JP3333219B2 - Compound semiconductor light-emitting device - Google Patents

Compound semiconductor light-emitting device

Info

Publication number
JP3333219B2
JP3333219B2 JP30014491A JP30014491A JP3333219B2 JP 3333219 B2 JP3333219 B2 JP 3333219B2 JP 30014491 A JP30014491 A JP 30014491A JP 30014491 A JP30014491 A JP 30014491A JP 3333219 B2 JP3333219 B2 JP 3333219B2
Authority
JP
Japan
Prior art keywords
type
layer
epitaxial growth
compound semiconductor
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30014491A
Other languages
Japanese (ja)
Other versions
JPH05136458A (en
Inventor
孝信 鎌倉
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP30014491A priority Critical patent/JP3333219B2/en
Publication of JPH05136458A publication Critical patent/JPH05136458A/en
Application granted granted Critical
Publication of JP3333219B2 publication Critical patent/JP3333219B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は、例えば電光表示板、 [Field of the Invention The present invention is, for example, electronic display boards,
センサ光源等に用いられる高輝度、高効率の化合物半導体発光素子(LED素子)に関する。 High brightness for use in a sensor light source or the like, to a high efficiency of the compound semiconductor light emitting device (LED device).

【0002】 [0002]

【従来の技術】図1は、従来の化合物半導体発光素子を示すものであり、図1(a)はその平面図、図1(b) BACKGROUND OF THE INVENTION FIG 1 shows a conventional compound semiconductor light-emitting device, FIG. 1 (a) is a plan view thereof, and FIG. 1 (b)
はその側面図である。 Is a side view thereof. N型化合物半導体基板1の上にはN型エピタキシャル成長層2が形成され、このN型エピタキシャル成長層2の上にはP型エピタキシャル成長層3が形成され、これらのP型エピタキシャル成長層3およびN型エピタキシャル成長層2により、PN接合が形成されている。 On the N-type compound semiconductor substrate 1 is formed an N-type epitaxial layer 2, this on top the N-type epitaxial layer 2 is formed a P-type epitaxial layer 3, these P-type epitaxial layer 3 and the N-type epitaxial layer the 2, PN junction is formed. P型エピタキシャル成長層3の上には図1(a)に示すように、PEP(Photo Engraving Proc On top of the P-type epitaxial layer 3 as shown in FIG. 1 (a), PEP (Photo Engraving Proc
ess )工程によりP型電極4がパタ−ニングされる。 P-type electrode 4 is pattern by ess) process - is training. この後、オ−ミック性を向上させるための熱処理が行われ、前記P型電極4と導電性ワイヤ−5の一端とが接続される。 Thereafter, O - heat treatment for improving the electrochromic properties is performed, and one end of the P-type electrode 4 and the conductive wires -5 is connected. この導電性ワイヤ−5の他端は電極端子6に接続される。 The other end of the conductive wire -5 is connected to the electrode terminal 6. 前記N型化合物半導体基板1の下にはN型電極7が形成され、このN型電極7は導電性ステム8に接続される。 Wherein under the N-type compound semiconductor substrate 1 is formed an N-type electrode 7, the N-type electrode 7 is connected to the conductive stem 8. さらに、これら全体がモ−ルド樹脂9により覆われている。 Furthermore, the whole it mode - is covered by the shield resin 9. 前記P型電極4はAu−Be合金からなっており、N型電極7はAu−Ge合金からなっている。 The P-type electrode 4 is made of Au-Be alloy, N-type electrode 7 is made of Au-Ge alloy.

【0003】 [0003]

【発明が解決しようとする課題】ところで、Au系合金はPN接合近傍で発生された光の波長に対して吸収体となる。 [SUMMARY OF THE INVENTION Incidentally, Au-based alloy is the absorber to the wavelength of light generated in the vicinity of the PN junction. このため、P型電極4は図1(a)に示す如くパタ−ニングされ、P型エピタキシャル成長層3のうちP Therefore, P-type electrode 4 as pattern shown in FIG. 1 (a) - are training, P of the P-type epitaxial layer 3
型電極4から露出された面から光が取り出される。 Light is extracted from the exposed surface from the mold electrode 4. この露出されたP型エピタキシャル成長層3の表面にはフロスト処理により凹凸が形成されており、光が均一に放射されるようにしている。 This is the exposed surface of the P-type epitaxial layer 3 has irregularities formed by frosting, so that light is uniformly emitted.

【0004】しかしながら、PN接合近傍で発生した光の放射面としてのP型エピタキシャル成長層3の表面に発生波長に対して吸収体となるP型電極4を設けているため、この電極4の面積により発光効率および輝度が左右されるという問題を有していた。 However, since there is provided a P-type electrode 4 on the P-type epitaxial surface of the growth layer 3 as a radiation surface of the light generated in the vicinity of the PN junction becomes an absorber for the occurrence wavelength, the area of ​​the electrode 4 luminous efficiency and luminance had a problem that depends.

【0005】上記の問題を改善するために、P型電極の面積を小さくすることが考えられる。 In order to improve the above problem, it is conceivable to reduce the area of ​​the P-type electrode. しかし、この電極近傍のキャリア注入条件とその周辺のキャリア注入条件とが異なるため、PN接合近傍において発光むらが生じたり、電極近傍しか発光しないことがあった。 However, the carrier injection condition near the electrodes and are different for the carrier injection conditions around the light emitting unevenness or occur near the PN junction, there is that only the vicinity of the electrodes do not emit light.

【0006】また、P型電極の厚さを薄くすることも考えられる。 [0006] It is also conceivable to reduce the thickness of the P-type electrode. この場合、P型エピタキシャル成長層の露出面積を一定とし、P型電極4を厚くした場合と同程度の輝度を得られる範囲で充分な薄膜化を行った。 In this case, a constant exposed area of ​​the P-type epitaxial layer, was sufficiently thinning to the extent that the resulting brightness of the same extent as when thickening the P-type electrode 4. しかし、 But,
この薄膜化した電極は連続膜としての均一性が悪いため、電極としての信頼性が低く、実用化できないものであった。 Therefore thinned electrode has poor uniformity as a continuous film, less reliable as an electrode were those that can not be practically used.

【0007】一方、上記従来の半導体発光素子においては、P型エピタキシャル成長層3の上にP型電極4が形成された後、オ−ミック性を向上させるための熱処理が行われる。 On the other hand, in the conventional semiconductor light emitting element, after the P-type electrode 4 is formed on the P-type epitaxial layer 3, O - heat treatment for improving the electrochromic properties is performed. この際、P型電極4におけるAu等の重金属がP型エピタキシャル成長層3にド−ピングされ、このP型エピタキシャル成長層3に重金属の高濃度拡散領域が形成される。 In this case, heavy metal such as Au in P-type electrode 4 is de the P-type epitaxial layer 3 - are ping, highly doped regions of heavy metals is formed on the P-type epitaxial layer 3. このため、このエピタキシャル成長層3 For this reason, the epitaxial growth layer 3
において光が吸収され、化合物半導体発光素子の発光効率および輝度が低下するという問題を有していた。 Light is absorbed in the luminous efficiency and luminance of the compound semiconductor light-emitting device had a lowered.

【0008】この発明は上記のような事情を考慮してなされたものであり、その目的はPN接合近傍における内部発光の均一性を向上し、放射光がP型電極およびP型エピタキシャル成長層の不純物によって吸収されることなく、発光効率および輝度を向上することが可能な化合物半導体発光素子を提供することにある。 [0008] The present invention has been made in view of the circumstances described above, and its object is to improve the uniformity of the internal light emission in the vicinity PN junction, the emitted light is a P-type electrode and a P-type epitaxial layer impurity without being absorbed by the invention is to provide a compound semiconductor light-emitting device capable of improving luminous efficiency and luminance.

【0009】 [0009]

【課題を解決するための手段】この発明は、上記課題を解決するため、化合物半導体基板の上にエピタキシャル成長により設けられた第1導電型の第1のエピタキシャル成長層と、前記第1のエピタキシャル成長層の上に設けられ、表面に凹凸を有する第2導電型の第2のエピタキシャル成長層と、前記第2のエピタキシャル成長層の上の全面に設けられた発光波長に対して50%以上の透過率を有する酸化物又は高分子系材料の第1の透明電極と、前記化合物半導体基板の下に設けられた発光波長に SUMMARY OF THE INVENTION The present invention, in order to solve the above problems, a first epitaxial growth layer of the first conductivity type provided by epitaxial growth on a compound semiconductor substrate, said first epitaxial layer provided in the upper oxide having a second conductivity type second epitaxial growth layer having an uneven surface, a transmissivity of 50% or more for the light emission wavelength provided on the entire surface of the second epitaxial layer a first transparent electrode of the goods or polymeric material, the emission wavelength provided below the compound semiconductor substrate
対して50%以上の透過率を有する酸化物の第2の透明電極とを具備し、前記第2のエピタキシャル成長層は前記第1の透明電極と接する側の表面の不純物濃度が1× Second; and a transparent electrode, the second epitaxial growth layer impurity concentration 1 × a surface on the side in contact with the first transparent electrode of the oxide having 50% or more transmittance for
10 19 atoms/cm 3以下であり、前記化合物半導体基板は前記第1のエピタキシャル成長層と接する側の表面の不純物濃度が1×10 19 atoms/cm 3以下に設定されている。 And in 10 19 atoms / cm 3 or less, the compound semiconductor substrate the impurity concentration of the surface on the side in contact with the first epitaxial layer is set to less than 1 × 10 19 atoms / cm 3.

【0010】 [0010]

【作用】この発明は、第1導電型の第1のエピタキシャル成長層の上に第2導電型の第2のエピタキシャル成長層を設けている。 SUMMARY OF THE INVENTION This invention is a second epitaxial growth layer of a second conductivity type provided on the first conductivity type first epitaxial growth layer. この第2のエピタキシャル成長層の上に発光波長に対して50%以上の透過率を有する第2導電型の第1の電極を設けているため、この第1の電極による光の吸収を抑制できる。 Since it is provided a first electrode of a second conductivity type having a transmissivity of 50% or more for the emission wavelength on the second epitaxial growth layer can be suppressed the absorption of light by the first electrode. さらに、前記第2のエピタキシャル成長層は第1の電極と接する側の表面の不純物濃度を1×10 19 atoms/cm 3 Further, the second epitaxial growth layer first 1 impurity concentration of the surface on the side where the contact with the electrode × 10 19 atoms / cm 3 以下としている。 It is the following. このため、第2のエピタキシャル成長層および化合物半導体基板の不純物による光の吸収が抑制される。 Therefore, absorption of light is inhibited by impurities of the second epitaxial layer and the compound semiconductor substrate. また、前記第1の電極は第2のエピタキシャル成長層上の全面に設けられているため、第1のエピタキシャル成長層および第2のエピタキシャル成長層の接合部近傍における内部発光の均一性が向上する。 Further, the first electrode because it is provided in the entire surface of the second epitaxial growth layer, the uniformity of the internal light emission at the junction near the first epitaxial layer and a second epitaxial growth layer is improved.

【0011】 [0011]

【実施例】以下、図面を参照してこの発明の一実施例について説明する。 EXAMPLES Hereinafter, with reference to the drawings, an embodiment of the present invention.

【0012】図2(a)乃至図2(f)は、AlGaA [0012] FIGS. 2 (a) to FIG. 2 (f) is, AlGaAs
s/GaAs系の赤外発光素子の製造工程を示すものである。 It shows a manufacturing process of the s / GaAs system of the infrared light emitting element. 先ず、P型GaAs基板10には濃度1×10 18 First, the P-type GaAs substrate 10 concentration 1 × 10 18
atoms/cm 3 atoms / cm 3 のSi(シリコン)がド−プされる。 Of Si (silicon) Gad - is up. このP型GaAs基板10の上には図2(b)に示すように濃度1×10 18 atoms/cm 3 Concentration 1 × 10 as is shown in FIG. 2 (b) over the P-type GaAs substrate 10 18 atoms / cm 3 のSiがド−プされたP型AlGaAsエピタキシャル成長層11が形成される。 Of Si Gad - P-type AlGaAs epitaxial layer 11 which is flop is formed. このエピタキシャル層11の厚さは50〜100μ The thickness of the epitaxial layer 11 is 50~100μ
m程度である。 It is about m. このエピタキシャル層11の上には図2 Figure on top of the epitaxial layer 11 2
(c)に示すように濃度5×10 18 atoms/cm 3 Concentration as shown in (c) 5 × 10 18 atoms / cm 3 のS S of
iがド−プされたN型AlGaAsエピタキシャル成長層12が形成され、このエピタキシャル層12の厚さは50〜100μm程度である。 i Gad - N-type AlGaAs epitaxial layer 12 which is flop is formed, the thickness of the epitaxial layer 12 is about 50 to 100 [mu] m. 前記エピタキシャル層1 The epitaxial layer 1
1とエピタキシャル層12との接合面にPN接合が形成される。 PN junction is formed at the interface between the 1 and the epitaxial layer 12. このエピタキシャル層12の表面上には図2 Figure 2 is on the surface of the epitaxial layer 12
(d)に示すようにフロスト処理により凹凸13が形成される。 Irregularity 13 is formed by frosting as shown in (d). 前記N型エピタキシャル層12の上には図2 On the N-type epitaxial layer 12 is 2
(e)に示すようにSnを濃度3%でド−プした厚さ5 De The Sn as shown in (e) in a concentration of 3% - thickness 5 which is flop
000オングストロ−ムのIn 23層15がスパッタリング法により堆積される。 000 Å - arm of In 2 O 3 layer 15 is deposited by sputtering. このIn 23層15により発光波長に対して50%以上の透過率を有する上部透明電極16が形成される。 The In 2 O 3 layer 15 upper transparent electrode 16 having a transmissivity of 50% or more for the emission wavelength by is formed. 前記P型GaAs基板10の下には図2(f)に示すようにZnを濃度5%でド−プした厚さ1μmのIn 23層17がスパッタリング法により堆積され、このIn 23層17により下部透明電極18が形成される。 The P-type GaAs de of Zn as shown in FIG. 2 (f) below the substrate 10 at a concentration of 5% - In 2 O 3 layer 17 having a thickness of 1μm was flop is deposited by sputtering, the In 2 O lower transparent electrode 18 is formed by three layers 17. このように構成した発光素子1 The light-emitting element 1 of this configuration
9を300μm角のペレット20状に切断する。 9 is cut into pellets 20 form 300μm square.

【0013】図3(a)は、AlGaAs/GaAs系の赤外発光素子を示す平面図であり、図3(b)は、その側面図である。 [0013] FIG. 3 (a) is a plan view showing an infrared light emitting element of the AlGaAs / GaAs system, FIG. 3 (b) is a side view thereof. 前記の300μm角のペレット20状に切断された発光素子19における上部透明電極16にはAu等からなる導電性ワイヤ21の一端22が接続され、この導電性ワイヤ21の他端23は電極端子24に接続される。 One end 22 of the conductive wire 21 made of Au or the like is connected to the upper transparent electrode 16 in the light-emitting element 19 which is cut into pellets 20 form the 300μm angle of the other end 23 of the conductive wire 21 electrode terminals 24 It is connected to. 前記発光素子19における下部透明電極1 Lower transparent electrode 1 in the light-emitting element 19
8には導電性ステム25の一端26が図示せぬ導電性マウント材、例えばAgペ−ストによって接続され、発光素子19全体が透光性モ−ルド樹脂29によって覆われる。 The 8 conductive unillustrated end 26 of the conductive stem 25 mounting material, for example Ag Bae - connected by strike, the entire light emitting element 19 is light transmitting mode - are covered by the field resin 29. この透光性モ−ルド樹脂29から前記導電性ステム25の他端27が突出している。 The translucent mode - the other end 27 of the conductive stem 25 from shield resin 29 protrudes.

【0014】上記実施例によれば、上部および下部透明電極16、18を発光波長に対して50%以上の透過率を有するIn 23層15、17によって形成している。 [0014] are formed by In 2 O 3 layer 15, 17 having the above-described According to an embodiment, 50% or more transmittance of the upper and lower transparent electrodes 16 and 18 with respect to the emission wavelength. このため、N型AlGaAsエピタキシャル成長層12から放射される光が上部透明電極16によって殆ど吸収されることがなく、発光効率および輝度を向上できる。 Therefore, without being absorbed most light emitted from the N-type AlGaAs epitaxial layer 12 by the upper transparent electrode 16, thereby improving the luminous efficiency and luminance. また、フロスト処理により、N型AlGaAsエピタキシャル成長層12の表面上に凹凸13を形成しているため、この凹凸13により発生された光が乱反射され、球状分散される。 Also, the frost treatment, forming the irregularities 13 on the surface of the N-type AlGaAs epitaxial layer 12, the light generated by the unevenness 13 is irregularly reflected, are spherical dispersed. 従って、N型AlGaAsエピタキシャル成長層12から放射される光の均一性を向上できる。 Accordingly, it is possible to improve the uniformity of light emitted from the N-type AlGaAs epitaxial layer 12. さらに、上部透明電極16をN型AlGaAsエピタキシャル成長層12上の全面に設けているため、P Furthermore, since the provided upper transparent electrode 16 on the entire surface of the N-type AlGaAs epitaxial layer 12, P
N接合近傍における内部発光の均一性を向上できる。 It can improve the uniformity of the internal light emission in N junction near. また、従来の電極を形成するにはPEP工程が必要であったが、N型AlGaAsエピタキシャル成長層12上の全面に上部透明電極16を設けているから、この発明では不要となり製造コストを低減できる。 Also, to form the conventional electrode but was required PEP process, because they provided an upper transparent electrode 16 on the entire surface of the N-type AlGaAs epitaxial layer 12, the manufacturing cost can be reduced unnecessary in the present invention.

【0015】尚、上記実施例において、N型AlGaA [0015] Incidentally, in the above-described e.g., N-type AlGaA
sエピタキシャル成長層の上には不純物を添加したIn In the addition of impurities on the s epitaxial layer
23層を直接設けたが、先ず不純物を添加しない厚さ数百オングストロ−ムのIn 23層を堆積し、このI 2 is provided with the O 3 layer directly, firstly the thickness of several hundred Å not doped with impurities - depositing a In 2 O 3 layer of arm, the I
23層の上に濃度5%のSnが添加された厚さ50 n 2 O 3 layer thickness of 50 to 5% concentration of Sn was added over a
00オングストロ−ム程度のIn 23層を堆積し、この後、温度400℃で30分間シンタ−処理を行うことにより、発光波長に対して50%以上の透過率を有する上部透明電極を形成しても良い。 00 Å - depositing a In 2 O 3 layer about arm, thereafter, sintering for 30 minutes at a temperature 400 ° C. - by performing processing, form an upper transparent electrode having a transmittance of 50% or more with respect to the emission wavelength it may be.

【0016】このような製造方法によっても前記実施例と同様の効果を得ることができ、しかも不純物を添加しない厚さ数百オングストロ−ムのIn 23層を堆積させることにより、N型AlGaAsエピタキシャル成長層の表面不純物濃度を前記実施例のそれより低くすることができる。 [0016] Such also can achieve the same effect as the embodiment by the manufacturing method, moreover a thickness of several not doped with impurities hundred Å - by depositing the In 2 O 3 layer of arm, N-type AlGaAs it can be a surface impurity concentration of the epitaxial layer lower than that of example.

【0017】尚、上記実施例により製造された赤外発光素子の光量および輝度をさらに向上させるには、前記下部透明電極面にAl(アルミニウム)を蒸着させる工程または前記ペレット周辺にミラ−を設ける工程を追加すると良い。 [0017] Note that further increase the amount and intensity of the infrared light-emitting element produced by the above examples, Mila step or the pellets near depositing Al (aluminum) on the lower transparent electrode surface - provided step may When you add. Alを蒸着させると、PN接合から発した光がこのAlにより反射され、上部透明電極における光量が増加する。 When depositing Al, light emitted from the PN junctions is reflected by the Al, the amount of light in the upper transparent electrode is increased. ミラ−を設けると、赤外発光素子の側面に発した光がミラ−により反射され、赤外発光素子の輝度が向上される。 Mira - When the provided, light emitted to the side surface of the infrared light emitting element is mirror - reflected by the brightness of the infrared light emitting device is improved. 上記の追加工程における効果は上部透明電極が発光波長に対して50%の透過率を有することにより顕著となる。 Effects in the above additional steps becomes remarkable by the upper transparent electrode having a transmissivity of 50% to the emission wavelength.

【0018】図4は、この発明における上記実施例の効果を示したものであり、エピタキシャル層上に透明電極を全面形成および部分形成したAlGaAs/GaAs [0018] FIG. 4 is an illustration of the effects of the embodiments in the present invention, AlGaAs / GaAs which a transparent electrode on the epitaxial layer was formed over the entire surface and portions forming
系の赤外発光素子において、透明電極の透過率と発光効率との関係を示したものである。 In the infrared light emitting elements of the system, it shows the relationship between the transmittance of the transparent electrode and the light emitting efficiency. 前記部分形成とは透明電極の面積がエピタキシャル層のそれの50%としたものである。 The said parts forming in which the area of ​​the transparent electrode was 50% of that of the epitaxial layer. 図4に示すように、発光波長に対する透過率が50%の透明電極を用いた場合、これを部分形成した場合においても、従来の電極を用いた発光素子と同等の発光効率が得られ、全面形成した場合は、部分形成した場合に比べて200%の発光効率の向上が見られる。 As shown in FIG. 4, if the transmittance of the emitted light wavelength is using 50% of the transparent electrode, even if this was partially formed, comparable luminous efficiency and light-emitting element using a conventional electrode is obtained, the entire surface If formed, the improvement of 200% of the light emission efficiency compared with the case where the partial formation is observed.

【0019】図5は、SIMS(Secondary Ion Mass S [0019] FIG. 5, SIMS (Secondary Ion Mass S
pectroscopy )分析により不純物濃度と深さとの関係を示したものである。 Pectroscopy) it shows the relationship between the impurity concentration and depth by analysis. AlGaAs/GaAs系の赤外発光素子の製造工程において、エピタキシャル層の上には不純物を添加しない厚さ数百オングストロ−ムのIn 2 In the manufacturing process of the AlGaAs / GaAs system of the infrared light emitting element, a thickness of several hundred no addition of impurities on the epitaxial layer Å - arm of In 2
3層が堆積される。 O 3 layer is deposited. このIn 23層の上に濃度5% On the In 2 O 3 layer of 5%
のSnが添加された厚さ5000オングストロ−ム程度のIn 23層が堆積される。 5000 thick Sn is added in angstroms - In 2 O 3 layer about beam is deposited. この後、温度600℃で30分間のシンタ−が行われた発光素子および温度40 Thereafter, sintering for 30 minutes at a temperature 600 ° C. - emitting element and the temperature was made 40
0℃で30分間のシンタ−が行われた発光素子をそれぞれ本発明Iおよび本発明IIとする。 0 ℃ in 30 minutes sintering - is a light-emitting element, respectively, and the present invention I and invention II made. また、AuGeから形成された電極を用いたLEDを従来例とする。 Moreover, LED is referred to as the conventional example using an electrode formed of AuGe. これらの本発明IおよびIIおよび従来例を同時にSIMS分析し、エピタキシャル層の不純物の表面濃度とその深さとの関係を調べた。 These present invention I and II and the prior art were simultaneously SIMS analysis, examined the relationship between the surface concentration of the impurity of the epitaxial layer and its depth. この結果、従来の電極およびこの発明の透明電極の形成条件によって、不純物の表面濃度が異なることが分かる。 As a result, the conditions for forming the conventional electrode and the transparent electrode of the present invention, different can be seen that the surface concentration of the impurity. 本発明IおよびIIの不純物濃度は従来例のそれに比べて低い。 The impurity concentration of the present invention I and II is lower than that of the conventional example. 特に、本発明IIでは浅い部分において不純物濃度が1×10 19 atoms/cm 3 In particular, the impurity concentration in the present invention II, the shallow portion is 1 × 10 19 atoms / cm 3 以下となっている。 And it has a following.

【0020】図6は、エピタキシャル層の表面不純物濃度と発光効率との関係を示したものである。 [0020] Figure 6 shows the relationship between the surface impurity concentration of the epitaxial layer and the light emitting efficiency. これより、 Than this,
表面不純物濃度が1×10 19 atoms/cm 3 Surface impurity concentration of 1 × 10 19 atoms / cm 3 以上になると発光効率が低下することが分かる。 It can be seen that the reduced and luminous efficiency becomes higher. この発光効率の低下はエピタキシャル層の表面不純物から生ずる高濃度拡散層で光が吸収されるためである。 This reduction in light emission efficiency because the light is absorbed by the high concentration diffusion layer resulting from the surface impurity of the epitaxial layer.

【0021】上記のように、AlGaAs/GaAs系の赤外発光素子は発光波長に対する透過率が50%以上の透明電極を全面形成し、エピタキシャル層の表面不純物濃度を1×10 19 atoms/cm 3 [0021] As described above, AlGaAs / GaAs-based infrared light emitting element of transmittance is formed over the entire surface of 50% or more transparent electrodes for the emission wavelength, the surface impurity concentration of the epitaxial layer 1 × 10 19 atoms / cm 3 以下とし、P型Ga Below and then, P-type Ga
As基板はP型AlGaAsエピタキシャル成長層と接する側の表面の不純物濃度を1×10 19 atoms/cm 3 As substrate is P-type AlGaAs epitaxial layer in contact with 1 × 10 19 impurity concentration on the side of the surface atoms / cm 3
以下とすると、発光効率が大きく向上する。 If less, the luminous efficiency is improved greatly. 従って、この発明の透明電極の形成条件により、高濃度拡散層による光の吸収を回避でき、発光効率が向上することは明らかである。 Therefore, the conditions for forming the transparent electrode of the present invention, can avoid absorption of light by the high concentration diffusion layer, it is clear that luminous efficiency is improved. 尚、この発明は上記実施例に限定されるものではなく、以下のような変更が可能である。 The present invention is not limited to the above embodiments, but may be modified as follows.

【0022】前記上部透明電極はSnが濃度3%でド− [0022] The upper transparent electrode Sn is de concentration of 3% -
プされているが、この上部透明電極がN型AlGaAs It is up, but the upper transparent electrode is N-type AlGaAs
エピタキシャル成長層とオ−ミック接合を形成するド− Epitaxial layer and the O - de forming the ohmic junction -
プ材であれば種々変更可能であり、ド−プ濃度3%もド−プ材により変更しても良い。 If flop material may be variously modified, de - flop concentration of 3 percent de - may be changed by up material. また、下部透明電極においても同様に変更できる。 Moreover, it can be similarly modified in the lower transparent electrode. また、上部透明電極の材料はIn 23を用いているが、Sn 2 O型の酸化物またはポリチアジル等の高分子系材料を用いたものでも良い。 Further, although the upper transparent electrode material is used an In 2 O 3, it may be one with Sn 2 O type oxide or polymer material such as polythiazyl of.

【0023】また、前記基板およびエピタキシャル成長層にはP型GaAs基板およびP型、N型AlGaAs Further, the substrate and epitaxial layer P-type GaAs substrate and the P-type in, N type AlGaAs
エピタキシャル成長層を用いて赤外発光素子を構成しているが、以下の組み合わせを用いることも可能である。 Although constitute the infrared light emitting element using the epitaxial growth layer, it is also possible to use the following combinations.

【0024】N型GaAs基板の上にLPE法(液相エピタキシャル成長法)によりN型、P型GaAsエピタキシャル成長層を順次形成することにより、発光波長が940nm程度の赤外発光素子を構成できる。 The LPE method on the N-type GaAs substrate (liquid phase epitaxy) by N-type, by sequentially forming a P-type GaAs epitaxial layer, the emission wavelength can be configured with infrared light-emitting element of approximately 940 nm.

【0025】N型GaAs基板の上にVPE法(気相エピタキシャル成長法)によりN型、P型GaAsPエピタキシャル成長層を順次形成することにより、発光波長が650nm程度の赤色発光素子を構成できる。 [0025] N-type by VPE method on the N-type GaAs substrate (vapor phase epitaxy), by sequentially forming a P-type GaAsP epitaxial layer, the emission wavelength can be configured with the red light-emitting element of about 650 nm.

【0026】N型GaP基板の上にLPE法によりN [0026] N by LPE method on the N-type GaP substrate
型、P型GaPエピタキシャル成長層を順次形成することにより、発光波長が700nm乃至555nmの赤色乃至緑色発光素子を構成できる。 Type, by sequentially forming a P-type GaP epitaxial growth layer, the emission wavelength can be configured red or green light-emitting element of 700nm to 555 nm. 前記N型、P型GaP The N-type, P-type GaP
エピタキシャル成長層にZn、Oをド−パントしたものは赤色発光素子を構成し、Nをド−パントしたものは黄色乃至緑色発光素子を構成し、Teをド−パントしたものは緑色発光素子を構成する。 Zn in the epitaxial growth layer, O the de - those punt constitutes a red light emitting element, de the N - those punt constitutes a yellow to green light emitting element, de a Te - those Punt constitute green light emitting element to.

【0027】N型GaP基板の上にVPE法によりN [0027] N by the VPE method on the N-type GaP substrate
型、P型GaAsPエピタキシャル成長層を順次形成することにより、発光波長が630nm乃至590nmの橙色乃至黄色発光素子を構成できる。 Type, by sequentially forming a P-type GaAsP epitaxial layer, the emission wavelength can be configured to orange to yellow light-emitting element of 630nm to 590 nm. 発光波長はAsの組成比によって異なる。 Emission wavelength varies depending on the composition ratio of As.

【0028】N型GaAs基板の上にLPE法によりN [0028] N by LPE method on the N-type GaAs substrate
型、P型InGaAlPエピタキシャル成長層およびP Type, P-type InGaAlP epitaxial growth layer and P
型GaAlAsエピタキシャル成長層を順次形成することにより、発光波長が560nm乃至620nmの緑色乃至橙色発光素子を構成できる。 By successively forming a mold GaAlAs epitaxial growth layer, the emission wavelength can be configured to green to orange light emitting element of 560nm to 620 nm. 発光波長はAlの組成比によって異なる。 Emission wavelength varies depending on the composition ratio of Al.

【0029】N型SiC基板の上にLPE法によりN [0029] N by LPE method on the N-type SiC substrate
型、P型SiCエピタキシャル成長層を順次形成することにより、発光波長が470nm程度の青色発光素子を構成できる。 Type, by sequentially forming a P-type SiC epitaxial growth layer, the emission wavelength can be configured a blue light emitting element of about 470 nm.

【0030】N型ZnSe基板の上にLPE法によりN [0030] N by LPE method on the N-type ZnSe substrate
型、P型ZnSeエピタキシャル成長層を順次形成することにより、発光波長が480nm程度の青色発光素子を構成できる。 Type, by sequentially forming a P-type ZnSe epitaxial layer, the emission wavelength can be configured a blue light emitting element of about 480 nm. 上記各構成において、上部および下部透明電極は前述した実施例と同様である。 In the above configuration, the upper and lower transparent electrode is similar to the embodiment described above.

【0031】 [0031]

【発明の効果】以上説明したようにこの発明によれば、 According to the present invention as described above, according to the present invention,
表面に凹凸を有する第2導電型の第2のエピタキシャル成長層上の全面に発光波長に対して50%以上の透過率を有する酸化物又は高分子系材料の第1の透明電極を設け、化合物半導体基板の裏面に発光波長に対して50% A first transparent electrode of an oxide or polymer materials having a whole surface transmittance of 50% or more with respect to the emission wavelength of the second epitaxial growth layer of a second conductivity type having an uneven surface provided, compound semiconductor 50% the emission wavelength on the back surface of the substrate
以上の透過率を有する酸化物の第2の透明電極を設けている。 And providing the second transparent electrode of an oxide having the above transmittance. 第2のエピタキシャル成長層は第1の透明電極と接する側の表面の不純物濃度を1×10 19 atoms/cm Second epitaxial growth layer first 1 impurity concentration of the surface on the side in contact with the transparent electrode of × 10 19 atoms / cm
3以下とし、化合物半導体基板は第1のエピタキシャル成長層と接する側の表面の不純物濃度を1×10 19 ato 3 follows, and the compound semiconductor substrate is 1 × 10 19 impurity concentration of the surface on the side in contact with the first epitaxial layer ato
ms/cm 3以下としている。 ms / cm 3 are the following. 従って、第1のエピタキシャル成長層及び第2のエピタキシャル成長層の接合部近傍における内部発光の均一性を向上し、放射光が第1の透明電極及び第2のエピタキシャル成長層の不純物によって吸収されることなく、発光効率および輝度を向上することができる。 Therefore, to improve the uniformity of the internal light emission at the junction near the first epitaxial layer and a second epitaxial growth layer, without the emitted light is absorbed by the impurity of the first transparent electrode and the second epitaxial growth layer, it is possible to improve the luminous efficiency and luminance.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】図1(a)は、従来の化合物半導体発光素子を示す平面図、図1(b)はその側面図。 [1] Figure 1 (a) is a plan view showing a conventional compound semiconductor light-emitting device, and FIG. 1 (b) is a side view.

【図2】図2(a)乃至図2(f)は、この発明の一実施例によるAlGaAs/GaAs系の赤外発光素子の製造工程を示す断面図。 [2] FIGS. 2 (a) to FIG. 2 (f) cross-sectional views showing a manufacturing process of AlGaAs / GaAs system of the infrared light emitting device according to an embodiment of the present invention.

【図3】図3(a)は、この発明の一実施例によるAl [3] FIG. 3 (a), Al according to an embodiment of the present invention
GaAs/GaAs系の赤外発光素子を示す平面図、図3(b)は、その側面図。 Plan view illustrating the infrared light emitting element of the GaAs / GaAs system, FIG. 3 (b), a side view thereof.

【図4】透明電極の透過率と発光効率との関係を示した図。 Diagram showing the relationship of FIG. 4 transmittance of the transparent electrode and the light emitting efficiency.

【図5】SIMS分析により不純物濃度と深さとの関係を示す図。 Figure 5 is a graph showing a relation between the impurity concentration and depth by SIMS analysis.

【図6】エピタキシャル層の表面不純物濃度と発光効率との関係を示す図。 6 shows the relationship between the surface impurity concentration of the epitaxial layer and the light emitting efficiency.

【符号の説明】 DESCRIPTION OF SYMBOLS

10…P型GaAs基板、11…P型AlGaAsエピタキシャル成長層、12…N型AlGaAsエピタキシャル成長層、13…凹凸、15…In 23層、16…上部透明電極、17…In 23層、18…下部透明電極、19…発光素子、20…ペレット、21…導電性ワイヤ、24…電極端子、 10 ... P-type GaAs substrate, 11 ... P-type AlGaAs epitaxial layer, 12 ... N-type AlGaAs epitaxial layer, 13 ... unevenness, 15 ... In 2 O 3 layer, 16 ... upper transparent electrode, 17 ... In 2 O 3 layer, 18 ... lower transparent electrode, 19 ... light emitting element, 20 ... pellets, 21 ... conductive wire, 24 ... electrode terminal,
25…導電性ステム、29…モ−ルド樹脂 25 ... conductive stem, 29 ... mode - field resins

Claims (3)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 化合物半導体基板の上にエピタキシャル成長により設けられた第1導電型の第1のエピタキシャル成長層と、 前記第1のエピタキシャル成長層の上に設けられ、表面に凹凸を有する第2導電型の第2のエピタキシャル成長層と、 前記第2のエピタキシャル成長層の上の全面に設けられた発光波長に対して50%以上の透過率を有する酸化物 And 1. A first epitaxial growth layer of the first conductivity type provided by epitaxial growth on a compound semiconductor substrate, provided on the first epitaxial growth layer, the second conductivity type having an uneven surface oxide having a second epitaxial growth layer, the transmissivity of 50% or more for the light emission wavelength provided on the entire surface of the second epitaxial layer
    又は高分子系材料の第1の透明電極と、 前記化合物半導体基板の下に設けられた発光波長に対し Or a first transparent electrode of the high molecular weight material, the emission wavelength provided below the compound semiconductor substrate to
    て50%以上の透過率を有する酸化物の第2の透明電極とを具備し、 前記第2のエピタキシャル成長層は前記第1の透明電極と接する側の表面の不純物濃度が1×10 19 atoms/c Te and a second transparent electrode of an oxide having 50% or more transmittance, the second epitaxial growth layer the impurity concentration of the surface of the first contact with the transparent electrode side of 1 × 10 19 atoms / c
    3以下であり、前記化合物半導体基板は前記第1のエピタキシャル成長層と接する側の表面の不純物濃度が1 m is 3 or less, the impurity concentration of the surface of said compound semiconductor substrate side in contact with said first epitaxial growth layer 1
    ×10 19 atoms/cm 3以下であることを特徴とする化合物半導体発光素子。 Compound semiconductor light-emitting device characterized by × is 10 19 atoms / cm 3 or less.
  2. 【請求項2】 前記第1の透明電極は、In 23層、 Wherein said first transparent electrode, an In 2 O 3 layer,
    Sn 2 O型の酸化物、及びポリチアジル(SN) x等の高分子系材料のうちの1つからなることを特徴とする請求項1記載の化合物半導体発光素子。 Sn 2 O type oxide, and polythiazyl (SN) compound semiconductor light-emitting device according to claim 1, characterized in that from one of the polymeric materials such as x.
  3. 【請求項3】 前記半導体基板はP型であり、前記第1 Wherein said semiconductor substrate is P-type, the first
    のエピタキシャル成長層はP型、前記第2のエピタキシャル成長層はN型であることを特徴とする請求項1記載の化合物半導体発光素子。 Epitaxial growth layer P-type compound semiconductor light-emitting device according to claim 1, wherein said second epitaxial growth layer is characterized by an N-type.
JP30014491A 1991-11-15 1991-11-15 Compound semiconductor light-emitting device Expired - Fee Related JP3333219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30014491A JP3333219B2 (en) 1991-11-15 1991-11-15 Compound semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30014491A JP3333219B2 (en) 1991-11-15 1991-11-15 Compound semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JPH05136458A JPH05136458A (en) 1993-06-01
JP3333219B2 true JP3333219B2 (en) 2002-10-15

Family

ID=17881274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30014491A Expired - Fee Related JP3333219B2 (en) 1991-11-15 1991-11-15 Compound semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP3333219B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876003B1 (en) 1999-04-15 2005-04-05 Sumitomo Electric Industries, Ltd. Semiconductor light-emitting device, method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device
DE19943406C2 (en) * 1999-09-10 2001-07-19 Osram Opto Semiconductors Gmbh Light-emitting diode with surface structuring
DE102007022947A1 (en) * 2007-04-26 2008-10-30 Osram Opto Semiconductors Gmbh The optoelectronic semiconductor body and method for producing such
JP5198793B2 (en) * 2007-05-10 2013-05-15 ソニー株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05136458A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
CN1080939C (en) Semiconductor light-emitting device and method for producing same
US7951626B2 (en) Light emitting device and method of manufacturing the same
US6258699B1 (en) Light emitting diode with a permanent subtrate of transparent glass or quartz and the method for manufacturing the same
JP2953468B2 (en) A compound semiconductor device and a surface treatment method
CA1139412A (en) Light emitting diodes with high external quantum efficiency
US5739552A (en) Semiconductor light emitting diode producing visible light
US6169294B1 (en) Inverted light emitting diode
JP2783210B2 (en) Surface-emitting diode
KR100631840B1 (en) Flip-chip nitride semiconductor light-emitting device
JP4091261B2 (en) The semiconductor light emitting device and a manufacturing method thereof
US6191436B1 (en) Optical semiconductor device
US8288787B2 (en) Thin film light emitting diode
US5369289A (en) Gallium nitride-based compound semiconductor light-emitting device and method for making the same
US6469324B1 (en) Semiconductor light-emitting device and method for manufacturing the same
CN1262021C (en) Nitrided gallium III-V group compound semiconductor device and its mfg.method
US7291865B2 (en) Light-emitting semiconductor device
US7906785B2 (en) Vertical type nitride semiconductor light emitting device and method of manufacturing the same
KR100585919B1 (en) Gallium nitride-based ?­? group compound semiconductor device and methed of producing the same
US4902356A (en) Epitaxial substrate for high-intensity led, and method of manufacturing same
US6465808B2 (en) Method and structure for forming an electrode on a light emitting device
US6812502B1 (en) Flip-chip light-emitting device
JP3326545B2 (en) Semiconductor light-emitting element
US6693352B1 (en) Contact structure for group III-V semiconductor devices and method of producing the same
US5744828A (en) Semiconductor light emitting device with blocking layer
US6924163B2 (en) Semiconductor light emitting device and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees