JP3306403B2 - Ultrasound diagnostic equipment - Google Patents

Ultrasound diagnostic equipment

Info

Publication number
JP3306403B2
JP3306403B2 JP2000014068A JP2000014068A JP3306403B2 JP 3306403 B2 JP3306403 B2 JP 3306403B2 JP 2000014068 A JP2000014068 A JP 2000014068A JP 2000014068 A JP2000014068 A JP 2000014068A JP 3306403 B2 JP3306403 B2 JP 3306403B2
Authority
JP
Japan
Prior art keywords
output
signal
phase
beamformer
baseband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000014068A
Other languages
Japanese (ja)
Other versions
JP2001198129A (en
Inventor
博 福喜多
森雄 西垣
尚 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000014068A priority Critical patent/JP3306403B2/en
Priority to US09/634,857 priority patent/US6364836B1/en
Priority to EP00307780A priority patent/EP1118875B1/en
Priority to DE60018156T priority patent/DE60018156T2/en
Publication of JP2001198129A publication Critical patent/JP2001198129A/en
Application granted granted Critical
Publication of JP3306403B2 publication Critical patent/JP3306403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52066Time-position or time-motion displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波ドプラ技
術、特に偏向可能な連続波(Steerable ContinuousWav
e、以後、SCWと呼ぶ。)ドプラ機能を有する超音波診断
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic Doppler technique, and more particularly, to a steerable continuous wave.
e, hereinafter referred to as SCW. 2.) An ultrasonic diagnostic apparatus having a Doppler function.

【0002】[0002]

【従来の技術】従来、SCWドプラ機能を有する超音波診
断装置は、特表平10―506801号公報に記載されたものが
知られている。図4は従来の超音波診断装置の構成を示
しており、探触子21、送信ビームフォーマ22、第1受信
ビームフォーマ23、位相検波器24、25、位相シフタ26、
27、加算器A11、A12、A/D変換器A/D 11、A/D 12、位相
シフトデータ発生部29、周波数分析部30、表示部31等に
より構成されている。位相シフタ26、27、加算器A11、A
12により第2受信ビームフォーマ28を構成する。
2. Description of the Related Art Conventionally, an ultrasonic diagnostic apparatus having an SCW Doppler function is disclosed in Japanese Patent Publication No. Hei 10-506801. FIG. 4 shows a configuration of a conventional ultrasonic diagnostic apparatus. A probe 21, a transmission beam former 22, a first reception beam former 23, phase detectors 24 and 25, a phase shifter 26,
27, adders A11 and A12, A / D converters A / D 11, A / D 12, a phase shift data generator 29, a frequency analyzer 30, a display unit 31, and the like. Phase shifters 26 and 27, adders A11 and A
12, the second receiving beamformer 28 is formed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の超音波診断装置においては、RFチャンネル用の第1
受信ビームフォーマが有する演算機能を、SCWドプラモ
ードにおいて利用できず、第2受信ビームフォーマを必
要とし、回路規模が増大するという問題を有していた。
However, in the above-mentioned conventional ultrasonic diagnostic apparatus, the first for the RF channel is used.
The arithmetic function of the receiving beamformer cannot be used in the SCW Doppler mode, requiring a second receiving beamformer, and has a problem that the circuit scale is increased.

【0004】本発明は、上記従来の課題を解決するもの
で、ダイナミックレンジが狭く、大きな遅延量を必要と
するBモードまたはカラーモードの受信ビーム生成手段
を使用し、SCWモードでも共通に使用できるようにする
ことで、第2受信ビームフォーマを必要とせず、回路規
模が小さく、高精度な優れた超音波診断装置を提供する
ものである。
The present invention solves the above-mentioned conventional problems and requires a narrow dynamic range and a large delay amount.
B mode or color mode receiving beam generating means
So that they can be used in common even in SCW mode.
Thus, it is possible to provide an excellent ultrasonic diagnostic apparatus which does not require the second reception beamformer, has a small circuit scale, and has high accuracy.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
に、本発明の超音波診断装置は、探触子からのRF信号を
ベースバンド信号に変換するN個の位相検波手段と、前
記位相検波手段の各々の出力In、Qn(2≦n≦N)に対し
て、重み付けデータを乗じ、遅延させたものを加算する
ことにより時分割多重化された整相加算出力を得る受信
ビーム生成手段と、この受信ビーム生成手段の出力をベ
ースバンドに変換する位相検波手段とを備えたものであ
り、SCWドプラモード等において、第2受信ビームフォ
ーマを用いずに、RFチャンネル用の1つの受信ビーム生
成手段だけで位相検波手段の出力InとQnの整相加算が
きることとなり、ベースバンドチャンネル用の特別な回
路を用意せずに、時分割多重化された出力の復調ができ
ることとなる。
In order to solve the above-mentioned problems, an ultrasonic diagnostic apparatus of the present invention comprises N number of phase detection means for converting an RF signal from a probe into a baseband signal;
Each output In the serial position phase detecting means, Qn (2 ≦ n ≦ N ) to
Multiply the weighted data and add the delayed one
Base and the reception beam generator means, the output of the reception beam generation means for obtaining a delay-and-sum output that is time division multiplexed by
Phase detection means for converting the signal into a baseband . In the SCW Doppler mode or the like, the output In of the phase detection means can be compared with the output In of only one RF beam receiving means without using the second receiving beamformer. It is phasing addition of Qn
A special time for the baseband channel.
The time-division multiplexed output can be demodulated without preparing a path .

【0006】[0006]

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。図1は本発明の実施の形態
における超音波診断装置の概略ブロック図を示す。図1
において、探触子1は、超音波の送受信を行うもので、
配列された振動子P1〜P4により構成されている。送信ビ
ームフォーマ2は、探触子1を駆動するための駆動パル
スまたは連続波を発生する。RFチャンネル3は、探触子
1からの受信信号をRF信号のままビームフォーマ4に伝
える。ベースバンドチャンネル11は、受信信号を位相検
波器12、13に伝える。位相検波器12は、乗算器M1、M2、
バンドパスのフィルタBPF1、BPF2より構成され、位相検
波器13は、乗算器M3、M4、フィルタBPF3、BPF4より構成
される。信号発生器14は、角周波数wの信号cos(w*t)と
信号sin(w*t)を発生する。但し、*は積、tは時間を表
す。スイッチSW1〜SW4は、RFチャンネル3、または位相
検波器12、13のいずれかを選択する。受信ビームフォー
マ4は、スイッチSW1〜SW4を通過した受信信号の、重み
付け、遅延、加算などを行う。位相シフトデータ発生器
5は、位相シフトデータCn、Sn(2≦n≦N)を発生し、
受信ビームフォーマ4に供給する。ディジタルの位相検
波器6は、乗算器M9、M10等より構成される。制御信号
発生器7は、制御信号C、Sを発生する。位相検波器6
は、制御信号C、Sを用いて受信ビームフォーマ4の出力
IQmを復調する。位相検波器6の出力は、Bモード処理
部8、周波数分析部9で処理され、表示部10に画像とし
て表示される。反射体15は、受信のフォーカス位置にあ
る反射体である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. FIG.
, The probe 1 transmits and receives ultrasonic waves,
It is composed of the arranged transducers P1 to P4. The transmission beamformer 2 generates a driving pulse or a continuous wave for driving the probe 1. The RF channel 3 transmits a received signal from the probe 1 to the beamformer 4 as an RF signal. The baseband channel 11 transmits the received signal to the phase detectors 12, 13. The phase detector 12 includes multipliers M1, M2,
The phase detector 13 is composed of band-pass filters BPF1 and BPF2. The phase detector 13 is composed of multipliers M3 and M4 and filters BPF3 and BPF4. The signal generator 14 generates a signal cos (w * t) and a signal sin (w * t) having an angular frequency w. Here, * represents product and t represents time. The switches SW1 to SW4 select either the RF channel 3 or the phase detectors 12, 13. The reception beamformer 4 performs weighting, delay, addition, and the like on the reception signals that have passed through the switches SW1 to SW4. The phase shift data generator 5 generates phase shift data Cn and Sn (2 ≦ n ≦ N),
It is supplied to the reception beamformer 4. The digital phase detector 6 includes multipliers M9 and M10. The control signal generator 7 generates control signals C and S. Phase detector 6
Is the output of the receive beamformer 4 using the control signals C and S
Demodulate IQm. The output of the phase detector 6 is processed by a B-mode processing unit 8 and a frequency analysis unit 9 and displayed on a display unit 10 as an image. The reflector 15 is a reflector at the reception focus position.

【0012】図2は受信ビームフォーマ4のブロック図
である。図2において、受信ビームフォーマ4は、A/D
変換器A/D1〜A/D4、重み付けデータ発生器W1〜W4、乗算
器M5〜M8、遅延線DL1〜DL4、加算器A1〜A3より構成さ
れる。図3は受信ビームフォーマ4と、次段の位相検波
器6における演算の入出力データを示す。
FIG. 2 is a block diagram of the receiving beam former 4. In FIG. 2, the reception beamformer 4 has an A / D
It comprises converters A / D1 to A / D4, weighting data generators W1 to W4, multipliers M5 to M8, delay lines DL1 to DL4, and adders A1 to A3. FIG. 3 shows input / output data of calculation in the receiving beamformer 4 and the next-stage phase detector 6.

【0013】以上のように構成された超音波診断装置に
ついて、図1を用いてその動作を説明する。まず、Bモ
ードまたはカラードプラモードにおいて、送信ビームフ
ォーマ2は、駆動パルスを発生し、探触子1を駆動す
る。探触子1は、超音波パルスを発生し、発生した超音
波パルスは、被検体中の反射体15において反射し、探触
子1で受信される。探触子1で得られた受信信号は、RF
チャンネル3を通過し、スイッチSW1〜SW4により選択さ
れ、受信ビームフォーマ4において遅延合成される。
The operation of the ultrasonic diagnostic apparatus configured as described above will be described with reference to FIG. First, in the B mode or the color Doppler mode, the transmission beam former 2 generates a drive pulse and drives the probe 1. The probe 1 generates an ultrasonic pulse, and the generated ultrasonic pulse is reflected by the reflector 15 in the subject and received by the probe 1. The received signal obtained by the probe 1 is RF
The signal passes through the channel 3, is selected by the switches SW 1 to SW 4, and is delay-combined in the reception beamformer 4.

【0014】図2に示すように、SW1からの受信信号
は、A/D変換器A/D1においてディジタルデータに変換さ
れ、乗算器M5において重み付けデータ発生器W1が発生す
る重み付けデータと乗ぜられる。各受信信号に、重み付
けデータを乗じることにより、受信の指向性が改善され
ることが知られている。乗算器M5の出力は、遅延回路DL
1で遅延され、加算器A1において他の遅延回路からの出
力と加算される。受信ビームフォーマ4の出力は、位相
検波器6において制御信号C、Sと乗ぜられてベースバン
ド信号に変換される。Bモード処理部8においてBモー
ド処理が行われ、周波数分析部9においてカラードプラ
処理等が行われ、それぞれ表示部10に画像として表示
される。
As shown in FIG. 2, the received signal from SW1 is converted into digital data by A / D converter A / D1, and is multiplied by weighting data generated by weighting data generator W1 in multiplier M5. It is known that the directivity of reception is improved by multiplying each received signal by weighting data. The output of the multiplier M5 is a delay circuit DL
The signal is delayed by 1 and is added to an output from another delay circuit in an adder A1. The output of the reception beamformer 4 is multiplied by the control signals C and S in the phase detector 6 and converted into a baseband signal. The B-mode processing unit 8 performs the B-mode processing, the frequency analysis unit 9 performs the color Doppler processing and the like, and the images are displayed on the display unit 10 as images.

【0015】次に、SCWドプラモードにおいて、送信ビ
ームフォーマ2は、連続波信号を発生し、探触子1の振
動子P1〜P2を角周波数wで駆動する。角周波数wの超音波
は、被検体中の移動する反射体15、例えば生体血管中の
血球等により反射され、ドプラシフトによる周波数変化
Wd を有する角周波数wd(=w+Wd)の反射信号となる。
反射信号は、振動子P3〜P4で受信される。受信された信
号は、ベースバンドチャンネル11を経由して、整相加算
される。
Next, in the SCW Doppler mode, the transmission beamformer 2 generates a continuous wave signal and drives the transducers P1 to P2 of the probe 1 at the angular frequency w. The ultrasonic wave having the angular frequency w is reflected by a moving reflector 15 in the subject, for example, blood cells in a living blood vessel, and changes in frequency due to Doppler shift.
The reflected signal has an angular frequency wd (= w + Wd) having Wd.
The reflected signal is received by the transducers P3 to P4. The received signal is subjected to phasing addition via the baseband channel 11.

【0016】整相加算は、以下のように行われる。ま
ず、振動子P3の受信信号e3は、次のように表される。 e3=Asin(wd*t−k*r3)+Bsin(w*t+f)… (1) ここで、(1)式の右辺第1項は、反射体15からの信号であ
り、kは波数、r3は、振動子P3と反射体15の間の距離を
表す。辺第2項は動きの少ない生体組織からのクラッタ
信号を表し、従って、位相fの変化は小さいが、一般に
振幅Bは振幅Aよりも一桁以上大きい。従って、(1)式の
ままでは、ドプラ情報を検出するのが困難であり、受信
信号e3をベースバンド信号に変換し、クラッタ信号を除
去してから受信信号の整相加算をすることが従来から行
われてきた。ベースバンド信号に変換するには、受信信
号e3に、信号発生器14が発生するcos(w*t)、およびs
in(w*t)を乗算器M1,M2において乗じ、さらにバンド
パスフィルタBPF1、およびBPF2を用いて高周波成分およ
びクラッタ信号成分を除去し、信号I1とQ1、 I1=sin(Wd*t− k*r3)… (2) Q1=cos(Wd*t− k*r3)… (3) を得る。この場合、信号発生器14が発生する信号、cos
(w*t)、およびsin(w*t)は直交しているので、信
号I1、Q1は直交し、位相検波器12、13は実質的に直交検
波器とみなせる。信号I1と信号Q1を、他の位相検波器の
出力と整相加算するためには、受信信号が有する、反射
体15との距離r3の依存を除去する必要がある。このた
め、次式に示すように、複素数exp(jk*r3)を乗じ
て、位相シフトが行われ、距離r3の依存が除去される。
The phasing addition is performed as follows. First, the reception signal e3 of the transducer P3 is represented as follows. e3 = Asin (wd * t-k * r3) + Bsin (w * t + f) (1) where the first term on the right side of the equation (1) is a signal from the reflector 15, k is the wave number, and r3 Represents the distance between the transducer P3 and the reflector 15. The second term of the side represents a clutter signal from a living tissue with little motion, and thus the change in the phase f is small, but the amplitude B is generally one order of magnitude larger than the amplitude A. Therefore, it is difficult to detect Doppler information using equation (1) .Conventionally, the received signal e3 is converted to a baseband signal, the clutter signal is removed, and the received signal is phased and added. Has been done from In order to convert the received signal e3 to the baseband signal, cos (w * t) generated by the signal generator 14 and s
in (w * t) in multipliers M1 and M2, and further removes high-frequency components and clutter signal components using band-pass filters BPF1 and BPF2 to obtain signals I1 and Q1, I1 = sin (Wd * tk * R3) ... (2) Q1 = cos (Wd * t-k * r3) ... (3) is obtained. In this case, the signal generated by the signal generator 14, cos
Since (w * t) and sin (w * t) are orthogonal, the signals I1 and Q1 are orthogonal, and the phase detectors 12 and 13 can be regarded as substantially quadrature detectors. In order to perform the phasing addition of the signal I1 and the signal Q1 with the output of another phase detector, it is necessary to remove the dependence of the distance r3 to the reflector 15 of the received signal. Therefore, as shown in the following equation, the phase shift is performed by multiplying by the complex number exp (jk * r3), and the dependence of the distance r3 is removed.

【0017】従来、上式の演算を実行するため位相シフ
タが用いられた。位相シフタの中では、(4)式に相当す
る次式の演算が行われる。 I=I1*cos(k*r3)−Q1*sin(k*r3) …(6) Q=Q1*cos(k*r3)+I1*sin(k*r3) …(7) 本実施の形態においては、(6)、(7)式の演算は、RFチャ
ンネルの信号を処理するための受信ビームフォーマ4と
位相検波器6を用いて行われる。図3(a)に示すよう
に、cos(k*r3)=C1、sin(k*r3)=S1と表し、乗算
器M5、M6において、入力I1、Q1と乗数C1、S1の乗算を行
う。但し、乗数C1、S1は時間t=iT(iは整数、TはA/D1
のサンプリング間隔)において以下のように変化する。 M5の乗数=C1*MOD(i,2)+S1*MOD(i+1,2) …(8) M6の乗数=−S1*MOD(i,2)+C1*MOD(i+1,2)…(9) また、iが2回変化する間に、入力I1、Q1は1回変化す
る。
Conventionally, a phase shifter has been used to execute the above equation. In the phase shifter, the following calculation corresponding to the expression (4) is performed. I = I1 * cos (k * r3) -Q1 * sin (k * r3) ... (6) Q = Q1 * cos (k * r3) + I1 * sin (k * r3) ... (7) In this embodiment The calculations of the equations (6) and (7) are performed using the reception beamformer 4 and the phase detector 6 for processing the signal of the RF channel. As shown in FIG. 3A, cos (k * r3) = C1 and sin (k * r3) = S1, and the multipliers M5 and M6 multiply the inputs I1 and Q1 by the multipliers C1 and S1. . However, the multipliers C1 and S1 are time t = iT (i is an integer, T is A / D1
At the sampling interval). Multiplier of M5 = C1 * MOD (i, 2) + S1 * MOD (i + 1, 2) ... (8) Multiplier of M6 =-S1 * MOD (i, 2) + C1 * MOD (i + 1, 2) ... (9) , I change twice, the inputs I1, Q1 change once.

【0018】M5,M6の乗算結果は、遅延線DL1、DL2をそ
れぞれ経由して、加算器A1で結合され、一つのデータパ
ス上のデータとなる。なお、遅延線DL1、DL2の遅延時間
は同一である必要はない。信号C1、S1の周波数を、例
え50KHz程度以下とすれば、遅延時間の差は、信号の1周
期、20マイクロ秒の1/10程度以下であれば良い。図3
(a)に示すように、ビームフォーマ4の出力には、t=1T
に相当する時間において、(6)式に相当する出力が得ら
れ、t=2Tに相当する時間において、(7)式に相当する出
力が得られる。すなわち、ビームフォーマ4の出力には
iの値に応じて(6)式の結果と、(7)式の結果が時分割多
重化された値が得られる。他の位相検波器からの出力I
n、Qnについても同様に、CnとSnの乗算が行われ、加算
器A1〜A3による加算が行われる。さらに、ビームフォ
ーマ4が出力するIQmに対し、ディジタルの位相検波器
6の乗算器M9において乗数Cと、乗算器M10において乗数
Sを次式のように変化させると、 C=MOD(i,2) …(10) S=MOD(i+1,2) …(11) 時分割多重化されたIQmが復調され、位相検波器6の出
力にはI信号とQ信号が得られる。この時の位相検波器6
の動作は、実質的にデマルチプレックスを行うとみなせ
る。
The multiplication results of M5 and M6 are combined by an adder A1 via delay lines DL1 and DL2, respectively, and become data on one data path. Note that the delay times of the delay lines DL1 and DL2 do not need to be the same. If the frequencies of the signals C1 and S1 are set to about 50 KHz or less, for example, the difference between the delay times may be about 1/10 of one cycle of the signal or 20 microseconds or less. FIG.
As shown in (a), the output of the beamformer 4 has t = 1T
An output corresponding to the equation (6) is obtained at a time corresponding to (2), and an output corresponding to the equation (7) is obtained at a time corresponding to t = 2T. That is, the output of the beamformer 4
According to the value of i, a value obtained by time-division multiplexing the result of Expression (6) and the result of Expression (7) is obtained. Output I from other phase detector
Similarly, for n and Qn, multiplication of Cn and Sn is performed, and addition by the adders A1 to A3 is performed. Further, the IQm output from the beamformer 4 is multiplied by a multiplier C in a multiplier M9 of the digital phase detector 6 and a multiplier C in a multiplier M10.
When S is changed as follows, C = MOD (i, 2) (10) S = MOD (i + 1, 2) (11) The time-division multiplexed IQm is demodulated, and the phase detector 6 An I signal and a Q signal are obtained at the output of. The phase detector 6 at this time
Can be regarded as substantially performing demultiplexing.

【0019】なお、図3(b)においては、M5、M6の乗数
を次式のように変化させ、 M5の乗数=(C1*MOD(i,2)+S1*MOD(i+1,2))*SIGN …(12) M6の乗数=(―S1*MOD(i,2)+C1*MOD(i+1,2))*SIGN…(13) (但し、MOD(i−1、4)≦1の場合、SIGN=1、MOD(i
−1、4)≧2の場合、SIGN=−1)さらに、位相検波
器6の制御信号C、Sを次式のように、 C=COS(p*(i−1)/2) …(14) S=SIN(p*(i−1)/2) …(15) 変化させることにより、I信号とQ信号を得ることができ
る。
In FIG. 3B, the multipliers of M5 and M6 are changed as follows, and the multiplier of M5 = (C1 * MOD (i, 2) + S1 * MOD (i + 1,2)) * SIGN ... (12) Multiplier of M6 = (-S1 * MOD (i, 2) + C1 * MOD (i + 1, 2)) * SIGN ... (13) (However, if MOD (i-1, 4) ≤ 1, SIGN = 1, MOD (i
−1, 4) ≧ 2, SIGN = −1) Further, the control signals C and S of the phase detector 6 are calculated as follows: C = COS (p * (i−1) / 2) 14) S = SIN (p * (i-1) / 2) (15) By changing, I and Q signals can be obtained.

【0020】以上のように、本実施の形態によれば、RF
チャンネル用の受信ビームフォーマ4を用いて、位相検
波器12、13の出力を時分割多重で整相加算することが可
能であり、さらに、受信ビームフォーマ4の次段の位相
検波器6を用いて、時分割多重化された整相加算出力
I、Q信号に復調することが可能であり、位相シフタや加
算器を特別に設ける必要が無く、SCWドプラモードが可
能な、小型で高性能な超音波診断装置が得られる。
As described above, according to the present embodiment, the RF
The output of the phase detectors 12 and 13 can be phased and added by time division multiplexing using the receiving beamformer 4 for the channel, and the phase detector 6 at the next stage of the receiving beamformer 4 can be used. And time-division multiplexed phasing addition output
A compact and high-performance ultrasonic diagnostic apparatus capable of demodulating into I and Q signals, requiring no special phase shifter or adder, and capable of SCW Doppler mode can be obtained.

【0021】なお、乗算器M5〜M8と、加算器A1〜A3の間
にある遅延線DL1〜DL4の遅延時間量は、SCWドプラモー
ドにおいては全て零にしてかまわない。但し、遅延時間
を零とすると、位相検波器12、13等を経由した外来ノイ
ズ等が同相で加算され、大きな雑音出力を生じてしまう
ので、雑音低減の面から遅延線DL1〜DL4の遅延時間をそ
れぞれ異なる値に固定することは有効である。
The delay times of the delay lines DL1 to DL4 between the multipliers M5 to M8 and the adders A1 to A3 may be all zero in the SCW Doppler mode. However, if the delay time is set to zero, extraneous noise and the like passing through the phase detectors 12, 13 and the like are added in phase, and a large noise output is generated. Therefore, the delay time of the delay lines DL1 to DL4 is reduced in terms of noise reduction. It is effective to fix to different values.

【0022】[0022]

【発明の効果】以上のように本発明は、探触子からのRF
信号をベースバンド信号に変換するN個の位相検波手段
と、前記位相検波手段の各々の出力In、Qn(2≦n≦N)
に対して、重み付けデータを乗じ、遅延させたものを加
算することにより時分割多重化された整相加算出力を得
る受信ビーム生成手段と、この受信ビーム生成手段の出
力をベースバンドに変換する位相検波手段とを備えたも
のであり、SCWドプラモード等において、第2受信ビー
ムフォーマを用いずに、RFチャンネル用の1つの受信ビ
ーム生成手段だけで位相検波手段の出力InとQnの整相加
算ができることとなり、ベースバンドチャンネル用の特
別な回路を用意せずに、時分割多重化された出力の復調
ができる
As described above, according to the present invention, the RF from the probe
N phase detectors that convert signals to baseband signals
And the respective outputs In and Qn of the phase detection means (2 ≦ n ≦ N)
To the weighted data,
To obtain the time-division multiplexed phasing addition output.
Receiving beam generating means, and the output of the receiving beam generating means.
Phase detection means for converting power to baseband.
In SCW Doppler mode, etc.
One receive video for the RF channel without using
Phasing of the outputs In and Qn of the phase detection
Calculation for the baseband channel.
Demodulation of time-division multiplexed output without separate circuit
Can be .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における超音波診断装置の
概略ブロック図
FIG. 1 is a schematic block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.

【図2】本発明の実施の形態における受信ビームフォー
マのブロック図
FIG. 2 is a block diagram of a reception beamformer according to the embodiment of the present invention.

【図3】(a)ビームフォーマ等における演算の入出力デ
ータを示す一覧図 (b)ビームフォーマ等における演算の入出力データを示
す他の一覧図
FIG. 3A is a list showing input / output data of calculation in a beamformer or the like. FIG. 3B is another list showing input / output data of calculation in a beamformer or the like.

【図4】従来の超音波診断装置の概略ブロック図FIG. 4 is a schematic block diagram of a conventional ultrasonic diagnostic apparatus.

【符号の説明】[Explanation of symbols]

1 探触子 2 送信ビームフォーマ 3 RFチャンネル 4 受信ビームフォーマ 5 位相シフトデータ発生器 6 位相検波器 7 制御信号発生器 8 Bモード処理部 9 周波数分析部 10 表示部 11 ベースバンドチャンネル 12 位相検波器 13 位相検波器 14 信号発生器 15 反射体 REFERENCE SIGNS LIST 1 probe 2 transmission beamformer 3 RF channel 4 reception beamformer 5 phase shift data generator 6 phase detector 7 control signal generator 8 B mode processing unit 9 frequency analysis unit 10 display unit 11 baseband channel 12 phase detector 13 phase detector 14 signal generator 15 reflector

フロントページの続き (56)参考文献 特開 昭63−186630(JP,A) 特開 平4−197251(JP,A) 特開 平8−107897(JP,A) 特開 平9−184826(JP,A) 特開 平10−234732(JP,A) 特開 平11−299776(JP,A) 特開2000−14675(JP,A) 特開2000−107186(JP,A) 特表 平10−506801(JP,A)Continuation of the front page (56) References JP-A-63-186630 (JP, A) JP-A-4-197251 (JP, A) JP-A-8-107897 (JP, A) JP-A-9-184826 (JP) JP-A-10-234732 (JP, A) JP-A-11-299776 (JP, A) JP-A-2000-14675 (JP, A) JP-A-2000-107186 (JP, A) 506801 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 探触子からのRF信号をベースバンド信号
に変換するN個の位相検波手段と、前記位相検波手段の
各々の出力In、Qn(2≦n≦N)に対して、重み付けデー
タを乗じ、遅延させたものを加算することにより時分割
多重化された整相加算出力を得る受信ビーム生成手段
、この受信ビーム生成手段の出力をベースバンドに変
換する位相検波手段とを備えたことを特徴とする超音波
診断装置。
1. A and N phase detection means for converting the RF signal from the probe to the baseband signals, prior SL-position phase detecting means
Each output In, with respect to Qn (2 ≦ n ≦ N) , weighted data
Receiving beam generating means for obtaining a time-division multiplexed phasing addition output by multiplying the delayed data and adding the delayed signals, and converting the output of the receiving beam generating means to baseband.
An ultrasonic diagnostic apparatus, comprising:
JP2000014068A 2000-01-19 2000-01-19 Ultrasound diagnostic equipment Expired - Fee Related JP3306403B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000014068A JP3306403B2 (en) 2000-01-19 2000-01-19 Ultrasound diagnostic equipment
US09/634,857 US6364836B1 (en) 2000-01-19 2000-08-08 Ultrasound diagnostic apparatus
EP00307780A EP1118875B1 (en) 2000-01-19 2000-09-08 Ultrasound diagnostic apparatus with baseband and RF beamformer
DE60018156T DE60018156T2 (en) 2000-01-19 2000-09-08 Ultrasonic diagnostic device with beamformer in baseband and HF band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014068A JP3306403B2 (en) 2000-01-19 2000-01-19 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2001198129A JP2001198129A (en) 2001-07-24
JP3306403B2 true JP3306403B2 (en) 2002-07-24

Family

ID=18541577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014068A Expired - Fee Related JP3306403B2 (en) 2000-01-19 2000-01-19 Ultrasound diagnostic equipment

Country Status (4)

Country Link
US (1) US6364836B1 (en)
EP (1) EP1118875B1 (en)
JP (1) JP3306403B2 (en)
DE (1) DE60018156T2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890301B2 (en) 2002-03-05 2005-05-10 Koninklijke Philips Electronics Nv Diagnostic ultrasonic imaging system having combined scanhead connections
DE602005018377D1 (en) * 2004-08-31 2010-01-28 Toshiba Kk Examination apparatus with ultrasound probe, ultrasound examination apparatus with an ultrasound probe
JP4733446B2 (en) * 2005-07-06 2011-07-27 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
US7466256B2 (en) * 2006-03-31 2008-12-16 Siemens Medical Solutions Usa, Inc. Universal ultrasound sigma-delta receiver path
US7583214B2 (en) * 2006-03-31 2009-09-01 Siemens Medical Solutions Usa, Inc. Dynamic receive beamformer with oversampling for medical diagnostic ultrasound
AU2009271493B2 (en) * 2008-07-14 2013-11-14 Exxonmobil Upstream Research Company Systems and methods for determining geologic properties using acoustic analysis
CN101744638A (en) * 2008-11-28 2010-06-23 Ge医疗系统环球技术有限公司 Multifunctional ultrasonic imaging system
EP2498100A3 (en) * 2011-03-11 2014-07-30 Samsung Medison Co., Ltd. Apparatus and method for generating doppler image
KR101880990B1 (en) 2011-11-16 2018-08-24 삼성전자주식회사 Method and apparatus for transmitting and receiving signals in multi-antenna system
CL2013000947A1 (en) * 2013-04-08 2014-01-10 Univ De Chile 35 A portable and manual ultrasound device, with centralized control and processing in the hardware and with visualization outputs and that operates in real time with a high refresh rate in your images

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598589A (en) * 1984-07-17 1986-07-08 General Electric Company Method of CW doppler imaging using variably focused ultrasonic transducer array
US5058594A (en) * 1990-08-29 1991-10-22 Quantum Medical Systems, Incorporated Direct velocity estimator for ultrasound blood flow imaging
FR2680250B1 (en) * 1991-08-06 1994-04-29 Univ Paris Curie METHOD AND DEVICE FOR ULTRA-SOUND IMAGING OF OBJECTS IN A LIQUID MEDIUM.
JP3094742B2 (en) * 1993-09-03 2000-10-03 松下電器産業株式会社 Ultrasound diagnostic equipment
US5555534A (en) 1994-08-05 1996-09-10 Acuson Corporation Method and apparatus for doppler receive beamformer system
US5685308A (en) * 1994-08-05 1997-11-11 Acuson Corporation Method and apparatus for receive beamformer system
US5520186A (en) * 1994-11-23 1996-05-28 General Electric Company Method and apparatus for controlling transducer multiplexing in ultrasound imaging system
US6123671A (en) * 1998-12-31 2000-09-26 General Electric Company Method and apparatus for distributed, agile calculation of beamforming time delays and apodization values
US6063033A (en) * 1999-05-28 2000-05-16 General Electric Company Ultrasound imaging with higher-order nonlinearities
US6139501A (en) * 1999-06-08 2000-10-31 Atl Ultrasound, Inc. Coincident tissue and motion ultrasonic diagnostic imaging

Also Published As

Publication number Publication date
EP1118875A2 (en) 2001-07-25
DE60018156D1 (en) 2005-03-24
DE60018156T2 (en) 2006-01-05
US6364836B1 (en) 2002-04-02
JP2001198129A (en) 2001-07-24
EP1118875A3 (en) 2003-05-07
EP1118875B1 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US6095980A (en) Pulse inversion doppler ultrasonic diagnostic imaging
JP3462584B2 (en) Ultrasound diagnostic equipment
EP1582149B1 (en) Ultrasonographic method and ultrasonographic device
US4800891A (en) Doppler velocity processing method and apparatus
US4896674A (en) Ultrasonic diagnosing system
US5188113A (en) Ultrasonic diagnosis apparatus
EP0996366A1 (en) Method for operating an ultrasonic diagnostic imaging system
JP3306403B2 (en) Ultrasound diagnostic equipment
WO1995031135A1 (en) Method and device for multichannel digital reception and ultrasonic diagnostic device
JPH10293171A (en) Ultrasonic beam forming device
US6544184B1 (en) Imaging with reduced artifacts for medical diagnostic ultrasound
JPH03155843A (en) Ultrasonic diagnostic device
JP2002034985A (en) Ultrasonograph
JP3177677B2 (en) Ultrasound continuous wave Doppler blood flow meter
JP3280625B2 (en) Ultrasound diagnostic equipment
JP3806229B2 (en) Ultrasonic diagnostic equipment
US5311870A (en) Ultrasonic Doppler imaging apparatus
JPH02206445A (en) Ultrasonic diagnostic apparatus
JP2001095805A (en) Ultrasonograph
JP2563656B2 (en) Ultrasonic Doppler imaging device
JPH0592001A (en) Ultrasonic diagnosing device
JP2000341353A (en) Signal detector
JP3000791B2 (en) Ultrasound diagnostic equipment
JP3088280B2 (en) Ultrasound Doppler diagnostic device
JPH0549639A (en) Ultrasonic color doppler diagnostic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees