JP3329124B2 - Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery

Info

Publication number
JP3329124B2
JP3329124B2 JP04405295A JP4405295A JP3329124B2 JP 3329124 B2 JP3329124 B2 JP 3329124B2 JP 04405295 A JP04405295 A JP 04405295A JP 4405295 A JP4405295 A JP 4405295A JP 3329124 B2 JP3329124 B2 JP 3329124B2
Authority
JP
Japan
Prior art keywords
reaction
electrode active
positive electrode
active material
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04405295A
Other languages
Japanese (ja)
Other versions
JPH08241716A (en
Inventor
芳明 新田
雅敏 永山
智昭 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04405295A priority Critical patent/JP3329124B2/en
Priority to US08/607,544 priority patent/US5770173A/en
Priority to EP96301382A priority patent/EP0730314B1/en
Priority to DE69602299T priority patent/DE69602299T2/en
Publication of JPH08241716A publication Critical patent/JPH08241716A/en
Application granted granted Critical
Publication of JP3329124B2 publication Critical patent/JP3329124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくにその正極活物質の製造法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte secondary battery, and more particularly to a method for producing a positive electrode active material thereof.

【0002】[0002]

【従来の技術】非水電解液二次電池用正極活物質には、
LiCoO2、LiNiO2、LiMnO2などのリチウ
ム複合酸化物が知られており、これらの正極活物質材料
とリチウムを吸蔵、放出することができる炭素材料等の
負極活物質材料とを組み合わせて高電圧、高エネルギー
密度の非水電解液二次電池の開発が進められている。上
記の正極活物質の中でLiMnO2の従来の製造法とし
てはケミストリ−イクスプレス(chemistry express)
第7巻、第193ページ(1992年)に、LiOH・
2Oからなる粉末とγ−MnOOHからなる粉末を4
50℃において窒素雰囲気中で焼成してLiMnO2
作成する方法が示されている。しかし、これらの粉末材
料を用いて容量の高いLiMnO2を得るためにはLi
OH・H2O粉末とγ−MnOOH粉末の均一混合物を
焼成に先立って形成しなければならない。すなわち、均
一にリチウム化された材料を得るためには化学量論的な
処理量が一定であることが重要であり、均一な反応のた
めには正しい比率の粉末反応体が局所的な小さい部分ま
で存在する事が必要である。このように粉末反応体の混
合物の均一性は極めて小さな部分でも得られなければな
らなく、焼成前にこれらの混合物の均一性が不十分であ
ると望ましくない化合物が形成されたり、未反応の反応
体が不純物として残る可能性があり、これらによって正
極活物質の電気化学的活性度が低下していた。
2. Description of the Related Art A positive electrode active material for a non-aqueous electrolyte secondary battery includes:
Lithium composite oxides such as LiCoO 2 , LiNiO 2 , and LiMnO 2 are known, and a high voltage is obtained by combining these positive electrode active materials with a negative electrode active material such as a carbon material capable of inserting and extracting lithium. The development of non-aqueous electrolyte secondary batteries with high energy density has been promoted. Among the positive electrode active materials described above, a conventional method for producing LiMnO 2 is chemistry express.
In Volume 7, page 193 (1992), LiOH
A powder composed of H 2 O and a powder composed of γ-MnOOH
A method of producing LiMnO 2 by firing in a nitrogen atmosphere at 50 ° C. is shown. However, in order to obtain a high capacity LiMnO 2 using these powder materials, Li
A homogeneous mixture of OH.H 2 O powder and γ-MnOOH powder must be formed prior to firing. In other words, it is important that the stoichiometric throughput is constant in order to obtain a uniformly lithiated material, and for a uniform reaction the powder reactant in the correct ratio is locally small. It is necessary to exist. Thus, the homogeneity of the mixture of powdered reactants must be obtained even in very small areas, and if the homogeneity of these mixtures is insufficient before firing, undesirable compounds may form or unreacted reactions may occur. The body could remain as impurities, which reduced the electrochemical activity of the positive electrode active material.

【0003】[0003]

【発明が解決しようとする課題】このような粉末材料を
用いる際の課題を解決するために、特開平6−3494
94号公報には、固体のγ−MnOOHをLiOH溶液
中で所定時間煮沸状態で反応させ、ついで懸濁液の上澄
み液を分離し、得られた湿潤粉末をアルゴン雰囲気中で
加熱処理する技術が示されている。しかしながら、この
方法では煮沸状態で反応体を反応させる工程と反応後の
湿潤粉末を加熱する工程とを有するため、製造工程が複
雑になって生産効率が低下していた。
SUMMARY OF THE INVENTION In order to solve the problem in using such a powder material, Japanese Patent Application Laid-Open No. Hei 6-3494 has been proposed.
No. 94 discloses a technique in which solid γ-MnOOH is reacted in a LiOH solution in a boiling state for a predetermined time, then the supernatant of the suspension is separated, and the obtained wet powder is heat-treated in an argon atmosphere. It is shown. However, since this method has a step of reacting the reactants in a boiling state and a step of heating the wet powder after the reaction, the production process is complicated and the production efficiency is reduced.

【0004】また、煮沸状態のLiOH溶液を用いてお
り、溶液中には溶解し得るLiOHの量が制限されるた
めγ−MnOOHのリチウム化反応の反応効率が低下し
ていた。
In addition, a boiling LiOH solution is used, and the amount of soluble LiOH is limited in the solution, so that the reaction efficiency of the lithium-reaction of γ-MnOOH has been reduced.

【0005】本発明は、このような課題を解決するもの
であり、γ−MnOOH等の水酸化物やオキシ水酸化物
とLiOH等のアルカリとの反応を用いた正極活物質の
製造工程を簡素化するとともに、前記水酸化物やオキシ
水酸化物のアルカリ化の反応効率を高め、均一な組成を
有して高容量な正極活物質を得るものである。
The present invention solves such a problem, and simplifies a process for producing a positive electrode active material using a reaction of a hydroxide or oxyhydroxide such as γ-MnOOH with an alkali such as LiOH. In addition, the reaction efficiency of alkalization of the hydroxide or oxyhydroxide is increased, and a high-capacity positive electrode active material having a uniform composition is obtained.

【0006】[0006]

【課題を解決するための手段】これらの課題を解決する
ため、本発明の非水電解液二次電池用正極活物質の製造
法は、温度99℃以上132℃未満で飽和湿度17.0
5〜68.13[kg−水蒸気/kg−乾燥空気]であ
るアルカリイオンを含む水蒸気を、3d遷移金属をカチ
オンとするニッケル、コバルト、マンガン、鉄およびこ
れらの混合物もしくは固溶体からなる水酸化物またはオ
キシ水酸化物の固体表面に付与し、前記固体表面のプロ
トン化されている部分で前記水蒸気の酸化還元緩衝作用
を用いた脱プロトン化反応を進行させ、この脱プロトン
により生じた電荷補償を前記水蒸気中のアルカリイオン
が担う反応を連続的に行わせる工程を備えることにした
ものである。また、アルカリイオンがリチウムイオンの
場合、少なくとも水酸化物またはオキシ水酸化物の固体
表面において1リットルあたり6モル以上のリチウムイ
オンを含む水蒸気を用いるものである。
In order to solve these problems, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is disclosed.
5 to 68.13 [kg-steam / kg-dry air] of a water vapor containing an alkali ion, a hydroxide of nickel, cobalt, manganese, iron having a 3d transition metal as a cation, or a mixture or solid solution thereof; The oxyhydroxide is applied to a solid surface, and a deprotonation reaction using a redox buffering action of the water vapor proceeds at a protonated portion of the solid surface. The method is provided with a step of continuously performing a reaction carried by alkali ions in steam. When the alkali ions are lithium ions, water vapor containing at least 6 moles of lithium ions per liter on the solid surface of the hydroxide or oxyhydroxide is used.

【0007】具体的に3d遷移金属としてマンガンのオ
キシ水酸化物を用いる場合について説明する。アルカリ
イオンのイオン源が水酸化リチウムとしてこのリチウム
イオンを含み温度99℃以上132℃未満、飽和湿度1
7.05〜68.13[kg−水蒸気/kg−乾燥空
気]である水蒸気をγ−MnOOHの固体表面に付与
し、この固体表面のプロトン化されている部分で前記水
蒸気の酸化還元緩衝作用を用いた脱プロトン化反応を進
行させ、この脱プロトンにより生じた電荷補償を水蒸気
中のアルカリイオンが担う反応を連続的に行わせ、一般
式LiMnO2で表す正極活物質を得るものである。
The case where manganese oxyhydroxide is used as the 3d transition metal will be specifically described. The ion source of the alkali ion contains this lithium ion as lithium hydroxide and has a temperature of 99 ° C. or more and less than 132 ° C.
A steam of 7.05-68.13 [kg-steam / kg-dry air] is applied to the solid surface of γ-MnOOH, and the protonated portion of the solid surface exerts a redox buffering action of the steam. The used deprotonation reaction is allowed to proceed, and the charge generated by the deprotonation is continuously carried out by a reaction in which alkali ions in water vapor play a role, thereby obtaining a positive electrode active material represented by the general formula LiMnO 2 .

【0008】[0008]

【作用】もともと水酸化物やオキシ水酸化物の固体表面
には水酸基が露出しており、前記固体の外界の環境によ
ってプロトン離脱や水酸基離脱を起こす、いわゆる酸化
還元緩衝作用を持つ。すなわち、外界が酸性を示すとき
は水酸基を離脱し、アルカリ性を示すときはプロトンを
離脱する。本発明はこの性質を利用して前記固体表面に
存在するプロトンをアルカリイオンを含む水蒸気によっ
て脱プロトン化しこの脱プロトン化によって表面がマイ
ナスに帯電した部分を前記水蒸気中のアルカリイオンで
電荷補償しようとするものである。アルカリイオンを含
む水蒸気中の水酸基は前記固体表面のプロトンを攻撃し
水蒸気粒子内にプロトンを取り込むとともに前記固体は
アルカリイオンを取り込み脱プロトン化した化学量論量
だけアルカリイオンに置換される。
A hydroxyl group is originally exposed on a solid surface of a hydroxide or an oxyhydroxide, and has a so-called oxidation-reduction buffering effect of causing proton elimination or hydroxyl group elimination depending on the external environment of the solid. That is, when the outside world is acidic, the hydroxyl group is released, and when the outside world is alkaline, the proton is released. The present invention utilizes this property to deprotonate the protons present on the solid surface with water vapor containing alkali ions, and to attempt to charge-compensate the negatively charged portion of the surface with the alkali ions in the water vapor by the deprotonation. Is what you do. Hydroxyl groups in water vapor containing alkali ions attack protons on the surface of the solid to take in protons in the water vapor particles, and the solid takes in alkali ions and is replaced with alkali ions by a deprotonated stoichiometric amount.

【0009】また、水酸化リチウムは常温の水にはおよ
そ5モル/リットルの溶解度でそれ以上の溶解は困難で
あるが、99℃を超える水蒸気中では水蒸気粒子の中に
それより多くのリチウムイオンの溶解が可能であり、γ
−MnOOHを固相とすると固相−気相反応では固相−
液相反応より反応速度が急激に上昇する。特に99℃を
超える水蒸気中は急激に飽和湿度が上昇し、しかもこの
水蒸気には99℃程度の飽和アルカリ水溶液に溶解する
アルカリイオン濃度以上の溶解が可能である。
Lithium hydroxide has a solubility of about 5 mol / l in water at room temperature, and it is difficult to further dissolve it. However, in water vapor exceeding 99 ° C., more lithium ions are contained in water vapor particles. Can be dissolved, and γ
-Solid phase with MnOOH as solid phase-Solid phase in gas phase reaction-
The reaction rate sharply increases compared to the liquid phase reaction. In particular, the saturation humidity rapidly rises in steam exceeding 99 ° C., and moreover, the steam can be dissolved in a saturated alkali aqueous solution at about 99 ° C. at an alkali ion concentration or higher.

【0010】水酸化リチウムは100℃で飽和水溶液1
00g中に含まれる無水物質量、つまり溶解度は16.
05gである。したがって水蒸気を用いた場合、これ以
上の溶解度が期待できる。
Lithium hydroxide is a saturated aqueous solution at 100 ° C.
The amount of anhydrous substance contained in 00g, that is, the solubility is 16.
05 g. Therefore, when steam is used, higher solubility can be expected.

【0011】アルカリイオンを含む水蒸気反応を用いる
場合、反応は固−気反応に近い形態を有することにな
り、固体とアルカリイオンの会合は固−液相反応形態よ
りも平均的な自由度が増すため、固体のアルカリ化反応
をより促進すると考えられる。
When a steam reaction containing alkali ions is used, the reaction has a form similar to a solid-gas reaction, and the association between solids and alkali ions has an average degree of freedom greater than that in the solid-liquid phase reaction form. Therefore, it is considered that the alkalizing reaction of the solid is further promoted.

【0012】さらに、溶液中で起こる反応速度論的な濃
度分極のため、反応速度因子は大きく制限されると予想
されるが、水蒸気中では濃度分極が起こりにくく、飽和
湿度の調整如何で会合頻度のコントロールが可能であ
り、飽和湿度を高めることで反応速度を早めることが可
能である。飽和湿度は温度、圧力、飽和水蒸気量の3変
動からなる関数であらわされるので、反応速度を調整す
るために飽和湿度を自在にコントロールし所定の生成物
を得ることは容易である。
Furthermore, the reaction rate factor is expected to be greatly restricted due to the kinetic concentration polarization occurring in the solution, but the concentration polarization is unlikely to occur in water vapor, and the association frequency depends on the adjustment of the saturation humidity. Can be controlled, and the reaction rate can be increased by increasing the saturation humidity. Since the saturated humidity is represented by a function consisting of three variations of temperature, pressure, and the amount of saturated steam, it is easy to freely control the saturated humidity in order to adjust the reaction rate and obtain a predetermined product.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1を用いて本発明の正極活物質の製造法
を説明する。本実施例では、正極活物質としてLiMn
2を用いた。図1に示した製造装置において1はガス
抜き用のバルブ、2は水蒸気分散用のパイプ、3はパイ
プをシールするゴム栓、4は熱電対、5はセラミック製
の保温材、6は水蒸気分布用のパイプ、7はカンタル線
の発熱体、8は取手、9はSUS製の蓋、10は連成
計、11はSUS製の容器、12はセラミック製の保温
材、13はガス導入用のバルブである。
The method for producing the positive electrode active material of the present invention will be described with reference to FIG. In this embodiment, LiMn is used as the positive electrode active material.
O 2 was used. In the manufacturing apparatus shown in FIG. 1, 1 is a valve for degassing, 2 is a pipe for dispersing steam, 3 is a rubber stopper for sealing the pipe, 4 is a thermocouple, 5 is a heat insulating material made of ceramic, and 6 is distribution of steam. 7 is a Kanthal wire heating element, 8 is a handle, 9 is a SUS lid, 10 is a compound meter, 11 is a SUS container, 12 is a ceramic heat insulating material, and 13 is a gas inlet. It is a valve.

【0015】この装置を用いてLiMnO2を次のよう
に作製した。あらかじめ、LiMnO2を合成する各所
定モル比になるようにγ−MnOOHと平均粒径100
μm以下に粉砕してある水酸化リチウムを秤量し混合す
る。それをアルミナボートに入れ直接、水と接しないよ
うに容器11の底から2センチメートル程度浮かした状
態でセットし蓋9を締め密閉する。なお、容器11には
あらかじめ水を10cc程度入れておき、連成計10と
容器内温度を熱電対4でモニターする。ヒーターを通電
し、容器内の温度が100℃付近になるとパイプ2から
水を点滴し飽和湿度を17.05[kg−水蒸気/kg
−乾燥空気]以上になるように調整する。このような状
態にしておくと、出発物質であるγ−MnOOHと水酸
化リチウムの混合物は水蒸気が水酸化リチウムに潮解作
用を及ぼし、γ−MnOOHの周囲では高熱高アルカリ
イオン水蒸気が発生することになり固体表面の酸化還元
緩衝作用により反応が進行し始める。反応速度を早める
ため、飽和湿度を上げたり、混合物の周囲に水蒸気が通
れる程度の開孔部を有する遮蔽物で覆っても効果は出
る。
Using this apparatus, LiMnO 2 was produced as follows. In advance, γ-MnOOH and an average particle diameter of 100 are set so as to have a predetermined molar ratio for synthesizing LiMnO 2.
Lithium hydroxide pulverized to a size of not more than μm is weighed and mixed. It is placed in an alumina boat and set in a state of floating about 2 cm from the bottom of the container 11 so as not to come into direct contact with water, and the lid 9 is closed tightly. In addition, about 10 cc of water is put in the container 11 in advance, and the combined meter 10 and the temperature in the container are monitored by the thermocouple 4. When the heater was energized and the temperature in the container reached about 100 ° C., water was dropped from the pipe 2 to reduce the saturation humidity to 17.05 [kg−steam / kg].
-Dry air]. In such a state, the mixture of the starting materials γ-MnOOH and lithium hydroxide causes the water vapor to deliquesce the lithium hydroxide, and high heat and high alkali ion water vapor is generated around γ-MnOOH. The reaction starts to proceed due to the redox buffer action on the solid surface. In order to increase the reaction rate, the effect can be obtained even if the saturation humidity is increased or the mixture is covered with a shield having an opening portion through which water vapor can pass around the mixture.

【0016】飽和湿度17.05[kg−水蒸気/kg
−乾燥空気]でおよそ3時間処理すると目的の斜方晶系
のLiMnO2が得られる。本発明の正極活物質の製造
法では前記処理以外に焼成工程などの他工程は必要とせ
ずこの工程で完全に反応は終了し、目的の正極活物質が
得られる。また、飽和湿度を68.13[kg−水蒸気
/kg−乾燥空気]、温度132℃の条件で処理を加え
るとおよそ2時間で目的の斜方晶系のLiMnO2が得
られる。設備の耐圧依存性があるので、設計如何によっ
てはさらに飽和湿度を上げて処理することも可能であ
る。このとき得られた試料の粉末X線回折図を図2に示
す。図から分かるように斜方晶系のLiMnO2が得ら
れている。
Saturation humidity 17.05 [kg-steam / kg
-Dry air] for about 3 hours to obtain the desired orthorhombic LiMnO 2 . In the method for producing a positive electrode active material of the present invention, other steps such as a baking step other than the above-mentioned treatment are not required, and the reaction is completely completed in this step, and a desired positive electrode active material is obtained. When the treatment is performed under the conditions of a saturation humidity of 68.13 [kg-steam / kg-dry air] and a temperature of 132 ° C., the desired orthorhombic LiMnO 2 can be obtained in about 2 hours. Because of the pressure resistance of the equipment, depending on the design, it is possible to further increase the saturation humidity. FIG. 2 shows a powder X-ray diffraction diagram of the sample obtained at this time. As can be seen from the figure, orthorhombic LiMnO 2 is obtained.

【0017】このような原理で合成するものであるか
ら、出発物質のγ−MnOOHのもともと含有するプロ
トン量は極めて重要な因子である。本発明の場合、全プ
ロトン量がγ−MnOOH全固体重量比で1%以上含ま
れる材料を厳選して行っている。プロトン量が極端に少
ない場合は十分にリチウムがマンガン酸化物内に取り込
めないからである。また、化学反応平衡論的な取り扱い
が必要なことから、ある程度脱プロトン化反応が進行し
た後は反応速度が低下すると考えられるが、飽和湿度が
17.05[kg−水蒸気/kg−乾燥空気]以上であ
れば問題ない。好ましくはこれ以上の飽和湿度環境下で
反応させることである。
Since the synthesis is carried out on the above principle, the amount of protons originally contained in the starting material γ-MnOOH is a very important factor. In the case of the present invention, a material having a total proton content of 1% or more based on the total solid weight ratio of γ-MnOOH is carefully selected. This is because when the amount of protons is extremely small, lithium cannot be sufficiently incorporated into the manganese oxide. In addition, it is considered that the reaction rate decreases after the deprotonation reaction has progressed to some extent because of the necessity of chemical reaction equilibrium treatment, but the saturation humidity is 17.05 [kg-steam / kg-dry air]. If it is above, there is no problem. Preferably, the reaction is performed under a higher saturation humidity environment.

【0018】次に固−気反応系を用いた本発明の製造方
法と固−液反応系を用いた従来の製造方法による場合を
比較して説明する。
Next, the production method of the present invention using the solid-gas reaction system and the conventional production method using the solid-liquid reaction system will be described in comparison.

【0019】固−液反応系を用いた場合としてγ−Mn
OOHと飽和水酸化リチウム溶液において6時間煮沸処
理し、この懸濁溶液を遠心分離して得られた湿潤粉末を
アルミナボートに入れて流動アルゴン雰囲気中で200
℃に加熱し目的のLiMnO 2を得た。そのときの粉末
X線回折図を図3に示す。図から分かるようにこの場合
も斜方晶系に帰属される回折パターンが得られている。
しかし、本発明で合成した図2の回折パターンとほぼ同
一であり、しかもこの両方の製造法で得られた試料の電
気化学的な活性度はほぼ同様であった。
When a solid-liquid reaction system is used, γ-Mn
Boil in OOH and saturated lithium hydroxide solution for 6 hours
And the wet powder obtained by centrifuging this suspension is centrifuged.
200 in a flowing argon atmosphere in an alumina boat
℃ to heat the desired LiMnO TwoI got Powder at that time
The X-ray diffraction diagram is shown in FIG. In this case, as you can see from the figure
Also, a diffraction pattern belonging to the orthorhombic system was obtained.
However, the diffraction pattern of FIG.
Of the samples obtained by both methods.
The chemochemical activity was almost the same.

【0020】なお、従来の固−固反応系で合成されるγ
−MnOOHと水酸化リチウムの熱処理合成法では窒素
雰囲気下450℃で数時間処理を要するが、図4に示す
X線回折図で分かるように斜方晶系のLiMnO2に加
え、他の酸化物種が若干混入する。また、電気化学的活
性度も上記2例より1割程度低下することを確認した。
Note that γ synthesized in a conventional solid-solid reaction system
The heat treatment synthesis method of MnOOH and lithium hydroxide requires a treatment at 450 ° C. for several hours in a nitrogen atmosphere. As shown in the X-ray diffraction diagram shown in FIG. 4, in addition to orthorhombic LiMnO 2 , other oxide species Slightly mixed. Also, it was confirmed that the electrochemical activity was also reduced by about 10% from the above two examples.

【0021】以上のことから、本発明の方法を用いれば
製造工程が簡素になり、また反応効率が向上することに
よりLiMnO2の生産性が向上する。
From the above, the use of the method of the present invention simplifies the manufacturing process and improves the reaction efficiency, thereby improving the productivity of LiMnO 2 .

【0022】なお、本実施例ではオキシ水酸化物として
γ−MnOOHを用いたが、このほかに3d遷移金属を
カチオンとするニッケル、コバルト、マンガン、鉄およ
びこれらの混合物または固溶体の水酸化物、オキシ水酸
化物を用いても同様の効果が得られた。
In the present embodiment, γ-MnOOH was used as the oxyhydroxide. In addition, nickel, cobalt, manganese, iron having a 3d transition metal as a cation, or a mixture or solid solution hydroxide thereof, Similar effects were obtained by using oxyhydroxide.

【0023】[0023]

【発明の効果】以上のように、本発明は、アルカリイオ
ンを含む水蒸気を、ニッケル、コバルト、マンガン、鉄
およびこれらの混合物もしくは固溶体からなる水酸化物
またはオキシ水酸化物の固体表面に付与し、前記固体表
面のプロトン化されている部分で水蒸気の酸化還元緩衝
作用を用いた脱プロトン化反応を進行させ、この脱プロ
トンにより生じた電荷補償を水蒸気中のアルカリイオン
が担う反応を連続的に行わせるものであるので、熱処理
を加える等の後工程が不必要となり、製造工程が簡素に
なり、また水蒸気を用いることにより前記固体とアルカ
リイオンとの反応効率が高まることによりLiMnO2
の生産性が向上した。
As described above, according to the present invention, water vapor containing alkali ions is converted to nickel, cobalt, manganese, iron
And a hydroxide or oxyhydroxide composed of a mixture or solid solution thereof, which is applied to the solid surface to allow a protonated portion of the solid surface to proceed with a deprotonation reaction using a redox buffer effect of water vapor. However, since the reaction in which the alkali ions in the water vapor carry out the charge compensation caused by the deprotonation is performed continuously, post-processing such as heat treatment is not required, and the manufacturing process is simplified, and the water vapor is reduced. The reaction efficiency between the solid and the alkali ion is increased by using LiMnO 2
Increased productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の正極活物質の製造装置を示す図FIG. 1 is a diagram showing an apparatus for producing a positive electrode active material of the present invention.

【図2】本発明の製造法により得られたLiMnO2
X線回折図
FIG. 2 is an X-ray diffraction diagram of LiMnO 2 obtained by the production method of the present invention.

【図3】従来の製造法により得られたLiMnO2のX
線回折図
FIG. 3 shows the X of LiMnO 2 obtained by a conventional production method.
Line diffraction diagram

【図4】他の従来の製造法により得られたLiMnO2
のX線回折図
FIG. 4 shows LiMnO 2 obtained by another conventional production method.
X-ray diffraction diagram of

【符号の説明】[Explanation of symbols]

1 バルブ 2 パイプ 3 ゴム栓 4 熱電対 5 保温材 6 パイプ 7 発熱体 8 取手 9 蓋 10 連成計 11 容器 12 保温材 13 バルブ DESCRIPTION OF SYMBOLS 1 Valve 2 Pipe 3 Rubber stopper 4 Thermocouple 5 Heat insulating material 6 Pipe 7 Heating element 8 Handle 9 Lid 10 Compound meter 11 Container 12 Heat insulating material 13 Valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−349494(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 C01G 45/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-349494 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/00-4/62 C01G 45 / 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度99℃以上132℃未満で飽和湿度
17.05〜68.13[kg−水蒸気/kg−乾燥空
気]であるアルカリイオンを含む水蒸気を、ニッケル、
コバルト、マンガン、鉄およびこれらの混合物もしくは
固溶体からなる水酸化物またはオキシ水酸化物の固体表
面に付与し、前記固体表面のプロトン化されている部分
で前記水蒸気の酸化還元緩衝作用を用いた脱プロトン化
反応を進行させ、この脱プロトンにより生じた電荷補償
を前記水蒸気中のアルカリイオンが担う反応を連続的に
行わせる工程を備える非水電解液二次電池用正極活物質
の製造法。
1. Steam containing alkali ions having a saturation humidity of 17.05 to 68.13 [kg-steam / kg-dry air] at a temperature of 99 ° C. or more and less than 132 ° C. is nickel,
Cobalt, manganese, iron and mixtures thereof or
Hydroxide or oxyhydroxide of a solid solution is applied to a solid surface, and a deprotonation reaction using a redox buffering action of the water vapor proceeds at a protonated portion of the solid surface, and this deprotonation is performed. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a step of continuously performing a reaction in which the alkali ion in the water vapor carries out the charge compensation caused by the above.
【請求項2】 アルカリイオンのイオン源が水酸化リチ
ウムとしてこのリチウムイオンを含み温度99℃以上1
32℃未満、飽和湿度17.05〜68.13[kg−
水蒸気/kg−乾燥空気]である水蒸気をγ−MnOO
Hの固体表面に付与し、この固体表面のプロトン化され
ている部分で前記水蒸気の酸化還元緩衝作用を用いた脱
プロトン化反応を進行させ、この脱プロトンにより生じ
た電荷補償を前記水蒸気中のアルカリイオンが担う反応
を連続的に行わせ、一般式LiMnO2で表す正極活物
質を得る非水電解液二次電池用正極活物質の製造法。
2. An alkali ion source containing lithium ions as lithium hydroxide and having a temperature of 99 ° C. or higher.
Less than 32 ° C, saturation humidity 17.05 to 68.13 [kg-
Steam / kg-dry air] is converted to γ-MnOO
H is applied to the solid surface, and a deprotonation reaction using the oxidation-reduction buffering action of the water vapor is allowed to proceed at the protonated portion of the solid surface, and the charge compensation generated by the deprotonation is compensated for in the water vapor. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, in which a reaction carried by alkali ions is continuously performed to obtain a positive electrode active material represented by a general formula LiMnO 2 .
JP04405295A 1995-03-03 1995-03-03 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP3329124B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04405295A JP3329124B2 (en) 1995-03-03 1995-03-03 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
US08/607,544 US5770173A (en) 1995-03-03 1996-02-27 Method of producing cathode active material for non-aqueous electrolyte secondary battery
EP96301382A EP0730314B1 (en) 1995-03-03 1996-02-29 Method of producing cathode active material for non-aqueous electrolyte secondary battery
DE69602299T DE69602299T2 (en) 1995-03-03 1996-02-29 Process for producing an active material for cathodes of a non-aqueous secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04405295A JP3329124B2 (en) 1995-03-03 1995-03-03 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08241716A JPH08241716A (en) 1996-09-17
JP3329124B2 true JP3329124B2 (en) 2002-09-30

Family

ID=12680850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04405295A Expired - Fee Related JP3329124B2 (en) 1995-03-03 1995-03-03 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
US (1) US5770173A (en)
EP (1) EP0730314B1 (en)
JP (1) JP3329124B2 (en)
DE (1) DE69602299T2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630993A (en) * 1995-07-05 1997-05-20 Bell Communications Research, Inc. Low temperature synthesis of layered lithiated transition metal oxides
JPH10106566A (en) * 1996-09-24 1998-04-24 Japan Storage Battery Co Ltd Manufacture of positive electrode active material for lithium secondary battery
US6036084A (en) * 1997-02-06 2000-03-14 Tdk Corporation Screen printing method and apparatus therefor, and electronic component soldering method using screen printing and apparatus therefor
KR100498859B1 (en) 1997-05-27 2005-07-04 티디케이가부시기가이샤 Method of producing an electrode for non-aqueous electrolytic cells
US6964828B2 (en) * 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20030108793A1 (en) * 2001-08-07 2003-06-12 3M Innovative Properties Company Cathode compositions for lithium ion batteries
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
US7211237B2 (en) * 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
JP4876380B2 (en) * 2004-09-02 2012-02-15 新神戸電機株式会社 Method for manufacturing lithium secondary battery
JP2007238436A (en) * 2007-04-20 2007-09-20 Mitsubishi Chemicals Corp Method for manufacturing lithium manganate, and nonaqueous solvent secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2042814A (en) * 1931-03-02 1936-06-02 Charles S Vadner Production of manganese dioxide
US4277360A (en) * 1979-03-28 1981-07-07 Union Carbide Corporation Manganese dioxide
JPH0746607B2 (en) * 1987-01-29 1995-05-17 三洋電機株式会社 Non-aqueous secondary battery
US4959282A (en) * 1988-07-11 1990-09-25 Moli Energy Limited Cathode active materials, methods of making same and electrochemical cells incorporating the same
US5180574A (en) * 1990-07-23 1993-01-19 Moli Energy (1990) Limited Hydrides of lithiated nickel dioxide and secondary cells prepared therefrom
JPH04115459A (en) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp Preparation of positive electrode material for lithium battery
US5266299A (en) * 1991-01-28 1993-11-30 Bell Communications Research, Inc. Method of preparing LI1+XMN204 for use as secondary battery electrode
CA2096264A1 (en) * 1993-05-14 1994-11-15 Jeffrey Raymond Dahn Novel method for preparing solid solution materials for secondary non-aqueous batteries
US5630993A (en) * 1995-07-05 1997-05-20 Bell Communications Research, Inc. Low temperature synthesis of layered lithiated transition metal oxides

Also Published As

Publication number Publication date
EP0730314A1 (en) 1996-09-04
DE69602299T2 (en) 1999-09-16
EP0730314B1 (en) 1999-05-06
US5770173A (en) 1998-06-23
JPH08241716A (en) 1996-09-17
DE69602299D1 (en) 1999-06-10

Similar Documents

Publication Publication Date Title
EP1716609B1 (en) Electrode active material powder with size dependent composition and method to prepare the same
US5449577A (en) Method for increasing the reversible capacity of lithium transition metal oxide cathodes
US6395250B2 (en) Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
JP5240780B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
CN112447948B (en) Sulfide coated positive electrode material, preparation method thereof and lithium ion battery
JPH11180717A (en) Lithium manganate, its production and lithium cell produced by using the same
JP2001028265A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
JPH10316431A (en) Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
EP0624552B1 (en) Novel method for preparing solid solution materials for secondary non-aqueous batteries
CN108899531A (en) A kind of preparation method of Phosphate coating nickel cobalt aluminium tertiary cathode material
KR20070049810A (en) Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, method of preparing thereof and the product thereby
JP3329124B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
CN108463911A (en) The manufacturing method of nonaqueous electrolytic active material for anode of secondary cell presoma, nonaqueous electrolytic active material for anode of secondary cell, the manufacturing method of nonaqueous electrolytic active material for anode of secondary cell presoma and nonaqueous electrolytic active material for anode of secondary cell
Jing et al. A novel and practical hydrothermal method for synthesizing LiNi1/3Co1/3Mn1/3O2 cathode material
JP2003151549A (en) Layered oxide electrode material and its manufacturing method and battery using the same
CN113130901B (en) Titanium-doped high-nickel ternary lithium ion battery positive electrode material and preparation method thereof
CN109728279A (en) The surface treatment method and product and battery of a kind of nickelic tertiary cathode material
EP0841711A1 (en) Lithium battery
JP2001114521A (en) Trimanganese tetraoxide and method for its production
CN114864894B (en) High-pressure-resistant coating modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
CN107482169B (en) Lithium cobalt vanadate, and preparation method and application thereof
CN111373583A (en) Positive electrode active material for lithium ion secondary battery and method for producing same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees