JP3336770B2 - Method of forming insulating film - Google Patents

Method of forming insulating film

Info

Publication number
JP3336770B2
JP3336770B2 JP26380794A JP26380794A JP3336770B2 JP 3336770 B2 JP3336770 B2 JP 3336770B2 JP 26380794 A JP26380794 A JP 26380794A JP 26380794 A JP26380794 A JP 26380794A JP 3336770 B2 JP3336770 B2 JP 3336770B2
Authority
JP
Japan
Prior art keywords
insulating film
film
sin
forming
based insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26380794A
Other languages
Japanese (ja)
Other versions
JPH07235535A (en
Inventor
英至 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26380794A priority Critical patent/JP3336770B2/en
Publication of JPH07235535A publication Critical patent/JPH07235535A/en
Application granted granted Critical
Publication of JP3336770B2 publication Critical patent/JP3336770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体装置にお
いてウェハの最終保護膜あるいは層間絶縁膜として用い
られる窒化シリコン(SiN)系絶縁膜あるいは酸窒化
シリコン(SiON)系絶縁膜を有機シリコン化合物
(以下、有機Si化合物と記す。)を原料ガスに用いて
化学的気相成長(以下、CVDと記す。)法により成膜
する絶縁膜の形成方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a silicon nitride (SiN) -based insulating film or a silicon oxynitride (SiON) -based insulating film used as a final protective film or an interlayer insulating film of a wafer in a semiconductor device, for example. The present invention relates to a method for forming an insulating film formed by a chemical vapor deposition (hereinafter, referred to as CVD) method using an organic Si compound as a source gas.

【0002】[0002]

【従来の技術】従来より、ウェハの最終保護膜、いわゆ
るパッシベーション膜には、SiN系絶縁膜が広く用い
られている。このSiN系絶縁膜を成膜するに際して
は、既に形成されたアルミニウム(Al)系配線等の低
融点材料層にダメージを与えないように、プラズマCV
D法によって低温での成膜が行われている。原料ガスと
しては、従来、シラン(SiH)/アンモニア(NH
)混合ガス、SiH/窒素(N)混合ガス等が用
いられてきた。
2. Description of the Related Art Conventionally, a SiN-based insulating film has been widely used as a final protective film of a wafer, a so-called passivation film. When forming the SiN-based insulating film, the plasma CV is used so as not to damage the low-melting-point material layer such as the aluminum (Al) -based wiring that has already been formed.
Film formation is performed at a low temperature by Method D. Conventionally, silane (SiH 4 ) / ammonia (NH)
3 ) A mixed gas, a mixed gas of SiH 4 / nitrogen (N 2 ) and the like have been used.

【0003】しかし、このようにして成膜されるSiN
系絶縁膜のカバレージは、半導体装置の微細化あるいは
多層配線化に伴う基板の表面段差の増大に追従できなく
なっている。図3に、Si基板1上にSiO系層間絶縁
膜2およびAl系配線3が形成され、この上にSiN系
絶縁膜14を成膜したウェハを示すが、SiN系絶縁膜
14のステップカバレージ(段差被覆性)が悪いため
に、ボイド15が形成されてしまっている。また、この
ようなSiN系絶縁膜14にはクラックも発生しやすく
なる。
However, the SiN film thus formed is
The coverage of the system insulating film cannot follow the increase in the surface step of the substrate accompanying the miniaturization of the semiconductor device or the multilayer wiring. FIG. 3 shows a wafer in which a SiO-based interlayer insulating film 2 and an Al-based wiring 3 are formed on a Si substrate 1 and a SiN-based insulating film 14 is formed thereon. The void 15 is formed due to poor step coverage. Also, cracks are likely to occur in such a SiN-based insulating film 14.

【0004】上記ステップカバレージを改善する方法と
しては、2周波法によってプラズマ状態を制御すること
が提案されている。これは、プラズマCVD装置の平行
平板電極において、ウェハを載置する側の電極には数百
kHzの低周波RF電圧を印加し、他の電極にはMHz
オーダーの高周波RF電圧を印加するものであり、低エ
ネルギーのイオンボンバードメントを増加させて、カバ
レージを向上させようとするものである。しかし、この
方法によっても、パターンの微細化や表面段差の増大化
に十分に対応できるわけではなく、コンフォーマル成膜
を達成するには至っていない。
As a method for improving the step coverage, it has been proposed to control the plasma state by a two-frequency method. This is because in a parallel plate electrode of a plasma CVD apparatus, a low-frequency RF voltage of several hundred kHz is applied to an electrode on a side on which a wafer is mounted, and MHz is applied to other electrodes.
A high-frequency RF voltage of the order is applied to increase the low-energy ion bombardment to improve the coverage. However, even with this method, it is not possible to sufficiently cope with the miniaturization of the pattern and the increase of the surface step, and the conformal film formation has not yet been achieved.

【0005】そこで、さらにカバレージに優れたSiN
系絶縁膜を成膜する方法として、原料ガスに有機Si化
合物を用いてCVDを行うことが提案された。ここで、
有機Si化合物とは、[(CHN]Si、
[(CHN]SiH、[(CHN]
iHといった、Si原子,N原子,C原子,H原子を
主な構成要素とし、シリコン原子と窒素原子との結合
(Si−N結合)を有する化合物である。これを原料ガ
スとして成膜を行うと、上記Si−N結合の存在によ
り、効率のよいSiN系絶縁膜の成膜が可能となる。ま
た、成膜時に、有機Si化合物から炭化水素基が切断さ
れることにより、Si−N結合を存続した中間生成物が
高分子化されやすく、流動性が高くなるために、カバレ
ージに優れたSiN系絶縁膜が成膜できると考えられて
いる。
[0005] Therefore, SiN having even better coverage is provided.
As a method of forming a system insulating film, it has been proposed to perform CVD using an organic Si compound as a source gas. here,
The organic Si compound is [(CH 3 ) 2 N] 4 Si,
[(CH 3 ) 2 N] 3 SiH, [(CH 3 ) 2 N] 2 S
It is a compound such as iH 2 having Si, N, C, and H atoms as main constituent elements and having a bond (Si—N bond) between a silicon atom and a nitrogen atom. When this is used as a source gas to form a film, the presence of the Si—N bond enables efficient formation of a SiN-based insulating film. In addition, when a hydrocarbon group is cleaved from the organic Si compound at the time of film formation, an intermediate product having a Si—N bond is easily polymerized, and the fluidity is increased. It is believed that a system insulating film can be formed.

【0006】[0006]

【発明が解決しようとする課題】ところが、上述のよう
に有機Si化合物を用いて成膜されたSiN系絶縁膜に
おいては、炭化水素基の残留によって絶縁耐性が劣化し
たり、耐水性や耐腐蝕性が劣化することが懸念される。
そして、このようなSiN系絶縁膜をパッシベーション
膜および層間絶縁膜として適用すると、半導体装置の信
頼性を低下させることにもなりかねない。
However, in the SiN-based insulating film formed using an organic Si compound as described above, the insulation resistance is deteriorated due to the remaining hydrocarbon groups, and the water resistance and corrosion resistance are reduced. It is feared that the properties are deteriorated.
If such a SiN-based insulating film is applied as a passivation film and an interlayer insulating film, the reliability of the semiconductor device may be reduced.

【0007】そこで、本発明はかかる従来の実情に鑑み
て提案されたものであり、優れたカバレージを確保しつ
つ、炭化水素基の取り込みを抑制することができる絶縁
膜の形成方法を提供することを目的とする。
Accordingly, the present invention has been proposed in view of such conventional circumstances, and provides a method of forming an insulating film capable of suppressing incorporation of a hydrocarbon group while ensuring excellent coverage. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上述の目
的を達成せんものと鋭意検討を重ねた結果、以下に示す
ような2つの方法を提案するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies on achieving the above object and as a result, have come to propose the following two methods.

【0009】第1の発明は、Si−N結合を有する有機
Si化合物を用い、CVD法により基板上に絶縁膜を成
膜する成膜工程と、分子内に少なくともN原子を含む後
処理ガスの雰囲気下にて、前記絶縁膜のプラズマ処理を
行う後処理工程とを有するものである。
According to a first aspect of the invention, there is provided a film forming step of forming an insulating film on a substrate by a CVD method using an organic Si compound having a Si—N bond, And a post-processing step of performing a plasma process on the insulating film in an atmosphere.

【0010】前記分子内に少なくともN原子を含む後処
理ガスは、絶縁膜中に取り込まれた炭化水素基成分を引
き抜く働きをするものである。この後処理ガスとして
は、Nの他に、アジ化水素(NH),NH,アン
モニア誘導体,ヒドラジン(N),メチルヒドラ
ジン等のヒドラジン誘導体等、分子内にH原子をも含有
する化合物が使用できる。なお、Nガスよりも後者の
化合物ガスの方がプラズマ中で分解されやすいため、絶
縁膜から炭化水素基成分を引き抜く働きがさらに強いと
考えられる。
[0010] The post-treatment gas containing at least N atoms in the molecule functions to extract the hydrocarbon group component taken in the insulating film. As the post-treatment gas, in addition to the N 2, hydrogen azide (N 3 H), NH 3 , ammonia derivatives, hydrazine (N 2 H 4), such as hydrazine derivatives such as methylhydrazine, the H atoms in the molecule Can also be used. Since the latter compound gas is more easily decomposed in plasma than N 2 gas, it is considered that the function of extracting the hydrocarbon group component from the insulating film is even stronger.

【0011】炭化水素基成分をさらに低減させるために
は、成膜工程と後処理工程とを交互に複数回繰り返しな
がら絶縁膜を所望の膜厚に形成するとよい。これによ
り、絶縁膜の表層部のみならず、深層部に亘って十分に
炭化水素基成分を除去できる。
In order to further reduce the amount of the hydrocarbon group component, it is preferable to form the insulating film to a desired film thickness by alternately repeating the film forming step and the post-processing step a plurality of times. Thus, the hydrocarbon-based component can be sufficiently removed not only in the surface layer portion of the insulating film but also in the deep layer portion.

【0012】一方、第2の発明は、Si−N結合を有す
る有機Si化合物と有機窒素化合物とを含む混合ガスを
用いて、CVD法により基板上に絶縁膜を成膜するもの
である。
On the other hand, a second invention is to form an insulating film on a substrate by a CVD method using a mixed gas containing an organic Si compound having an Si—N bond and an organic nitrogen compound.

【0013】もちろん、前述した第1の発明と組み合わ
せて、上述のような有機窒素化合物を用いた成膜により
炭化水素基成分の取り込みの少ない絶縁膜をカバレージ
よく成膜した後、分子内に少なくともN原子を含む後処
理ガスの雰囲気下でのプラズマ処理によって、さらに絶
縁膜表層部の炭化水素基成分を低減させてもよい。ま
た、上述のような有機窒素化合物を用いた成膜と、分子
内に少なくともN原子を含む後処理ガスの雰囲気下での
プラズマ処理とを繰り返しながら絶縁膜を形成してもよ
い。
Of course, in combination with the above-described first aspect of the present invention, after forming an insulating film having a small amount of a hydrocarbon group component with good coverage by forming a film using an organic nitrogen compound as described above, at least Plasma treatment in an atmosphere of a post-treatment gas containing N atoms may further reduce the hydrocarbon group component in the surface layer of the insulating film. Further, the insulating film may be formed by repeating the film formation using the organic nitrogen compound as described above and the plasma treatment in an atmosphere of a post-processing gas containing at least N atoms in the molecule.

【0014】ここで、前記有機窒素化合物としては、少
なくとも1つ以上のアルキル基またはフェニル基を有す
るヒドラジン誘導体を用いて好適である。
Here, as the organic nitrogen compound, a hydrazine derivative having at least one alkyl group or phenyl group is preferably used.

【0015】以上に示した絶縁膜の形成方法のいずれに
おいても、成膜時にはSi−N結合を有する有機Si化
合物を原料ガスとして用いるが、この有機Si化合物と
しては、アジド基(以下、−N基とする。)や、−N
基(但し、Rは炭素数1以上の炭化水素基であ
る。)をSi原子に結合させた構成のものが好適であ
る。特に、−NRがSi原子に結合したものは、成膜
時に炭化水素基が切断されて生成される中間生成物が高
分子化されやすくなり、流動性が高まるために、カバレ
ージを向上させる効果に優れる。
In any of the above-described methods for forming an insulating film, an organic Si compound having a Si—N bond is used as a source gas at the time of film formation. As the organic Si compound, an azide group (hereinafter referred to as —N 3 )), -N
A structure in which an R 2 group (where R is a hydrocarbon group having 1 or more carbon atoms) is bonded to a Si atom is preferable. In particular, in the case where —NR 2 is bonded to a Si atom, an intermediate product formed by cutting a hydrocarbon group during film formation is easily polymerized and the fluidity is increased, so that the effect of improving coverage is improved. Excellent.

【0016】さらに、上記Si原子にアルキル基(以
下、−R’基とする。)および/またはアルコキシル基
(以下、−OR''基とする。)が結合していると、成膜
時にこれら−R’基や−OR''基が切断されることによ
り、生成される中間生成物の流動性が高くなり、カバレ
ージが向上する。
Further, when an alkyl group (hereinafter, referred to as —R ′ group) and / or an alkoxyl group (hereinafter, referred to as —OR ″ group) are bonded to the Si atom, these are formed during film formation. The cleavage of the —R ′ group or the —OR ″ group increases the fluidity of the generated intermediate product and improves the coverage.

【0017】また、上記Si−N結合を有する有機Si
化合物は、Si原子にフッ素(F)原子が結合した構造
であってもよい。該F原子が結合していると、成膜時の
重合反応が促進されてカバレージが向上したり、成膜さ
れた絶縁膜の低誘電率化を図ることができる。
Further, the organic Si having the Si—N bond
The compound may have a structure in which a fluorine (F) atom is bonded to a Si atom. When the F atoms are bonded, the polymerization reaction at the time of film formation is promoted, coverage can be improved, and the dielectric constant of the formed insulating film can be reduced.

【0018】なお、Si原子に直接結合するH原子は、
上述した−NR基,−N基,−R' 基,−OR''基
のように、Si−N結合を存続させて成膜効率を向上さ
せる効果やカバレージを改善する効果を示さないので、
Si原子に1つも結合させないか、結合させても少数と
した方がよい。
The H atom directly bonded to the Si atom is
Unlike the above-described —NR 2 group, —N 3 group, —R ′ group, and —OR ″ group, they do not exhibit the effect of improving the film formation efficiency or the coverage by maintaining the Si—N bond. So
It is better not to bond any single atom to the Si atom, or it is better to have a small number of bonded atoms.

【0019】さらにまた、成膜速度を向上させるため
に、Si−Si結合を有する有機Si化合物を用いても
よい。これにより、成膜時に供給する原料ガスの流量を
増加したり、プラズマCVD装置の電極に印加する電力
を増大することなく成膜速度を向上させることができる
ため、不純物の取り込みが増大したり、カバレージが劣
化したりといった問題を生じさせることなく、スループ
ットを向上させることが可能となる。
Further, an organic Si compound having a Si--Si bond may be used to improve the film forming speed. Thus, the film formation rate can be improved without increasing the flow rate of the source gas supplied at the time of film formation or increasing the power applied to the electrodes of the plasma CVD apparatus. Throughput can be improved without causing a problem such as deterioration of coverage.

【0020】したがって、原料ガスとして使用可能な有
機Si化合物のうち、最も望ましい構造を有するもの
は、下記の一般式(1)にて示すことができる。
Therefore, among the organic Si compounds that can be used as a source gas, those having the most desirable structure can be represented by the following general formula (1).

【0021】 Sin (NR)w (N)x (R' )y (OR'')z Fv ・・・(1) (但し、v,w,x,y,zは、v+w+x+y+z=
2n+2、0≦w≦2n+2、0≦x≦2n+2、1≦
w+x≦2n+2、0≦y≦2n+1、0≦z≦2n+
1、0≦v≦2n+1を満たす整数であり、nは1以上
の整数である。また、R、R' 、R''は炭素数1以上の
炭化水素基を示す。)なお、上記R、R' 、R''で示さ
れる炭化水素基の炭素骨格は特に限定されず、飽和炭化
水素であっても不飽和炭化水素であってもよい。そし
て、それぞれの場合について、直鎖状,分枝状,環状の
炭素骨格が考えられるが、これらのいずれであってもよ
く、例えば、メチル基,エチル基,シクロペンタジエニ
ル基等が挙げられる。
Sin (NR 2 ) w (N 3 ) x (R ′) y (OR ″) z Fv (1) (where v, w, x, y, and z are v + w + x + y + z =
2n + 2, 0 ≦ w ≦ 2n + 2, 0 ≦ x ≦ 2n + 2, 1 ≦
w + x ≦ 2n + 2, 0 ≦ y ≦ 2n + 1, 0 ≦ z ≦ 2n +
1, 0 ≦ v ≦ 2n + 1, where n is an integer of 1 or more. R, R 'and R''each represent a hydrocarbon group having 1 or more carbon atoms. The carbon skeleton of the hydrocarbon group represented by R, R 'and R''is not particularly limited, and may be a saturated hydrocarbon or an unsaturated hydrocarbon. In each case, a linear, branched, or cyclic carbon skeleton is conceivable, but any of these may be used, and examples thereof include a methyl group, an ethyl group, and a cyclopentadienyl group. .

【0022】上記一般式(1)において、z=0のと
き、即ち、−OR''基が結合されていない有機Si化合
物であるとき、これを原料ガスとし、且つ、これに酸素
系ガスを混合しなければ、SiN系薄膜が成膜されるこ
ととなる。一方、x≧1のとき、即ち−OR''基が結合
されている有機Si化合物であるとき、これを原料ガス
として用いると、成膜中に微量のO原子が取り込まれる
ので、酸素系ガスを併用しなくともSiON系薄膜が成
膜されることとなる。
In the above general formula (1), when z = 0, that is, when the organic Si compound has no —OR ″ group bonded thereto, this is used as a source gas, and an oxygen-based gas is added thereto. If they are not mixed, a SiN-based thin film will be formed. On the other hand, when x ≧ 1, that is, when an organic Si compound to which an —OR ″ group is bonded, when this is used as a source gas, a small amount of O atoms are taken in during film formation, so that an oxygen-based gas The SiON-based thin film can be formed without using both.

【0023】また、成膜を行うに際しては、既に形成さ
れたAl系配線等の低融点材料層にダメージを与えな
い、低温での処理が可能となることから、反応室内にプ
ラズマを発生させながらCVDを行って好適である。用
いるプラズマCVD装置としては、平行平板型プラズマ
CVD装置であってもよいし、低圧力下で高密度のプラ
ズマを発生できる有磁場マイクロ波プラズマCVD(E
CR−CVD)装置や、誘導結合プラズマCVD(IC
P−CVD)装置、ヘリコン波プラズマCVD装置、T
CP−CVD装置であってもよい。
Further, when forming a film, it is possible to perform a treatment at a low temperature without damaging a low melting point material layer such as an Al-based wiring already formed. It is preferable to perform CVD. The plasma CVD apparatus to be used may be a parallel plate type plasma CVD apparatus, or a magnetic field microwave plasma CVD (E) capable of generating high-density plasma under low pressure.
CR-CVD) equipment and inductively coupled plasma CVD (IC)
P-CVD) equipment, helicon wave plasma CVD equipment, T
It may be a CP-CVD device.

【0024】なお、プラズマCVDによる成膜時には、
所望の絶縁膜成分以外に中間生成物、副生成物、原料ガ
スの未解離成分等も基板表面の近傍に存在することか
ら、これら不純物成分やパーティクルが膜中に取り込ま
れるのを防止するために、前記プラズマを間欠的に発生
させてもよい。
When forming a film by plasma CVD,
In addition to the desired insulating film components, intermediate products, by-products, undissociated components of the raw material gas, and the like also exist near the substrate surface, so that these impurity components and particles are prevented from being taken into the film. The plasma may be generated intermittently.

【0025】[0025]

【作用】本発明を適用して、原料ガスとしてSi−N結
合を有する有機Si化合物を用いると、成膜時に上記有
機Si化合物から炭化水素基成分が優先的に切断され、
Si−N結合が存続された化学種同士が結合するため、
中間生成物が高分子化して流動性を発揮する。そして、
これにより、絶縁膜のステップカバレージが向上する。
According to the present invention, when an organic Si compound having a Si—N bond is used as a source gas, a hydrocarbon group component is preferentially cut from the organic Si compound during film formation,
Since the chemical species in which the Si-N bond persisted are bonded to each other,
The intermediate product is polymerized and exhibits fluidity. And
Thereby, the step coverage of the insulating film is improved.

【0026】さらに、成膜後、分子内にN原子を含む後
処理ガスの雰囲気下にてプラズマ処理を行うと、絶縁膜
中に取り込まれた炭化水素基成分がN原子によって引き
抜かれる。この後処理ガスとして分子内にさらにH原子
を含有するものを用いると、このH原子も絶縁膜中の炭
化水素基成分を引き抜く役割を果たすため、絶縁膜中に
取り込まれた炭化水素基成分を一層低減させることが可
能となる。
Further, when plasma treatment is performed in an atmosphere of a post-processing gas containing N atoms in the molecule after the film formation, the hydrocarbon group components taken in the insulating film are extracted by the N atoms. If a gas further containing H atoms is used as the post-treatment gas, the H atoms also play a role in extracting the hydrocarbon group components in the insulating film. It is possible to further reduce.

【0027】また、成膜工程と後処理工程とを交互に複
数回繰り返しながら絶縁膜を形成すると、絶縁膜の表層
部のみならず、深層部までに亘って炭化水素基成分が十
分に除去された絶縁膜となる。
When the insulating film is formed by alternately repeating the film forming step and the post-processing step a plurality of times, the hydrocarbon-based component is sufficiently removed not only in the surface layer of the insulating film but also in the deep layer. Becomes an insulating film.

【0028】前記分子内に少なくともN原子を含むガス
は、絶縁膜の成膜時に供給されても、炭化水素基成分を
引き抜く働きをするが、NガスやNHガスといった
無機ガスを多量に供給すると、有機Si化合物より生成
される中間生成物が高分子化する前に炭化水素基成分を
引き抜いて流動性を低減させる虞れがある。これに対
し、有機窒素化合物ガスを用いた場合には、流動性を良
好に保ちつつ、炭化水素基成分を引き抜くことができ
る。
The gas containing at least N atoms in the molecule functions to extract a hydrocarbon group component even when supplied at the time of forming the insulating film. However, a large amount of an inorganic gas such as N 2 gas or NH 3 gas is used. If supplied, the hydrocarbon group component may be extracted before the intermediate product generated from the organic Si compound is polymerized, thereby reducing the fluidity. On the other hand, when the organic nitrogen compound gas is used, the hydrocarbon group component can be extracted while maintaining good fluidity.

【0029】特に、アルキル基またはフェニル基を有す
るヒドラジン誘導体は、中間生成物の重合反応を促進す
る触媒作用、この生成物にN原子を導入する効果、炭化
水素基成分を引き抜く効果等に優れているのみならず、
アルキル基やフェニル基の存在によって中間生成物の基
板への付着確率を低減させる効果をも有するため、ステ
ップカバレージを良好に維持させることもできる。
In particular, hydrazine derivatives having an alkyl group or a phenyl group are excellent in catalysis for accelerating the polymerization reaction of an intermediate product, for introducing an N atom into this product, and for extracting hydrocarbon group components. Not only
The presence of the alkyl group or the phenyl group also has the effect of reducing the probability of the intermediate product adhering to the substrate, so that good step coverage can be maintained.

【0030】[0030]

【実施例】以下、本発明に係る絶縁膜の形成方法を具体
的な実施例を先行例とともに説明する。ここでは、Al
系配線上のパッシベーション膜としてSiN系絶縁膜あ
るいはSiON系絶縁膜を成膜した例について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for forming an insulating film according to the present invention will be described with reference to specific embodiments and a preceding example. Here, Al
An example in which a SiN-based insulating film or a SiON-based insulating film is formed as a passivation film on a system wiring will be described.

【0031】なお、以下の各先行例及び各実施例ではC
VD装置として、平行平板型プラズマCVD装置を用い
た。このプラズマCVD装置においては、下部電極にウ
ェハを載置し、上部電極にRF電力を印加するようにな
されている。また、下部電極にはヒータが設けられるこ
とにより、ウェハ温度が調整可能とされている。一方、
上部電極は原料ガスを基板上に均一に供給するためのシ
ャワー電極となされている。
In each of the following examples and embodiments, C
As the VD apparatus, a parallel plate type plasma CVD apparatus was used. In this plasma CVD apparatus, a wafer is placed on a lower electrode, and RF power is applied to an upper electrode. The lower electrode is provided with a heater so that the wafer temperature can be adjusted. on the other hand,
The upper electrode serves as a shower electrode for uniformly supplying the source gas onto the substrate.

【0032】まず、本発明の先行するいくつかの例を説
明する。
First, some preceding examples of the present invention will be described.

【0033】先行例1 本実施例においては、有機Si化合物としてトリスジメ
チルアミノシリルアジド[(CHN]SiN
を用いて成膜した後、Nを用いて後処理を行ってSi
N系絶縁膜を形成した。
Prior Example 1 In this example, trisdimethylaminosilyl azide [(CH 3 ) 2 N] 3 SiN 3 was used as the organic Si compound.
And then post-processed with N 2 to form Si
An N-based insulating film was formed.

【0034】具体的には、先ず、図1に示されるような
Si基板1上にSiO系層間絶縁膜2およびAl系配線
3が形成されたウェハ上に、以下の条件のプラズマCV
DによってSiN系絶縁膜4を1μmなる膜厚に成膜し
た。
More specifically, first, a plasma CV under the following conditions is placed on a wafer having an SiO-based interlayer insulating film 2 and an Al-based wiring 3 formed on a Si substrate 1 as shown in FIG.
By D, the SiN-based insulating film 4 was formed to a thickness of 1 μm.

【0035】プラズマCVD条件 原料ガス : [(CHN]SiN流量100
sccm RF電力 : 350W(13.56MHz)(上部電極
に印加) 圧力 : 1200Pa ウェハ温度 : 200℃ 電極間距離 : 10mm 成膜時間 : 60秒 得られたSiN系絶縁膜4は、図2に示されるように、
ボイドやクラックを有さない、ステップカバレージに優
れたものであった。
Plasma CVD conditions Source gas: [(CH 3 ) 2 N] 3 SiN 3 Flow rate 100
sccm RF power: 350 W (13.56 MHz) (applied to upper electrode) Pressure: 1200 Pa Wafer temperature: 200 ° C. Distance between electrodes: 10 mm Film formation time: 60 seconds The obtained SiN-based insulating film 4 is shown in FIG. like,
It was excellent in step coverage without voids and cracks.

【0036】続いて、後処理として下記の条件のプラズ
マ処理を行った。
Subsequently, a plasma treatment under the following conditions was performed as a post-treatment.

【0037】プラズマ処理条件 後処理ガス : N流量100sccm RF電力 : 350W(13.56MHz) 圧力 : 1330Pa ウェハ温度 : 400℃ 電極間距離 : 10mm この処理により、SiN系絶縁膜4中に含有される炭化
水素基成分が低減された。
Plasma processing conditions Post-processing gas: N 2 flow rate 100 sccm RF power: 350 W (13.56 MHz) Pressure: 1330 Pa Wafer temperature: 400 ° C. Inter-electrode distance: 10 mm By this processing, SiN-based insulating film 4 is contained. Hydrocarbon-based components have been reduced.

【0038】さらに、下記の条件のアニール処理を行っ
た。
Further, an annealing treatment was performed under the following conditions.

【0039】アニール条件 導入ガス : 上記原料ガスを3%H含有Nガスに
て希釈したもの流量8000sccm アニール時間 : 60分 圧力 : 大気圧 アニール温度 : 400℃ 以上のようにして、SiN系絶縁膜4よりなるパッシベ
ーション膜が完成した。
Annealing conditions Introduced gas: Diluted above raw material gas with 3% H 2 containing N 2 gas Flow rate 8000 sccm Annealing time: 60 minutes Pressure: Atmospheric pressure Annealing temperature: 400 ° C. The passivation film composed of the film 4 was completed.

【0040】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して腐蝕試
験を行った。この腐蝕試験の条件を下記に示す。
Here, a corrosion test was performed on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed. The conditions of this corrosion test are shown below.

【0041】腐蝕試験条件 塩酸濃度 : 5% 試験時間 : 5分 溶液温度 : 25℃ この腐蝕試験の結果、Al系配線3には腐蝕が見られな
かった。これより、上述のようにして形成されたSiN
系絶縁膜4は良好な耐水性,耐腐蝕性を示すものである
ことがわかった。
Corrosion test conditions Hydrochloric acid concentration: 5% Test time: 5 minutes Solution temperature: 25 ° C. As a result of this corrosion test, no corrosion was observed on the Al-based wiring 3. Thus, the SiN formed as described above
It was found that the system insulating film 4 exhibited good water resistance and corrosion resistance.

【0042】先行例2 本実施例では、有機Si化合物としてビスジメチルアミ
ノシリルジアジド[(CHN]Si(N
とNHの混合ガスを用いて成膜を行った後、NH
用いて後処理を行ってSiN系絶縁膜を形成した。
Preceding Example 2 In this example, bisdimethylaminosilyldiazide [(CH 3 ) 2 N] 2 Si (N 3 ) 2 was used as the organic Si compound.
After forming a film using a mixed gas of NH 3 and NH 3 , post-treatment was performed using NH 3 to form a SiN-based insulating film.

【0043】具体的には、先行例1と同様のウェハ上
に、原料ガスを[(CHN]Si(N
流量100sccm、NH:流量50sccmのよう
に変更した以外は先行例1と同様の条件のプラズマCV
DによってSiN系絶縁膜4を1μmなる膜厚にて成膜
した。このようにして成膜されたSiN系絶縁膜4は、
ボイドやクラックを有さない、ステップカバレージに優
れたものであった。
More specifically, on the same wafer as in the first embodiment, the raw material gas was changed to [(CH 3 ) 2 N] 2 Si (N 3 ) 2 :
Plasma CV under the same conditions as in the preceding example 1 except that the flow rate was changed to 100 sccm and NH 3 : the flow rate was changed to 50 sccm.
D was used to form a SiN-based insulating film 4 having a thickness of 1 μm. The SiN-based insulating film 4 thus formed is
It was excellent in step coverage without voids and cracks.

【0044】続いて、後処理ガスをNH:流量100
sccmに変更し、ウェハ温度を150℃に変更した以
外は先行例1と同様にしてプラズマ処理を行った。この
処理によって、SiN系絶縁膜4に含有される炭化水素
基成分が低減できた。
Subsequently, the post-treatment gas is NH 3 : flow rate 100
The plasma processing was performed in the same manner as in the previous example 1 except that the temperature was changed to sccm and the wafer temperature was changed to 150 ° C. By this treatment, the hydrocarbon group component contained in the SiN-based insulating film 4 could be reduced.

【0045】さらに、上記原料ガスを3%H含有N
ガスにて希釈したガスを用いた以外は先行例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0045] Further, the raw material gas 3% H 2 containing N 2
Annealing treatment was performed in the same manner as in Example 1 except that a gas diluted with a gas was used, and a passivation film made of the SiN-based insulating film 4 was completed.

【0046】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して先行例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, a corrosion test was performed on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed in the same manner as in the first example.
Did not show any corrosion. From this, it was found that the SiN-based insulating film 4 exhibited good water resistance and corrosion resistance.

【0047】次に、本発明の実施例を説明する。Next, an embodiment of the present invention will be described.

【0048】実施例1 本実施例においては、成膜工程とNによる後処理
工程とを交互に繰り返してSiN系絶縁膜を形成した。
Example 1 In this example, a SiN-based insulating film was formed by alternately repeating a film forming step and a post-processing step using N 2 H 4 .

【0049】具体的には、先行例1と同様のウェハ上
に、成膜時間を6秒間に変更した以外は先行例2と同様
の条件のプラズマCVDによってSiN系絶縁膜4を1
00nmなる膜厚にて成膜した。このようにして成膜さ
れたSiN系絶縁膜4は、ボイドやクラックを有さな
い、ステップカバレージに優れたものであった。
More specifically, the SiN-based insulating film 4 was formed on the same wafer as in the first example by plasma CVD under the same conditions as in the second example except that the film formation time was changed to 6 seconds.
The film was formed to a thickness of 00 nm. The SiN-based insulating film 4 formed as described above had no voids or cracks and was excellent in step coverage.

【0050】続いて、後処理ガスをN:流量10
0sccmに変更し、処理時間を60秒に設定した以外
は先行例2と同様にしてプラズマ処理を行った。この処
理によって、SiN系絶縁膜4に含有される炭化水素基
成分が低減できた。
Subsequently, the post-processing gas was N 2 H 4 : flow rate 10
The plasma processing was performed in the same manner as in the previous example 2 except that the processing time was changed to 0 sccm and the processing time was set to 60 seconds. By this treatment, the hydrocarbon group component contained in the SiN-based insulating film 4 could be reduced.

【0051】その後、上記成膜工程と後処理工程とを交
互に9回ずつ繰り返し、最終的に1μmの膜厚のSiN
系絶縁膜4を形成した。この結果、表層部から深層部に
亘って炭化水素基成分が低減されたSiN系絶縁膜4が
形成された。
Thereafter, the above-mentioned film forming step and post-processing step are alternately repeated nine times, and finally a 1 μm thick SiN film is formed.
A system insulating film 4 was formed. As a result, the SiN-based insulating film 4 in which the hydrocarbon group component was reduced from the surface portion to the deep portion was formed.

【0052】さらに、上記原料ガスを3%H含有N
ガスにて希釈したガスを用いた以外は先行例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0052] Further, the raw material gas 3% H 2 containing N 2
Annealing treatment was performed in the same manner as in Example 1 except that a gas diluted with a gas was used, and a passivation film made of the SiN-based insulating film 4 was completed.

【0053】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して先行例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, a corrosion test was performed on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed in the same manner as in the first example.
Did not show any corrosion. From this, it was found that the SiN-based insulating film 4 exhibited good water resistance and corrosion resistance.

【0054】実施例2 本実施例では、有機Si化合物としてテトラジメチルア
ミノジフロロジシラン[(CHN]Si
とジメチルヒドラジン(CHとの混合ガ
スを用いてSiN系絶縁膜を成膜した。
Example 2 In this example, tetradimethylaminodifluorodisilane [(CH 3 ) 2 N] 4 Si 2 F 2 was used as the organic Si compound.
And a dimethylhydrazine (CH 3 ) 2 N 2 H 2 mixed gas to form a SiN-based insulating film.

【0055】具体的には、先行例1と同様のウェハ上
に、原料ガスを[(CHN]Si:流量
100sccm、(CH:流量50sc
cmのように変更した以外は先行例2と同様の条件のプ
ラズマCVDによって、SiN系絶縁膜4を1μmなる
膜厚にて成膜した。
More specifically, on the same wafer as in the first embodiment, the raw material gas was [(CH 3 ) 2 N] 4 Si 2 F 2 : flow rate 100 sccm, (CH 3 ) 2 N 2 H 2 : flow rate 50 sc
The SiN-based insulating film 4 was formed to a thickness of 1 μm by plasma CVD under the same conditions as in the previous example 2 except that the thickness was changed to cm.

【0056】このようにして成膜されたSiN系絶縁膜
4は、ボイドやクラックを有さない、ステップカバレー
ジに優れたものであったと共に、炭化水素基成分も低減
されたものであった。
The SiN-based insulating film 4 thus formed had no voids or cracks, was excellent in step coverage, and had a reduced hydrocarbon group component.

【0057】さらに、上記原料ガスを3%H含有N
ガスにて希釈したガスを用いた以外は先行例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0057] Further, the raw material gas 3% H 2 containing N 2
Annealing treatment was performed in the same manner as in Example 1 except that a gas diluted with a gas was used, and a passivation film made of the SiN-based insulating film 4 was completed.

【0058】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して先行例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, a corrosion test was performed on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed in the same manner as in the first example.
Did not show any corrosion. From this, it was found that the SiN-based insulating film 4 exhibited good water resistance and corrosion resistance.

【0059】実施例3 本実施例では、有機Si化合物としてビスジメチルアミ
ノビスエトキシジフロロジシラン[(CHN]
Si(OC)Fとジエチルヒドラジン(C
との混合ガスを用いてSiON系絶縁
膜を成膜した。
Example 3 In this example, bisdimethylaminobisethoxydifluorodisilane [(CH 3 ) 2 N] 2 was used as an organic Si compound.
Si 2 (OC 2 H 5 ) F 2 and diethyl hydrazine (C 2
An SiON-based insulating film was formed using a mixed gas with H 5 ) 2 N 2 H 2 .

【0060】具体的には、先行例1と同様のウェハ上
に、原料ガスを[(CHN]Si(OC
)F:流量100sccm、(C
:流量50sccmのように変更した以外は先行例1
と同様の条件のプラズマCVDによって、SiON系絶
縁膜5を1μmなる膜厚にて成膜した。
More specifically, on the same wafer as in the first embodiment, the raw material gas was supplied as [(CH 3 ) 2 N] 2 Si 2 (OC 2 H).
5 ) F 2 : flow rate 100 sccm, (C 2 H 5 ) 2 N 2 H
2 : Preceding example 1 except that the flow rate was changed to 50 sccm
The SiON-based insulating film 5 was formed to a thickness of 1 μm by plasma CVD under the same conditions as in the above.

【0061】このようにして成膜されたSiON系絶縁
膜5は、ボイドやクラックを有さない、ステップカバレ
ージに優れたものであったと共に、炭化水素基成分も低
減されたものであった。
The SiON-based insulating film 5 thus formed had no voids or cracks, was excellent in step coverage, and had a reduced hydrocarbon group component.

【0062】さらに、上記原料ガスを3%H含有N
ガスにて希釈したガスを用いた以外は先行例1と同様に
してアニール処理を行って、SiON系絶縁膜5よりな
るパッシベーション膜を完成した。
[0062] Further, the raw material gas 3% H 2 containing N 2
Annealing was performed in the same manner as in the first example except that a gas diluted with a gas was used, thereby completing a passivation film made of the SiON-based insulating film 5.

【0063】ここで、上述のSiON系絶縁膜5よりな
るパッシベーション膜が形成されたウェハに対して先行
例1と同様にして腐蝕試験を行ったところ、Al系配線
3には腐蝕が見られなかった。これより、SiON系絶
縁膜5は良好な耐水性,耐腐蝕性を示すものであること
がわかった。
Here, when a corrosion test was performed on the wafer on which the passivation film made of the above-mentioned SiON-based insulating film 5 was formed in the same manner as in the first example, no corrosion was observed on the Al-based wiring 3. Was. From this, it was found that the SiON-based insulating film 5 exhibited good water resistance and corrosion resistance.

【0064】実施例4 本実施例では、有機Si化合物としてテトラジメチルア
ミノシラン[(CHN]Siとフェニルヒドラ
ジンCNHNHとの混合ガスを用いてSiN系
絶縁膜を成膜した。
Example 4 In this example, a SiN-based insulating film was formed using a mixed gas of tetradimethylaminosilane [(CH 3 ) 2 N] 4 Si and phenylhydrazine C 6 H 5 NHNH 2 as an organic Si compound. Filmed.

【0065】具体的には、先行例1と同様のウェハ上
に、原料ガスを[(CHN]Si:流量100
sccm、CNHNH:流量50sccmのよ
うに変更した以外は先行例1と同様の条件のプラズマC
VDによって、SiN系絶縁膜4を1μmなる膜厚にて
成膜した。
Specifically, on the same wafer as in the first embodiment, the raw material gas was supplied with [(CH 3 ) 2 N] 4 Si at a flow rate of 100
sccm, C 6 H 5 NHNH 2 : Plasma C under the same conditions as in the preceding example 1 except that the flow rate was changed to 50 sccm.
The SiN-based insulating film 4 was formed to a thickness of 1 μm by VD.

【0066】このようにして成膜されたSiN系絶縁膜
4は、ボイドやクラックを有さない、ステップカバレー
ジに優れたものであったと共に、炭化水素基成分も低減
されたものであった。
The SiN-based insulating film 4 thus formed was free of voids and cracks, had excellent step coverage, and had a reduced hydrocarbon group component.

【0067】さらに、上記原料ガスを3%H含有N
ガスにて希釈したガスを用いた以外は先行例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0067] Further, the raw material gas 3% H 2 containing N 2
Annealing treatment was performed in the same manner as in Example 1 except that a gas diluted with a gas was used, and a passivation film made of the SiN-based insulating film 4 was completed.

【0068】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して先行例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, a corrosion test was performed on the wafer on which the passivation film made of the above-described SiN-based insulating film 4 was formed in the same manner as in the first example.
Did not show any corrosion. From this, it was found that the SiN-based insulating film 4 exhibited good water resistance and corrosion resistance.

【0069】上述したように、実施例1〜4に示された
絶縁膜の形成方法は、後処理時に炭化水素基成分を除去
するか、成膜時に炭化水素成分を除去するかの違いはあ
るが、いずれにおいても炭化水素基成分の含有量が抑え
られたSiN系絶縁膜4あるいはSiON系絶縁膜5を
提供できるものであった。また、これらの絶縁膜は良好
なカバレージをも示すことから、パッシベーション膜と
して好適なものであった。
As described above, the method of forming the insulating film shown in Examples 1 to 4 has a difference between removing the hydrocarbon component during the post-processing and removing the hydrocarbon component during the film formation. However, in each case, it was possible to provide the SiN-based insulating film 4 or the SiON-based insulating film 5 in which the content of the hydrocarbon group component was suppressed. Further, these insulating films also show good coverage, and thus were suitable as passivation films.

【0070】以上、本発明に係る絶縁膜の形成方法を適
用した例について説明したが、本発明は上述の実施例に
限定されるものではない。例えば、本発明を適用してパ
ッシベーション膜以外にも層間絶縁膜を形成することも
できる。また、実施例2〜4によるSiN系絶縁膜4あ
るいはSiON系絶縁膜5を成膜と、実施例1における
後処理とを組み合わせてもよい。さらに、SiN系絶縁
膜4あるいはSiON系絶縁膜5を成膜するための原料
ガスの種類や成膜条件、ウェハの構成についても適宜変
更が可能である。
Although the example in which the method for forming an insulating film according to the present invention is applied has been described above, the present invention is not limited to the above-described embodiment. For example, an interlayer insulating film other than a passivation film can be formed by applying the present invention. Further, the formation of the SiN-based insulating film 4 or the SiON-based insulating film 5 according to the second to fourth embodiments may be combined with the post-processing in the first embodiment. Further, the type of the source gas for forming the SiN-based insulating film 4 or the SiON-based insulating film 5, the film forming conditions, and the configuration of the wafer can be appropriately changed.

【0071】[0071]

【発明の効果】以上の説明から明かなように、本発明を
適用すると、ステップカバレージに優れ、且つ、炭化水
素基成分の含有量が低減された絶縁膜が形成できる。
As is apparent from the above description, when the present invention is applied, an insulating film having excellent step coverage and a reduced content of the hydrocarbon group component can be formed.

【0072】したがって、本発明を適用して成膜された
絶縁膜は、絶縁性が確保され、耐水性、耐腐蝕性に優れ
たものとなる。このため、これをパッシベーション膜あ
るいは層間絶縁膜として用いると、デバイス特性の劣化
が防止された信頼性の高い半導体装置を形成できる。
Therefore, the insulating film formed by applying the present invention has good insulating properties and excellent water resistance and corrosion resistance. Therefore, when this is used as a passivation film or an interlayer insulating film, a highly reliable semiconductor device in which deterioration of device characteristics is prevented can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用して半導体装置を製造する工程を
示すものであり、Si基板上にSiO系層間絶縁膜とA
l系配線が形成されたウェハの断面を示す模式図であ
る。
FIG. 1 shows a process of manufacturing a semiconductor device by applying the present invention, in which a SiO-based interlayer insulating film and an A
FIG. 3 is a schematic diagram showing a cross section of a wafer on which l-system wiring is formed.

【図2】図1のウェハに対して絶縁膜が成膜された状態
を示す模式図である。
FIG. 2 is a schematic diagram showing a state where an insulating film is formed on the wafer of FIG. 1;

【図3】従来法によりSiN系絶縁膜が成膜されたウェ
ハの断面を示す模式図である。
FIG. 3 is a schematic view showing a cross section of a wafer on which a SiN-based insulating film is formed by a conventional method.

【符号の説明】[Explanation of symbols]

1 Si基板 、 2 SiO系層間絶縁膜 、 3 A
l系配線 、 4 SiN系絶縁膜 、 5 SiON系
絶縁膜
1 Si substrate, 2 SiO-based interlayer insulating film, 3 A
1-system wiring, 4 SiN-based insulating film, 5 SiON-based insulating film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/318 H01L 21/768 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/318 H01L 21/768

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 SiN系絶縁膜またはSiON系絶縁膜
の形成方法であって、 シリコン原子と窒素原子との結合を有する有機シリコン
化合物を用い、化学的気相成長法により基板上に絶縁膜
を成膜する成膜工程と、 分子内に少なくとも窒素原子を含む後処理ガス又は窒素
原子と水素原子を含む後処理ガスの雰囲気下にて、前記
絶縁膜のプラズマ処理を行う後処理工程とを有するとと
もに、前記成膜工程と前記後処理工程とを交互に複数回
繰り返すことを特徴とする絶縁膜の形成方法。
1. A method for forming a SiN-based insulating film or a SiON-based insulating film, comprising forming an insulating film on a substrate by a chemical vapor deposition method using an organic silicon compound having a bond between silicon atoms and nitrogen atoms. A film forming step of forming a film, and a post-treatment gas or nitrogen containing at least a nitrogen atom in a molecule.
A post-processing step of performing plasma processing on the insulating film under an atmosphere of a post-processing gas containing atoms and hydrogen atoms, wherein the film forming step and the post-processing step are alternately repeated a plurality of times. Method for forming an insulating film.
【請求項2】 SiN系絶縁膜またはSiON系絶縁膜
の形成方法であって、 シリコン原子と窒素原子との結合を有する有機シリコン
化合物と少なくとも1つ以上のアルキル基またはフェニ
ル基を有するヒドラジン誘導体からなる有機窒素化合物
とを含む混合ガスを用いて、化学的気相成長法により基
板上に絶縁膜を成膜することを特徴とする絶縁膜の形成
方法。
2. A method for forming an SiN-based insulating film or a SiON-based insulating film, comprising: a step of forming an organic silicon compound having a bond between a silicon atom and a nitrogen atom and a hydrazine derivative having at least one or more alkyl groups or phenyl groups. A method for forming an insulating film, comprising forming an insulating film on a substrate by a chemical vapor deposition method using a mixed gas containing an organic nitrogen compound.
【請求項3】 前記成膜は、プラズマを発生させながら
行うことを特徴とする請求項1または請求項2に記載の
絶縁膜の形成方法。
3. The method according to claim 1, wherein the film is formed while generating plasma.
JP26380794A 1993-12-27 1994-10-27 Method of forming insulating film Expired - Fee Related JP3336770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26380794A JP3336770B2 (en) 1993-12-27 1994-10-27 Method of forming insulating film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-332983 1993-12-27
JP33298393 1993-12-27
JP26380794A JP3336770B2 (en) 1993-12-27 1994-10-27 Method of forming insulating film

Publications (2)

Publication Number Publication Date
JPH07235535A JPH07235535A (en) 1995-09-05
JP3336770B2 true JP3336770B2 (en) 2002-10-21

Family

ID=26546203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26380794A Expired - Fee Related JP3336770B2 (en) 1993-12-27 1994-10-27 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JP3336770B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939333A (en) * 1996-05-30 1999-08-17 Micron Technology, Inc. Silicon nitride deposition method
JP3211950B2 (en) 1998-01-19 2001-09-25 日本電気株式会社 Semiconductor device and method of manufacturing the same
JP4758938B2 (en) * 2001-08-30 2011-08-31 東京エレクトロン株式会社 Insulating film forming method and insulating film forming apparatus
US7087537B2 (en) * 2004-03-15 2006-08-08 Sharp Laboratories Of America, Inc. Method for fabricating oxide thin films
JP2005213633A (en) * 2004-02-02 2005-08-11 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Production method for silicon nitride film or silicon oxynitride film by chemical vapor deposition method
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
US7875312B2 (en) 2006-05-23 2011-01-25 Air Products And Chemicals, Inc. Process for producing silicon oxide films for organoaminosilane precursors
US8530361B2 (en) 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
JP2008010881A (en) * 2007-07-13 2008-01-17 Fujitsu Ltd Method for manufacturing semiconductor device
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
JP2012216631A (en) * 2011-03-31 2012-11-08 Tokyo Electron Ltd Plasma nitriding method
US8771807B2 (en) 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same
JP2023128751A (en) * 2022-03-04 2023-09-14 東京エレクトロン株式会社 Insulating film formation method and substrate processing system

Also Published As

Publication number Publication date
JPH07235535A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JP3336770B2 (en) Method of forming insulating film
US6991959B2 (en) Method of manufacturing silicon carbide film
US7718553B2 (en) Method for forming insulation film having high density
US6673721B1 (en) Process for removal of photoresist mask used for making vias in low k carbon-doped silicon oxide dielectric material, and for removal of etch residues from formation of vias and removal of photoresist mask
US6693043B1 (en) Method for removing photoresist from low-k films in a downstream plasma system
JP4049214B2 (en) Insulating film forming method and insulating film forming apparatus
JPH098032A (en) Formation of insulation film
US6436822B1 (en) Method for making a carbon doped oxide dielectric material
US20190172704A1 (en) ROBUST HIGH PERFORMANCE LOW HYDROGEN SILICON CARBON NITRIDE (SiCNH) DIELECTRICS FOR NANO ELECTRONIC DEVICES
JP2001267310A (en) Method and device for film forming plasma
JPWO2006043432A1 (en) Film manufacturing method and semiconductor device using film manufactured by the method
JPH0822986A (en) Method of forming insulating film
EP1035568A1 (en) Method of plasma processing
JPH05267157A (en) Wiring formation
JP3282769B2 (en) Method for manufacturing semiconductor device
JP3348509B2 (en) Method of forming insulating film
JP2837087B2 (en) Thin film formation method
JP3287124B2 (en) Method for forming SiN-based insulating film
JPH08167601A (en) Method of manufacturing semiconductor device
JPH07254599A (en) Formation of insulating film
JP3284719B2 (en) Method of forming SiN-based insulating film
JP3414934B2 (en) Thin film formation method
JPH07300680A (en) Formation of silicon nitride type insulating film
JPH06295907A (en) Film formation, film-forming device and manufacture of semiconductor device
JP3318818B2 (en) Insulating film forming method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees