGの間に一定電圧Vを印加するこ
とによって、LED照明装置2を第1パターンで発光さ
せる。このときの対象物1の画像をテレビカメラ3によ
って撮像し、その画像データD1(x,y)を画像入力
装置5によって計算機7に取り込む。
Next, the operation of the apparatus shown in FIG. 1 will be described. First, the computer 7 controls the LED driving device 6 to apply a constant voltage V between the terminals V1 and G of the LED lighting device 2, thereby causing the LED lighting device 2 to emit light in the first pattern. The image of the object 1 at this time is captured by the television camera 3, and the image data D 1 (x, y) is taken into the computer 7 by the image input device 5.

【0024】次に、計算機7からLED駆動装置6を制
御してLED照明2の端子V2とGの間に一定電圧Vを
印加することによって、LED照明装置2を第2パター
ンで発光させる。この時の対象物1の画像をテレビカメ
ラ3によって撮像し、その画像データD2(x,y)を
同じく計算機に取り込む。
Next, the computer 7 controls the LED driving device 6 to apply a constant voltage V between the terminals V2 and G of the LED lighting 2, thereby causing the LED lighting device 2 to emit light in the second pattern. At this time, the image of the object 1 is captured by the television camera 3, and the image data D2 (x, y) is similarly loaded into the computer.

【0025】尚、画像データD1(x,y)およびD2
(x,y)は、その画素値がテレビカメラ3への入射光
強度の対数に比例するものである。これは、テレビカメ
ラ3の出力値をあらかじめ校正したルックアップテーブ
ルによって変換する処理によって簡単に実現可能であ
る。画素値を入射光強度の対数に比例するように変換し
たのは、光強度の比を減算により求められるようにする
ためである。
The image data D1 (x, y) and D2
In (x, y), the pixel value is proportional to the logarithm of the intensity of light incident on the television camera 3. This can be easily realized by a process of converting the output value of the television camera 3 using a look-up table calibrated in advance. The pixel value is converted so as to be proportional to the logarithm of the incident light intensity so that the ratio of the light intensity can be obtained by subtraction.

【0026】以上でデータの取り込みが終了した。次
に、計算機7によって、面方向分布の計算を行う。画像
データD1(x,y)およびD2(x,y)は、前述の
様に画素値がテレビカメラ3への入射光強度の対数に比
例するので、D1(x,y)−D2(x,y)はk・l
og(L1(i)/L2(i))となる。ここで、kは
比例定数である。よって、D1(x,y)−D2(x,
y)から各画素(x,y)について角度θ(x,y)が
求められる。但し、ここで求められるのは、対象物1、
テレビカメラ3とLED照明装置2との位置関係で決ま
る角度測定範囲内の角度の画素である。また、画像デー
タD1(x,y)およびD2(x,y)の何れかの画素
値が所定の閾値以下である場合は、鏡面以外による反射
光またはテレビカメラ3の雑音の可能性が強いので、無
効データとして無視する。
Thus, the data acquisition has been completed. Next, the computer 7 calculates the surface direction distribution. As described above, since the pixel value of the image data D1 (x, y) and D2 (x, y) is proportional to the logarithm of the intensity of light incident on the television camera 3, D1 (x, y) -D2 (x, y) y) is k · l
og (L1 (i) / L2 (i)). Here, k is a proportionality constant. Therefore, D1 (x, y) -D2 (x,
The angle θ (x, y) is obtained for each pixel (x, y) from y). However, what is required here is the object 1,
Pixels at angles within an angle measurement range determined by the positional relationship between the television camera 3 and the LED lighting device 2. If any of the pixel values of the image data D1 (x, y) and D2 (x, y) is equal to or less than a predetermined threshold value, there is a strong possibility that reflected light other than a mirror surface or noise of the television camera 3 will cause noise. , Ignored as invalid data.

【0027】角度θは、D1(x,y)−D2(x,
y)の値から角度へのルックアップテーブルをあらかじ
め作成しておき、このテーブルを引くことで求めること
ができる。このルックアップテーブルは、対象物1、L
ED照明装置2の各LEDおよびテレビカメラ3の位置
から幾何学的な計算で作成する方法や、対象物1の位置
に実際に色々な角度の面を置いて取り込んだ画像データ
をもとに作成する方法が考えられる。以上の処理によ
り、角度θ(x,y)のデータが得られる。
The angle θ is D1 (x, y) −D2 (x,
A look-up table from the value of y) to the angle can be created in advance, and the value can be obtained by subtracting this table. This lookup table is based on the object 1, L
A method of creating by a geometric calculation from the position of each LED of the ED lighting device 2 and the television camera 3, and a method of creating based on image data taken by actually placing various angles on the position of the object 1. There is a way to do it. Through the above processing, data of the angle θ (x, y) is obtained.

【0028】尚、本実施例で、LEDを一直線上に並べ
たのは、測定対象の面方向がテレビカメラの光軸zを含
む1平面に平行な成分しか持たないためである。例え
ば、色々な方向を向いている面の測定には、上記第1、
第2のパターンで発光する複数のLEDを一直線上に並
べる代わりに、例えば、図10に示すように、テレビカ
メラ3の光軸zを中心軸とする半球Aの内面にLED
(LED1,LED2,....LEDn) を多数配置した構成により、任
意の向きを向いた面の方向を検出することが可能とな
る。
In this embodiment, the LEDs are arranged on a straight line because the surface direction of the object to be measured has only a component parallel to one plane including the optical axis z of the television camera. For example, to measure a surface facing various directions, the first,
Instead of arranging a plurality of LEDs emitting light in the second pattern on a straight line, for example, as shown in FIG.
(LED1, LED2,..., LEDn) enables the detection of the direction of the surface facing any direction.

【0029】即ち、対象物1 からLEDiへのベクトルをF
*i、テレビカメラの光軸ベクトルをZ* と表す時、LEDi
により法線ベクトルN* が(F*i/|F*i|+Z*/|
*|)/2である面Tiを検出することができる。ま
た、一直線上に並べた図1または図7に示すようなLE
D照明装置を対象物に対して相対的にスキャンすること
により、色々な方向を向いている面を検出することも可
能である。
That is, the vector from the object 1 to the LEDi is represented by F
* i, when the optical axis vector of the TV camera is represented by Z * , LEDi
Gives the normal vector N * as (F * i / | F * i | + Z * / |
It is possible to detect the surface Ti that is Z * |) / 2. Also, LEs arranged on a straight line as shown in FIG. 1 or FIG.
By scanning the D illumination device relative to the object, it is also possible to detect surfaces facing various directions.

【0030】また、本実施例による測定を高速に繰り返
すことにより、対象物の面方向分布の時間的な変化を測
定することが可能であることは明らかである。また、本
実施例では、光源にLEDを用いたが、投影光学系など
の他の方法を用いてもよい。
Further, it is apparent that by repeating the measurement according to the present embodiment at a high speed, it is possible to measure the temporal change of the distribution of the object in the surface direction. In this embodiment, the LED is used as the light source, but another method such as a projection optical system may be used.

【0031】また、本実施例では、LED照明を構成す
るLEDの数を12とした。このLEDの数は、1つは
必要な測定精度から、もう1つはテレビカメラ3のダイ
ナミックレンジおよびS/Nの問題から決まる。すなわ
ち、LEDの数を12にした場合、測定できる面方向の
種類は最大12となる。また、テレビカメラ3でセンシ
ングできる反射光強度比の種類が最大12であれば、L
EDの数は最大でも12となる。必要な測定精度の点か
らLEDの数をさらに増やした場合には、例えば、第2
実施例を用いることができる。また、よりダイナミック
レンジの広いテレビカメラ3を用いることにより、セン
シングできる反射光強度比の種類を増やすことができる
ので、LEDの数を増やすことができ、従って測定精度
を上げることが可能である。
In this embodiment, the number of LEDs constituting the LED illumination is set to twelve. The number of LEDs depends on the required measurement accuracy, and on the other hand, the dynamic range of the television camera 3 and the S / N ratio. That is, when the number of LEDs is 12, the number of surface directions that can be measured is 12 at the maximum. If the type of the reflected light intensity ratio that can be sensed by the television camera 3 is at most 12, L
The maximum number of EDs is 12. If the number of LEDs is further increased in terms of required measurement accuracy, for example, the second
Embodiments can be used. In addition, by using the television camera 3 having a wider dynamic range, the number of types of reflected light intensity ratios that can be sensed can be increased, so that the number of LEDs can be increased, and thus measurement accuracy can be increased.

【0032】第2実施例 本発明の第2実施例を図11に示す。本実施例は、テレ
ビカメラ3のダイナミックレンジおよびS/Nの問題
で、LEDの数を増やすことができない場合の解決方法
である。ここでは、角度の測定精度を上げるために、L
EDの数を第1実施例の倍の24個とする場合を示す。
図11に示す本実施例の装置において、LED照明装置
2は、2系統のLED照明装置2Aと2Bから構成され
る。LED照明装置2A及び2Bは、ともに第1実施例
のLED照明と同様の構成である。LED照明装置2A
及び2B以外は第1実施例と同様の構成である。尚、L
ED照明装置2A,2Bは、図7と同様に両者を同一円
弧上に配置してもよい。
[0032] A second embodiment of the second embodiment the present invention in FIG. 11. The present embodiment is a solution in the case where the number of LEDs cannot be increased due to the dynamic range and S / N of the television camera 3. Here, in order to increase the angle measurement accuracy, L
A case where the number of EDs is set to 24, which is twice that of the first embodiment, is shown.
In the device of the present embodiment shown in FIG. 11, the LED lighting device 2 includes two systems of LED lighting devices 2A and 2B. The LED lighting devices 2A and 2B have the same configuration as the LED lighting of the first embodiment. LED lighting device 2A
The configuration is the same as that of the first embodiment except for 2B and 2B. Note that L
The ED lighting devices 2A and 2B may be arranged on the same arc as in FIG.

【0033】次に、図11の装置の動作を説明する。本
実施例においては、LED照明装置2Aと2Bとを別々
に点灯してテレビカメラ3で撮像する。本実施例は、検
出角度範囲を2分して、一方の範囲をLED照明装置2
Aの照明により検出し、他方の範囲をLED照明装置2
Bの照明により検出するものである。各LED照明装置
2A,2Bの発光強度比の種類は12種類であるので、
結局、全検出角度範囲を24個の光線により検出したの
と等価となる。
Next, the operation of the apparatus shown in FIG. 11 will be described. In the present embodiment, the LED lighting devices 2A and 2B are separately turned on and an image is taken by the television camera 3. In the present embodiment, the detection angle range is divided into two, and one of the ranges is set to the LED lighting device 2.
A, and the other range is detected by the LED lighting device 2
This is detected by the illumination of B. Since the LED lighting devices 2A and 2B have 12 types of emission intensity ratios,
After all, this is equivalent to detecting the entire detection angle range with 24 light beams.

【0034】まず、LED照明装置2Aを第1パターン
で発光させて対象物1の画像をテレビカメラ3によって
撮像し、その画像デーD1A(x,y)を計算機7に取り
込む。次に、LED照明装置2Aを第2パターンで発光
させて対象物1の画像をテレビカメラ3によって撮像
し、その画像デーD2A(x,y)を計算機7に取り込
む。次に、LED照明装置2Bを第1パターンで発光さ
せて対象物1の画像をテレビカメラ3によって撮像し、
その画像デーD1B(x,y)を計算機7に取り込む。次
に、LED照明装置2Bを第2パターンで発光させて対
象物1の画像をテレビカメラ3によって撮像し、その画
像デーD2B(x,y)を計算機7に取り込む。尚、画像
データD1A(x,y),D2A(x,y),D1B(x,
y),D2B(x,y)は、その画素値がテレビカメラ3
への入射光強度の対数に比例するものである。
First, the LED lighting device 2A emits light in the first pattern, an image of the object 1 is picked up by the television camera 3, and the image data D1A (x, y) is taken into the computer 7. Next, the LED illumination device 2A emits light in the second pattern, an image of the object 1 is captured by the television camera 3, and the image data D2A (x, y) is taken into the computer 7. Next, the LED illumination device 2B is caused to emit light in the first pattern, and an image of the object 1 is captured by the television camera 3,
The image data D1B (x, y) is taken into the computer 7. Next, the LED lighting device 2B emits light in the second pattern, an image of the object 1 is captured by the television camera 3, and the image data D2B (x, y) is taken into the computer 7. The image data D1A (x, y), D2A (x, y), D1B (x, y)
y), D2B (x, y) are those whose pixel values are
Is proportional to the logarithm of the intensity of the incident light to the light source.

【0035】次に、計算機7によって、面方向分布の計
算を行う。D1A(x,y)−D2A(x,y)から各画素
(x,y)について角度θ(x,y)が求められる。但
し、ここで求められるのは、対象物1、テレビカメラ3
とLED照明装置2Aの位置関係で決まる角度測定範囲
内の角度の画素である。次に画像データD1B(x,y)
およびD2B(x,y)についても同様の処理を行い角度
を求める。但し、ここで求められるのは、画像データD
1A(x,y)とD2A(x,y)とから角度が求められな
かった画素のうち、対象物1、テレビカメラ3とLED
照明装置2Bの位置関係で決まる角度測定範囲内の角度
の画素である。以上の処理によリ、両測定範囲内の角度
の画素の角度θ(x,y)のデータが得られる。
Next, the computer 7 calculates the distribution in the plane direction. The angle θ (x, y) is obtained for each pixel (x, y) from D1A (x, y) −D2A (x, y). However, what is required here is the object 1, the TV camera 3
And a pixel having an angle within an angle measurement range determined by the positional relationship between the LED and the LED lighting device 2A. Next, image data D1B (x, y)
And D2B (x, y) perform the same processing to determine the angle. However, what is required here is the image data D
Of the pixels whose angles were not determined from 1A (x, y) and D2A (x, y), the object 1, the TV camera 3 and the LED
Pixels at angles within the angle measurement range determined by the positional relationship of the lighting device 2B. By the above processing, data of the angle θ (x, y) of the pixel having the angle in both measurement ranges is obtained.

【0036】尚、本実施例では、LED照明装置をLE
D照明装置2A及び2Bの2系統にわけた場合である
が、必要に応じてLED照明装置を3系統以上に分ける
構成も可能であることは明らかである。
In this embodiment, the LED lighting device is LE
Although this is a case where the D lighting device is divided into two systems of the D lighting devices 2A and 2B, it is apparent that a configuration in which the LED lighting device is divided into three or more systems is also possible if necessary.

【0037】尚、上記各実施例では、発光強度が単調に
増加または減少する順にその発光強度を有するLED素
子を並べた例を示したが、LED素子の配列順序はこれ
に限るものではない。例えば、図2の照明装置の場合、
予め知られた発光強度を有する各LEDの幾何学的な配
列順序を、左から順にLED1,LED5,LED1
2,・・・,LED3のように並べてもよい。要は、発
光強度および発光強度比と発光位置との関係が予め分か
っていれば、本発明の効果を奏することが出来る。
In each of the above embodiments, the LED elements having the light emission intensity are arranged in the order in which the light emission intensity monotonously increases or decreases. However, the arrangement order of the LED elements is not limited to this. For example, in the case of the lighting device of FIG.
The geometrical arrangement order of each LED having a known emission intensity is LED1, LED5, LED1 in order from the left.
2,..., LED3. In short, the effects of the present invention can be achieved if the relationship between the light emission intensity and the light emission intensity ratio and the light emission position is known in advance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る面方向検出装置を示
した構成図。
FIG. 1 is a configuration diagram showing a surface direction detection device according to a first embodiment of the present invention.

【図2】照明装置の構成を示した回路図。FIG. 2 is a circuit diagram illustrating a configuration of a lighting device.

【図3】照明装置の各LEDに接続される抵抗の値を示
した説明図。
FIG. 3 is an explanatory diagram showing resistance values connected to each LED of the lighting device.

【図4】照明装置の第1パターン及び第2パターンにお
ける発光強度の1軸方向の分布を示した特性図。
FIG. 4 is a characteristic diagram showing a distribution of light emission intensity in a first axis direction in a first pattern and a second pattern of the lighting device.

【図5】照明装置の第1パターン及び第2パターンにお
ける発光強度の比の1軸方向の分布を示した特性図。
FIG. 5 is a characteristic diagram showing a distribution of a ratio of light emission intensity in a first pattern and a second pattern of the lighting device in one axis direction.

【図6】面方向の検出原理を示した説明図。FIG. 6 is an explanatory diagram showing a principle of detection in a plane direction.

【図7】第1実施例装置の照明装置の変形例を示した構
成図。
FIG. 7 is a configuration diagram showing a modification of the illumination device of the first embodiment.

【図8】照明装置のLEDの発光強度が不均一な場合の
第1パターン及び第2パターンにおける発光強度の1軸
方向の分布を示した特性図。
FIG. 8 is a characteristic diagram showing the distribution of the luminous intensity in the first pattern and the second pattern in the direction of one axis when the luminous intensity of the LED of the lighting device is uneven.

【図9】照明装置のLEDの発光強度が不均一な場合の
第1パターン及び第2パターンにおける発光強度の比の
1軸方向の分布を示した特性図。
FIG. 9 is a characteristic diagram showing the distribution of the ratio of the luminous intensity in the first pattern and the second pattern in the case of non-uniform luminous intensity of the LEDs of the lighting device in one axial direction.

【図10】第1実施例装置の他の照明装置のLEDの配
列方法を示した構成図。
FIG. 10 is a configuration diagram showing a method of arranging LEDs of another lighting device of the first embodiment.

【図11】第2実施例に係る面方向検出装置を示した構
成図。
FIG. 11 is a configuration diagram showing a surface direction detection device according to a second embodiment.

【符号の説明】[Explanation of symbols]

1…対象物 2…LED照明装置 3…テレビカメラ 4…レンズ 5…画像入力装置 6…LED駆動装置 7…計算機 DESCRIPTION OF SYMBOLS 1 ... Target object 2 ... LED lighting device 3 ... TV camera 4 ... Lens 5 ... Image input device 6 ... LED drive device 7 ... Computer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−212047(JP,A) 特開 平6−137826(JP,A) 特開 平3−142303(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 G01C 3/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-212047 (JP, A) JP-A-6-137826 (JP, A) JP-A-3-142303 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) G01B 11/00 G01C 3/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発光部の発光強度の発光部における位置
による分布を、A>1として、規格化した値としてほぼ
1/Aから1と1からほぼ1/Aの2通りのパターンに
変化でき、前記位置に関する前記位置毎の2通りの発光
強度の比の分布を、ほぼ1/AからAの範囲で単調に増
加する関数とし、対象物に対して前記2つのパターンで
照射する照明手段と、 前記照明手段の前記発光部のある位置から対象物に照射
された入射光線の対象物からの反射光線の強度を、前記
2つのパターンに対して、それぞれ、測定する測定手段
と、 前記測定手段により測定された前記2つのパターンに対
する2つの反射光線の強度比から、前記反射光線に対応
する前記入射光線の前記発光部上の放射位置を求め、そ
の放射位置に基づいて、前記対象物の面方向を求める演
算手段と、 からなる面方向検出装置。
1. The distribution of the luminous intensity of the luminous part according to the position in the luminous part , where A> 1, is approximately a normalized value.
It is possible to change from 1 / A to 1 and from 1 to almost 1 / A in two patterns, and the distribution of the ratio of the two emission intensities for each of the positions with respect to the position is monotonically in the range of approximately 1 / A to A. As an increasing function, an illuminating means for irradiating the object with the two patterns, and the intensity of the reflected light from the object of the incident light radiated to the object from a position of the light emitting unit of the illuminating means Measuring means for measuring the two patterns, respectively; and measuring the light emission of the incident light corresponding to the reflected light from the intensity ratio of the two reflected lights to the two patterns measured by the measuring means. Calculating means for determining the radiation position on the part and determining the surface direction of the object based on the radiation position.
【請求項2】 前記照明手段は一列に複数設けられてお
り、各照明手段は、前記対象物の面方向の測定可能範囲
の分割された各角度範囲の検出に用いられる入射光を発
光することを特徴とする請求項1に記載の面方向検出装
置。
2. The lighting device according to claim 1, wherein a plurality of the illuminating units are provided in a row, and each of the illuminating units emits incident light used for detecting each of the divided angular ranges of the measurable range in the surface direction of the object. The plane direction detecting device according to claim 1, wherein:
【請求項3】 前記照明手段は、前記測定手段の光軸を
中心軸とする半球または円錐の内面に沿って、多数個設
けられており、各照明手段は、前記対象物の面方向の測
定可能範囲の分割された各角度範囲の検出に用いられる
入射光を発光することを特徴とする請求項1又は請求項
2に記載の面方向検出装置。
3. A plurality of illuminating means are provided along an inner surface of a hemisphere or a cone centered on an optical axis of the measuring means, and each illuminating means measures a surface direction of the object. The surface direction detecting device according to claim 1 or 2, wherein the device emits incident light used for detecting each of the divided angle ranges of the possible range.
JP30560294A 1994-11-14 1994-11-14 Surface direction detector Expired - Lifetime JP3339221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30560294A JP3339221B2 (en) 1994-11-14 1994-11-14 Surface direction detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30560294A JP3339221B2 (en) 1994-11-14 1994-11-14 Surface direction detector

Publications (2)

Publication Number Publication Date
JPH08136252A JPH08136252A (en) 1996-05-31
JP3339221B2 true JP3339221B2 (en) 2002-10-28

Family

ID=17947128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30560294A Expired - Lifetime JP3339221B2 (en) 1994-11-14 1994-11-14 Surface direction detector

Country Status (1)

Country Link
JP (1) JP3339221B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3984608B2 (en) * 2000-10-20 2007-10-03 松下電器産業株式会社 Range finder device
US6618123B2 (en) 2000-10-20 2003-09-09 Matsushita Electric Industrial Co., Ltd. Range-finder, three-dimensional measuring method and light source apparatus
US20100259746A1 (en) * 2009-04-10 2010-10-14 Omron Corporation Profilometer
JP5108827B2 (en) * 2009-04-28 2012-12-26 ヴィスコ・テクノロジーズ株式会社 Shape inspection apparatus and shape inspection program
JP5065329B2 (en) * 2009-05-12 2012-10-31 ヴィスコ・テクノロジーズ株式会社 Shape inspection apparatus and shape inspection program
JP5867123B2 (en) * 2012-02-03 2016-02-24 オムロン株式会社 Three-dimensional shape measuring apparatus and calibration method
US10401287B2 (en) 2017-01-26 2019-09-03 Ricoh Company, Ltd. Lighting device, and apparatus and system incorporating the lighting device
CN111492198B (en) * 2017-12-20 2022-05-03 索尼公司 Object shape measuring apparatus and method, and program

Also Published As

Publication number Publication date
JPH08136252A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
US6552783B1 (en) Optical system
EP1566311B1 (en) Adaptive Lighting control for vision-based occupant sensing
US20060092417A1 (en) Device for the examination of optical properties of surfaces
US6556706B1 (en) Three-dimensional surface profile imaging method and apparatus using single spectral light condition
US6760116B2 (en) Three-dimensional shape and color detecting apparatus
JP3339221B2 (en) Surface direction detector
US20050254700A1 (en) Apparatus and method for detecting hole area
US6124585A (en) Apparatus for measuring the reflectance of strips having non-uniform color
JP3371668B2 (en) Surface direction detector
JP2604754B2 (en) Spectrophotometer
JPH11211673A (en) Apparatus and method for evaluation of surface property
JP2007078517A (en) Apparatus for measuring surface smoothness
JP2012058091A (en) Surface inspection device
JPH08219716A (en) Input image contrast processor and apparatus using the same
JPH1123243A (en) Surface defect inspection device
JPH11230823A (en) Photometry device
US20230003578A1 (en) Color measurement
JP3355583B2 (en) Measurement point member for optical measurement
JPH10148577A (en) Optical sensor device and its adjusting method
JP3350510B2 (en) Headlight tester luminosity measurement method and apparatus
WO2017168909A1 (en) Deposit amount measuring device
TWI759864B (en) Detection apparatus and light-receiving device thereof
JPH0831324A (en) Method and device for inspection of shadow mask
JPS63291175A (en) Image binarization processor
CN115097135A (en) Fluorescent test paper quantitative analyzer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

EXPY Cancellation because of completion of term