JP3274885B2 - Spread spectrum communication method - Google Patents

Spread spectrum communication method

Info

Publication number
JP3274885B2
JP3274885B2 JP18618492A JP18618492A JP3274885B2 JP 3274885 B2 JP3274885 B2 JP 3274885B2 JP 18618492 A JP18618492 A JP 18618492A JP 18618492 A JP18618492 A JP 18618492A JP 3274885 B2 JP3274885 B2 JP 3274885B2
Authority
JP
Japan
Prior art keywords
sequence
code
spread spectrum
transmitted
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18618492A
Other languages
Japanese (ja)
Other versions
JPH066324A (en
Inventor
功芳 畔柳
直樹 末広
敏勝 内藤
Original Assignee
功芳 畔柳
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 功芳 畔柳, 東洋通信機株式会社 filed Critical 功芳 畔柳
Priority to JP18618492A priority Critical patent/JP3274885B2/en
Publication of JPH066324A publication Critical patent/JPH066324A/en
Application granted granted Critical
Publication of JP3274885B2 publication Critical patent/JP3274885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は互いに干渉波を除去し、
かつ高能率にデータを伝送することが可能なスペクトラ
ム拡散通信方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention removes interference waves from each other,
The present invention relates to a spread spectrum communication method capable of efficiently transmitting data.

【0002】[0002]

【従来技術】スペクトラム拡散通信方法は伝送すべきデ
ータDで変調された搬送波を比較的広い周波数帯域に拡
散して伝送するため単位周波数当たりの伝送電力が小さ
く、他の通信に対しての妨害を与えることが殆どないの
みならず外部雑音の影響を受けにくい点及び秘匿性に優
れる点等に多くの特徴がある。無線通信路を介してスペ
クトラム拡散通信を行なう方法としては図17に示すも
のが一般的である。即ち、この通信方法では送信機T1
は第1の乗算器2よって伝送すべきデータDをそのデー
タDの周期長と同じビット周期長の疑似雑音(以下、P
N系列と称する)、例えばその中で一般に広く使われて
いるM系列で乗積変調し、更に第2の乗算器3によりそ
の変調信号が発振器1で発生した周波数f0 の搬送波を
変調することによってデータDを含む搬送波をスペクト
ラム拡散した後、無線通信路を介して受信機R1 に送出
する。
2. Description of the Related Art In a spread spectrum communication method, a carrier wave modulated by data D to be transmitted is spread over a relatively wide frequency band and transmitted, so that transmission power per unit frequency is small and interference with other communication is prevented. There are many features in that they are hardly affected, are hardly affected by external noise, and are excellent in secrecy. As a method of performing spread spectrum communication via a wireless communication path, a method shown in FIG. 17 is generally used. That is, in this communication method, the transmitter T 1
Is a pseudo noise (hereinafter referred to as P) having the same bit cycle length as the data D to be transmitted by the first multiplier 2.
N-sequence), for example, multiplying and modulating by a M-sequence which is generally widely used therein, and further modulating a carrier having a frequency f 0 generated by the oscillator 1 by a second multiplier 3. after spread spectrum carrier containing data D by sending to the receiver R 1 via the wireless communication path.

【0003】一方、受信機Rは前記送信機1と同一の
M系列符号を発生する系列発生器4を具え、送信機T1
から送致されたスペクトラム拡散信号を図示を省略した
アンテナを介して増幅器5に導き、所要レベルに増幅し
た後、この増幅信号と局部発振器6のローカル信号fL
(≒f0)とをミキサ7で周波数混合した信号をローパ
スフイルタを経てとり出すことにより入来スペクトラム
拡散信号をベースバンド帯域の拡散信号に復詞する。こ
のベースバンド帯域拡散信号を乗算器8に加え、ここで
前記送信側T1のM系列と系列発生器4のM系列との間
で相関をとり、この相関出力を積分器でM系列の1フレ
ーム分の期間積分を行い、この積分出力信号を検波器1
0で前記フレームの終了時点で検波することによって元
の情報データDを復調する。更に、その復調データは同
期検出器11を介して系列発生器4の制御端子に入力
し、送信側T1及び受信機R1夫々のM系列の位相が互い
に同期するように系列発生器4のM系列発生タイミング
を制御する。
On the other hand, the receiver R l is comprises a sequence generator 4 for generating the same M-sequence code and the transmitter 1, the transmitter T 1
Is transmitted to the amplifier 5 via an antenna (not shown) and amplified to a required level, and then the amplified signal and the local signal f L of the local oscillator 6 are transmitted.
(≒ f 0 ) is mixed by a mixer 7 and taken out through a low-pass filter to convert the incoming spectrum spread signal into a baseband spread signal. The baseband spread signal is applied to a multiplier 8 where a correlation is obtained between the M sequence of the transmitting side T 1 and the M sequence of the sequence generator 4, and the correlation output is converted to the M sequence of 1 by an integrator. The integration for a frame period is performed, and this integrated output signal is detected by a detector 1
At 0, the original information data D is demodulated by detection at the end of the frame. Further, the demodulated data is input to the control terminal of the sequence generator 4 via the synchronization detector 11, and the sequence generator 4 is controlled so that the phases of the M sequences of the transmission side T 1 and the receiver R 1 are synchronized with each other. Controls M-sequence generation timing.

【0004】しかし、上述のような従来の通信方法では
互いに通信を希望しない二つの通信局A及びB夫々のM
系列相互の相関値をゼロに近づけたとしても、両通信局
が互いに近距離に位置する場合、各局の送信波は他方局
にとって大電力の干渉波となるため、各受信機R1 の初
段増幅器が飽和して相関復調動作を大きく損なうと云う
問題があった。従来、この問題を解決する方法としては
図18に示すように、各通信局A乃至Dは共に基地局E
を介して中継伝送する方式を用い、各局の送信電力を基
地局Eからの距離に対応して制御する電力制御方式が用
いられていた。即ち、通信局AとB及びCとDとの間で
各局が互いにデータ通信を希望する場合、各局は夫々基
地局Eを介して互いにデータを伝送すると共に、各局夫
々の送信電力及びその指向性を自局と基地局Eとの間の
距離及び位置関係に応じて設定することによって、互い
の受信機初段増幅器の飽和を防止するようにしていた。
However, in the conventional communication method as described above, the M of each of the two communication stations A and B that do not wish to communicate with each other.
Even if the correlation value between the sequences is close to zero, if the two communication stations are located at a short distance from each other, the transmitted wave of each station becomes a high-power interference wave for the other station, so the first-stage amplifier of each receiver R 1 Saturates to greatly impair the correlation demodulation operation. Conventionally, as a method for solving this problem, as shown in FIG.
And a power control method for controlling the transmission power of each station in accordance with the distance from the base station E. That is, when the stations wish to perform data communication with each other between the communication stations A and B and between the stations C and D, the stations transmit data to each other via the base station E, and transmit power and directivity of each station. Is set in accordance with the distance and the positional relationship between the own station and the base station E, thereby preventing saturation of the first-stage amplifiers of the receivers.

【0005】しかしながら、上述のスペクトラム拡散通
信方法では各局のアンテナの指向性が劣りビーム幅を狭
くし得ず、しかも夫々の通信局と基地局との距離に対
し、当該通信局相互間の距離が極めて小さいときは必ず
しも互いの干渉を防止得ない。例えば、図18の例につ
いて説明すれば通信局AとCとの距離がこれ等両局夫々
と基地局Eとの距離よりも著しく小さいため、夫々の送
信波は他方局にとって基地局Eから送信された希望波の
電力よりも非常に大きな干渉波となり、通信局夫々の受
信機の初段増幅器の飽和を防止することができないと云
う問題があった。
However, in the spread spectrum communication method described above, the directivity of the antenna of each station is inferior and the beam width cannot be reduced, and the distance between each communication station and the base station is smaller than the distance between each communication station and the base station. When they are extremely small, mutual interference cannot always be prevented. For example, referring to the example of FIG. 18, since the distance between the communication stations A and C is significantly smaller than the distance between each of these stations and the base station E, each transmission wave is transmitted from the base station E to the other station. The interference wave becomes much larger than the power of the desired wave, and there is a problem that saturation of the first-stage amplifier of each receiver of the communication station cannot be prevented.

【0006】又、このような問題を解決するために周波
数ホッピング(FH)方式を用いて送信電力が非常に大
きい干渉波を除去する手段が提案されているが、干渉波
と希望波とを互いに無相関にすることが可能なホッピン
グパターンを作る方法は知られていない、又FH方式の
出力信号生成用位相制御発振器(PLO)の発振周波数
を高速に切り替えることは、PLOが入力の積分値で動
作するために難しいと云う理由でホッピング速度を高く
することが困難であるから、実用的な通信方法として用
いることができないと云う問題があった。
In order to solve such a problem, there has been proposed a means for removing an interference wave having a very large transmission power by using a frequency hopping (FH) system. There is no known method of making a hopping pattern that can be made uncorrelated. To switch the oscillation frequency of the phase control oscillator (PLO) for generating an output signal of the FH system at a high speed, the PLO uses an integrated value of the input. Since it is difficult to increase the hopping speed because it is difficult to operate, there is a problem that it cannot be used as a practical communication method.

【0007】[0007]

【発明の目的】本発明は上述したような従来のスペクト
ラム拡散通信方法の問題を解決するためになされたもの
であって、受信機が非常に大きな電力の干渉波を受信し
ても初段増幅器の飽和を防止し、かつ必要に応じてフレ
ーム当たり多値情報を送る高能率伝送の手段を実現する
上で有効なスペクトラム拡散通信方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the conventional spread spectrum communication method. Even if a receiver receives an interference wave having a very large power, the first stage amplifier can be used. It is an object of the present invention to provide a spread spectrum communication method which is effective in preventing saturation and realizing high-efficiency transmission means for transmitting multi-value information per frame as needed.

【0008】[0008]

【発明の概要】上記の問題を解決するために本発明は、
伝送すべきデータの各ビット値にPN系列符号を乗じて
送出するスペクトラム拡散通信方法に於いて、周波数ス
ペクトルの重なりが互いに少なくなるように、短周期長
のPN系列符号ユニットを非反転及び/又は反転した配
列パターンからなるPN配列符号を複数個作り、その一
つ又は複数個を夫々の通信チャネルに割り当てるととも
に、N行N列アダマール行列の各行の正負にしたがって
PN系列符号ユニットを非反転又は反転する如く配列し
たものを前記PN配列符号とする。また、受信側に於い
て前記受信チャンネルのそれぞれのPN配列符号の周波
数スペクトルパターンに応じたフィルタを使用して干渉
波を除去するように構成する。換言すれば、本発明は比
較的短い周期のM系列を単位とし、これを複数個並べた
系列により拡散されたスペクトルが櫛形状に離散したも
のになることに着目し、このスペクトルパターンを各通
信チャネルに割り当て、適応制御すればその占有帯域が
互いに重複しないようにシフトすることができ夫々のス
ペクトル成分を適当なフィルタにより周波数領域上で分
離抑圧することによって受信機の高周波部での干渉を防
止するものである。また、前記伝送すべきデータをその
データレートの周波数帯域内に制限する手段を具えるこ
とによって、受信側に配備した他の拡散符号との間の相
互相関値をゼロに近付けるように構成する。また、PN
系列符号発生器と乗算器間、又は前記乗算器出力側に帯
域制限フィルタを挿入することによって、送信信号を主
要スペクトル帯域の範囲内に制限するように構成する。
SUMMARY OF THE INVENTION To solve the above problems , the present invention provides
In a spread spectrum communication method in which each bit value of data to be transmitted is multiplied by a PN sequence code and transmitted, non-inverting and / or non-inverting a PN sequence code unit having a short cycle length so that overlapping of frequency spectra is reduced. A plurality of PN array codes consisting of inverted array patterns are created, and one or more of them are assigned to each communication channel.
According to the sign of each row of the N-row, N-column Hadamard matrix
The PN sequence code units are arranged so as to be non-inverted or inverted.
These are referred to as the PN array codes. Also, on the receiving side
Then, an interference wave is removed using a filter corresponding to the frequency spectrum pattern of each PN array code of the reception channel . In other words, the present invention focuses on the fact that, as a unit, an M sequence having a relatively short cycle is used as a unit, and a spectrum spread by a sequence in which a plurality of M sequences is arranged becomes discrete in a comb shape. By allocating to channels and performing adaptive control, the occupied bands can be shifted so that they do not overlap each other, and each spectral component is separated and suppressed in the frequency domain by an appropriate filter to prevent interference in the high frequency part of the receiver Is what you do. Further, by providing a means for limiting the data to be transmitted to within the frequency band of the data rate, a cross-correlation value between the data and another spreading code provided on the receiving side is made close to zero. Also, PN
By inserting a band limiting filter between the sequence code generator and the multiplier or on the output side of the multiplier, the transmission signal is limited within the range of the main spectral band.

【0009】[0009]

【実施例】先ず、実施例を説明する前に、本発明の理解
を助けるために交番M系列とその特性について詳細に説
明する。図1(a)は送信すべきデータをBPSK変調
する場合の信号波形を示したもので、データ入力”
1”,”0”に対応してM系列の非反転系列M(+)と
反転系列M(−)を適宜組み合わせて拡散変調する場合
を示したものである。この場合、系列長M0 *=2m −1
(但し、mは任意の正の整数)の比較的短い小M系列を
考え、これを配列常数N=2n (但し、nは任意の正の
整数)個並べて、フレーム長がMF=NM0 *となる拡散
系列を作り、これをデータ周期Tに対応させる。図1
(b)に示す配列パターンP0 はこのM0 *(+)(図に
は+として表示)を8個並べたものである。図1(c)
乃至(e)に示す配列パターンP1 〜P3は、M
0 *(+)とM0 *(−)(図には−として表示)を交互に
配列したものである。この列に示す+,−の系列は図2
に示す8次アダマール行列、即ち8行8列のアダマール
行列中の4行に当たり。ここでは、P0 〜P3 を基本交
番M系列と呼ぶことにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments, an alternate M-sequence and its characteristics will be described in detail in order to facilitate understanding of the present invention. FIG. 1A shows a signal waveform when data to be transmitted is subjected to BPSK modulation.
This shows a case where spreading modulation is performed by appropriately combining a non-inverted sequence M (+) and an inverted sequence M (-) of M sequences corresponding to 1 "and" 0 ", in which case the sequence length is M 0 *. = 2 m -1
Consider a relatively short small M sequence (where m is an arbitrary positive integer), arrange N = 2 n (where n is an arbitrary positive integer) array constants, and set the frame length to MF = NM 0 A spreading sequence represented by * is created, and this is made to correspond to the data period T. FIG.
The arrangement pattern P 0 shown in (b) is obtained by arranging eight M 0 * (+) (indicated as + in the figure). FIG. 1 (c)
The array patterns P 1 to P 3 shown in FIGS.
0 * (+) and M 0 * (-) (shown as-in the figure) are alternately arranged. The series of + and-shown in this column is shown in FIG.
, Ie, 4 rows in an 8 × 8 Hadamard matrix. Here, P 0 to P 3 are referred to as a basic alternation M sequence.

【0010】このような交番M系列のスペクトルの例を
図3に示す。各配列パターンの基本波をfi とすれば、
そのスペクトルはfi の整数倍の高調波からなる。同図
の縦軸は、拡散系列の2値に±0.5Vを対応させたと
きの電圧値である。又、i≠0のパターンは基本波fi
の奇数倍の周波数成分のみ有する。
FIG. 3 shows an example of such a spectrum of the alternating M series. If the fundamental wave of each array pattern is f i ,
Its spectrum consists of an integer multiple harmonic of f i. The vertical axis in the figure is a voltage value when ± 0.5 V is made to correspond to two values of the spreading sequence. The pattern of i の 0 is the fundamental wave f i
Has only odd-numbered frequency components.

【0011】ここで、クロック周波数をfc、データ伝
送レートをfdとすると、前記図1 の構成から次の関係が与えられる。 fc=NM0 *d (1) N=2n (2) M0 *=2m −1 (3) これ等から、各配列パターンPiの基本波成分は、 P0 :f0 =Nfd =c0d =fc /M0 * (4) Pi :fi =Nfd /2i =cifd =fc/(2i0 *)(i≠0 (5) ci =N/2i (i≠0) (6) 又、各配列パターンPiの高調波成分を表現すると、 P0 :f0k=kf0 [k=1,2,3,…(M0 *−1)] (7) Pi :fik=k0i [k0 =1,3,5,…(2i −1)M0 *] [i=1,2,3,…(NS −1)] (8 ) ここに、NS は交番M系列のパターンの種類の数であり、P0 を含めて NS =(log2 N)+1=n+1 (9) となる。
Here, assuming that the clock frequency is fc and the data transmission rate is fd, the following relationship is given from the configuration of FIG. fc = NM 0 * f d (1) N = 2 n (2) M 0 * = 2 m −1 (3) From these, the fundamental wave component of each array pattern Pi is P 0 : f 0 = Nf d = C 0 f d = f c / M 0 * (4) P i : f i = Nf d / 2 i = cif d = fc / (2 i M 0 * ) (i ≠ 0 (5) c i = N / 2 i (i ≠ 0) (6) Also, when expressing the harmonic component of each array pattern Pi, P 0 : f 0k = kf 0 [k = 1, 2, 3,... (M 0 * −1) (7) P i : f ik = k 0 f i [k 0 = 1,3,5, ... (2 i -1) M 0 * ] [i = 1,2,3, ... (N S -1) )] (8) where, n S is the number of kinds of patterns of alternating M-sequence, n S = the (log 2 n) + 1 = n + 1 (9) , including P 0.

【0012】従って、交番M系列は前記図3に於いてP
3 を除くとデータ入力との乗算による各線スペクトルの
両側への帯域の拡大(±fd )を考慮し、且つ上述した
ように交番M系列夫々を同一系列のM系列で作成して
も、各パターンのスペクトルは相互に重複することなく
これ等の拡散変調波の相互相関をゼロにすることがで
き、しかもこれ等拡散変調波の周波数夫々を各通信チャ
ネル毎に割当ると共に分離抽出すれば通信チャネル相互
に影響し合う干渉波を抑圧することが可能となり上述し
たような初段増幅器の飽和を防止することができる。
本発明は上述した原理によって干渉信号を除去するもの
であって、以下、図示した実施例に基づいて本発明を詳
細に説明する。
Accordingly, the alternation M series corresponds to P in FIG.
With the exception of 3 , taking into account the band expansion (± f d ) to both sides of each line spectrum due to multiplication with the data input, and as described above, even if each of the alternating M sequences is created with the same M sequence, The cross-correlation of these spread-modulated waves can be made zero without overlapping the spectrums of the patterns, and if the frequencies of these spread-modulated waves are assigned to each communication channel and separated and extracted, communication can be performed. It is possible to suppress interference waves that affect each other, and it is possible to prevent saturation of the first-stage amplifier as described above.
The present invention eliminates an interference signal according to the above-described principle. Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0013】図4は本発明に係る方法を実施するための
スペクトラム拡散信号の送信機と受信機の一実施例を示
す構成図である。同図に於いてT2 は送信機であって、
周波数f0 の搬送波を発生する発振器12と、後述する
ような系列符号を発生する符号発生器13とを具え、第
1の乗算器14によって伝送すべきデータDで前記系列
符号を変調し、第2の乗算器15によりその変調信号で
前記搬送波を乗積変調することによってデータDを含む
搬送波をスペクトラム拡散した後、無線通信路を介して
受信機R2 に送出するように構成する。
FIG. 4 is a block diagram showing one embodiment of a transmitter and a receiver of a spread spectrum signal for implementing the method according to the present invention. In the figure, T 2 is a transmitter,
An oscillator 12 for generating a carrier wave of a frequency f 0 , and a code generator 13 for generating a sequence code as described later, wherein the first multiplier 14 modulates the sequence code with data D to be transmitted, The carrier wave including the data D is spread spectrum by multiplying and modulating the carrier wave with the modulation signal by the multiplier 15 of 2 and then transmitted to the receiver R2 via the radio communication path.

【0014】一方、受信機R2 は周波数fL のローカル
信号を発生する局部発振器16及び前記送信機T2 と同
一の系列符号を発生する符号発生器17を具え、送信機
2から送致されたスペクトラム拡散信号をフィルタ1
8及び増幅器19を介して抽出した信号と前記ローカル
信号fL(≒f0) とをミキサ20で周波数混合し、これを
LPFに通すことによってその入来スペクトラム拡散信
号をベースバンド帯域の拡散信号に変換する。又、乗算
器21により前記系列符号とベースバンド帯域の拡散信
号との間で相関をとり、その相関信号を積分器で積分し
た出力信号を検波器23でM系列のフレームの最終時点
で検波し、送信された情報データDを復調するように構
成する。
[0014] On the other hand, the receiver R 2 is comprises a code generator 17 for generating the same sequence code and the local oscillator 16 and the transmitter T 2 for generating a local signal of a frequency f L, as is referred from the transmitter T 2 Filtered spread spectrum signal
8 and the local signal f L (≒ f 0 ) are frequency-mixed by a mixer 20 and passed through an LPF to reduce the incoming spectrum spread signal to a baseband spread signal. Convert to Further, a correlation is obtained between the sequence code and the baseband signal by a multiplier 21, and an output signal obtained by integrating the correlation signal by an integrator is detected by a detector 23 at the final time point of the M-sequence frame. , And demodulates the transmitted information data D.

【0015】ここでは、図5に示すように送信機T2
び受信機R2 を通信局A、B、C及びD夫々が具え、通
信局AとB及び通信局CとDとの間で互いにデータ通信
を行う場合を考え、互いに近距離に配置された通信局A
及びC夫々の送信波が他方の受信機に干渉しないように
するためのスペクトラム拡散通信方法を説明する。
Here, as shown in FIG. 5, a transmitter T 2 and a receiver R 2 are provided for each of the communication stations A, B, C and D, and between the communication stations A and B and between the communication stations C and D. Considering the case where data communication is performed with each other, communication stations A located close to each other
C and C will be described below to prevent the transmission waves from interfering with the other receiver.

【0016】先ず、通信局A及びBは前記図2に示す8
次アダマール行列の1行目のパターン”+++++++
+”の各記号に応じて、系列長がM0 *=2m −1[ビッ
ト]のM系列MA を非反転させた系列MA + を図6に示
すように前記配列定数N=8個並べた、フレーム長がM
F =8M0 *[ビット]の系列符号PA を符号発生器13
及び17からデータDの各ビット値に応じて発生させ
る。又、通信局A及びB夫々のフィルタ18には図3
(a)に示すように周波数fc1=8fd k(但し、k=
1,2,3,…,M0 *−1)の中心周波数で、帯域幅が
d の周波数成分を抽出可能なものを使用し、系列符号
A でデータDを含む搬送波を拡散したスペクトラム拡
散信号を両局間の通信媒体として使用する。
First, the communication stations A and B communicate with each other as shown in FIG.
Pattern of first row of next Hadamard matrix "++++++++
The sequence M A + obtained by non-inverting the M sequence M A having a sequence length of M 0 * = 2 m -1 [bit] according to each symbol of “+” as shown in FIG. The number of frames arranged is M
F = 8M 0 * sequence code P A code generator 13 of the bit]
And 17 are generated according to each bit value of the data D. The filters 18 of the communication stations A and B respectively
Frequency f c1 = 8f d k as shown in (a) (where, k =
1,2,3, ..., at the center frequency of M 0 * -1), spectral bandwidth using what can be extracted frequency components of f d, by diffusing carrier including data D in sequence code P A The spread signal is used as a communication medium between the two stations.

【0017】一方、通信局C及びDは前記図2に示す8
次アダマール行列の2行目のパターン”+−+−+−+
−”の各記号に応じて、前記M系列MA を非反転させた
系列MA +と反転させた系列MA -とを図7に示すように交
互に前記配列定数N=8個並べた、フレーム長がMF
8M0 *[ビット]の系列符号PB を符号発生器13及び
17からデータDの各ビット値に応じて発生させる。
又、通信局C及びDのフィルタ18には図3(b)に示
すように周波数fc2=8fd /2k0 (但し、k0
=1,3,5,…,M0 *)の中心周波数で、帯域幅がf
d の周波数成分を抽出可能なものを使用し、系列符号P
B でデータDを含む搬送波を拡散したスペクトラム拡散
信号を両局間の通信媒体として使用する。
On the other hand, the communication stations C and D communicate with each other as shown in FIG.
Pattern of second row of next Hadamard matrix "+-++-++
- depending on each symbol of ", the M-sequence M A was allowed to noninverting sequence M A + sequence obtained by inverting the M A - and the aligned the array constant N = 8 or alternately as shown in FIG. 7 And the frame length is M F =
8M 0 * [bit] sequence code P B is generated from code generators 13 and 17 in accordance with each bit value of data D.
Also, the communication station C and the frequency as the filter 18 shown in FIG. 3 (b) of the D f c2 = 8f d / 2k 0 ( where, k 0
= 1, 3, 5,..., M 0 * ) and the bandwidth is f
The one that can extract the frequency component of d is used, and the sequence code P
A spread spectrum signal obtained by spreading a carrier wave including data D at B is used as a communication medium between both stations.

【0018】このようにすれば、通信局A及びBは夫々
の送信機が系列符号PA で乗積変調したスペクトラム拡
散信号のスペクトルは図3(a)に示すように周波数f
1及びその整数倍の高調波成分となり、各スペクトル
の幅はfd になると共に、夫々のスペクトラム拡散信号
は相手局のフィルタ16を介して初段増幅器に入力され
るから、両局は互いに他局の干渉を受けることなく通信
することができる。同様に通信局C及びDも、夫々の送
信機が系列符号PB で乗積変調したスペクトラム拡散信
号のスペクトルは図3(b)に示すように周波数fc2
及びその奇数倍の高調波成分となり、各スペクトルの幅
はfd になるから、夫々のスペクトラム拡散信号は相手
局のフィルタ18を介して復調され、両局は互いに他局
の干渉を受けることなく通信することができる。更に、
通信局A及びCが夫々送信するスペクトラム拡散信号の
スペクトルは前記図3(a)及び(b)に示すように互
いに重ならず、両局の送信波は夫々他方局のフィルタ1
8で抑圧することができるから、各受信機の初段増幅器
の飽和を防止することができ、両局は夫々の送信波によ
って互いに復調動作を妨げないように目的の通信を行う
ことができる。
In this way, the communication stations A and B transmit the spectrum of the spread spectrum signal, which is multiplied and modulated by the respective transmitters with the sequence code P A , as shown in FIG.
c 1 and its integral multiple harmonic components, the width of each spectrum becomes f d , and each spread spectrum signal is input to the first-stage amplifier through the filter 16 of the partner station. Communication can be performed without receiving interference from the station. Similarly, in the communication stations C and D, the spectrums of the spread spectrum signals multiplied and modulated by the respective transmitters with the sequence code P B have the frequency fc 2 as shown in FIG.
And it becomes an odd multiple harmonic components, since the width of each spectrum becomes f d, a spread spectrum signal of each is demodulated through the filter 18 of the other station, both stations without being mutually channel interference Can communicate. Furthermore,
The spectrums of the spread spectrum signals transmitted by the communication stations A and C do not overlap each other as shown in FIGS. 3A and 3B, and the transmission waves of both stations are respectively filtered by the filter 1 of the other station.
8, the saturation of the first-stage amplifier of each receiver can be prevented, and both stations can perform the intended communication so as not to hinder each other's demodulation operation by the respective transmission waves.

【0019】尚、この実施例では二つの通信局の初段増
幅器が飽和する場合の問題を解決する手段を示したが、
本発明はこれに限らず上述の交番M系列の各パターンを
生成する際の前記配列常数N等の定数を変更すれば、ス
ペクトルが重複しない多数のパターンを作成することが
できるから、これ等のパターンに基づく系列符号を通信
局各々に割り当てることによって、任意の複数の通信局
間に於いて同様に相互干渉を抑圧することができる。
又、前記交番M系列は上述したものに限らず、図8に示
すようにN次アダマール行列の各行の非反転系列及び/
又は反転系列をM系列の正負にしたがって配列したもの
を所定の通信局に割り当てても良く、上記効果を得るこ
とができる。
In this embodiment, the means for solving the problem when the first-stage amplifiers of the two communication stations are saturated has been described.
The present invention is not limited to this. By changing constants such as the array constant N when generating each pattern of the above-described alternating M series, it is possible to create a large number of patterns whose spectra do not overlap. By allocating a sequence code based on a pattern to each communication station, mutual interference can be similarly suppressed between a plurality of communication stations.
Further, the alternation M sequence is not limited to the above-described one, and as shown in FIG.
Alternatively, a sequence in which inverted sequences are arranged in accordance with the sign of the M sequence may be assigned to a predetermined communication station, and the above-described effect can be obtained.

【0020】上述の実施例では、交番M系列を所定の通
信局に割り当てたが、本発明はこれに限らず次のように
種々変形が可能である。図9(a)は他の系列符号の構
成例を示す図であって、1次小M系列M1 *を考え、その
構成要素を0次小M系列M0 *とし、M系列M1 *を配列定
数N個配列すると共に、M系列M1 *の各要素をN次アダ
マール行列に於ける配列パターンの+、−に従って非反
転、反転する。即ち、同図(b)に示すようにM系列M
1 *の各ビット値に応じて、例えばその系列のビット値
が’1’の場合にはM系列M0 *を非反転させた系列M0
*+ を、又前記ビット値が’0’の場合にはM系列M0 *
を反転させた系列M0 *- をM系列M1 *の系列長分並べた
系列MB を生成すると共に、配列定数N=2n を次数と
したアダマール行列の各行のパターン毎に、前記系列M
B を非反転させた系列MB +及び反転させたMB -を配列定
数N=2n 個並べる如く系列符号PB1,PB2,PB3,…
を構成する。この系列を系列組み合わせ態様から再拡散
形P(MMN)と呼ぶことにする。この手段によれば多
数の系列を構成する上で有効である。
In the above-described embodiment, the alternation M sequence is assigned to a predetermined communication station. However, the present invention is not limited to this, and various modifications can be made as follows. FIG. 9 (a) is a diagram showing a configuration example of another sequence code. Considering a first-order small M-sequence M 1 * , its constituent elements are assumed to be a zero-order small M-sequence M 0 * , and an M-sequence M 1 * Are arrayed in N array constants, and each element of the M series M 1 * is non-inverted and inverted according to + and − of the array pattern in the N-order Hadamard matrix. That is, as shown in FIG.
1 * according to each bit value of, for example, series M 0 obtained by inverting the M-sequence M 0 * In the case of the bit value of the sequence is '1'
* + , And when the bit value is '0', the M sequence M 0 *
Is series M 0 * was inverting the - a generates the M-sequence M 1 * sequence length min aligned series in M B, for each pattern of each row of the array constant N = 2 n order and the Hadamard matrix, the sequence M
The sequence codes P B1 , P B2 , P B3 ,... Are arranged such that a sequence M B + obtained by inverting B and a sequence M B obtained by inverting B are arranged in an array constant N = 2 n .
Is configured. This sequence will be referred to as a re-spread type P (MMN) from the sequence combination mode. This means is effective in forming a large number of streams.

【0021】又、図10(a)は、上記P(MMN)系
列の組み合わせ順を転置した例を示したもので、同様に
再拡散形P(MNM)系列と称す。即ち、このP(MN
M)系列は図10(b)に示すように配列定数N=2n
を次数としたアダマール行列の各行のパターン毎に各パ
ターンに応じて、0次M系列M0 *を非反転させた系列M
0 *+ 及び反転させた系列M0 *- を前記配列定数N個並べ
た系列Mc1,Mc2,Mc3,…を生成すると共に、それ等
系列Mc1,Mc2,Mc3,…毎に、1次M系列M1 *の各ビ
ット値に応じて、非反転させた系列及び反転させた系列
を1次M系列M1 *の系列長分並べる如く系列符号Pc1
c2,Pc3,…を構成したもので、この手法も多数の系
列を構成する上で有効である。
FIG. 10 (a) shows an example in which the combination order of the P (MMN) sequence is transposed, and is also referred to as a re-spreading P (MNM) sequence. That is, this P (MN
M) The sequence has an array constant N = 2 n as shown in FIG.
A sequence M obtained by inverting the 0th-order M sequence M 0 * according to each pattern for each pattern of each row of the Hadamard matrix whose order is
0 * + and sequence is obtained by inverting M 0 * - the array constant N pieces side-by-side series M c1, M c2, M c3 , ... to generate a, it, etc. series M c1, M c2, M c3 , ... each the primary M-sequence M 1 * according to each bit value of the non-inverted so the sequence and 1 inverted so the sequence order M sequence M 1 * sequence length fraction arranged as series code P c1,
P c2, P c3, which was composed of ..., this technique is also effective in constructing a large number of sequences.

【0022】尚、前記配列パターンP1 及びP2に相当
する再拡散形P(MMN)系列及びP(MNM)系列の
スペクトルの一部はM0 *=M1 *=7、N=8とした場
合、夫々図11(a)乃至(d)に示される。P(MM
N)系列は前述の基本交番M系列と本質的に同じ様相を
示し、式(4)〜(8)が成り立つ(但し、式(4)〜
(8)におけるM0 *をM0 *1 *に置換する必要があ
る)。一方、P(MNM)系列は前記基本交番M系列の
線スペクトルを中心とし、その周りに1次M系列M1 *
よる側帯波の線スペクトルが±M1 *d の範囲に亘って
配置され、例えばP1(MNM)ではM0 *Nfd /2=
28fd とそのk0 倍の周りに、±7fd の範囲に亘っ
て線スペクトルが拡がる。又、ここで示した再拡散形系
列は上述したようなP(MMN)系列及びP(MNM)
系列に限らず、M系列又はN次アダマール行列の各行を
基本とし、その非反転及び/又は反転系列を他のM系列
又はN次アダマール行列の各行の正負にしたがって配列
することを繰り返して構成した系列であれば良い。
Note that a part of the spectrum of the re-spread type P (MMN) and P (MNM) sequences corresponding to the arrangement patterns P 1 and P 2 is M 0 * = M 1 * = 7 and N = 8. The cases are shown in FIGS. 11A to 11D, respectively. P (MM
The N) sequence shows essentially the same aspect as the basic alternation M sequence described above, and the expressions (4) to (8) hold (however, the expressions (4) to
Certain M 0 * must be replaced by M 0 * M 1 * in (8)). On the other hand, the P (MNM) sequence is centered on the line spectrum of the basic alternating M sequence, and the line spectrum of the sideband of the primary M sequence M 1 * is arranged over the range of ± M 1 * f d around the P (MNM) sequence. For example, for P 1 (MNM), M 0 * Nf d / 2 =
28f d and its k 0 times around, a line spectrum spread over a range of ± 7f d. The re-spreading sequence shown here is a P (MMN) sequence and a P (MNM) sequence as described above.
Not limited to the sequence, each row of the M-sequence or N-order Hadamard matrix is used as a basis, and the non-inverted and / or inverted sequence is repeatedly arranged according to the sign of each row of another M-sequence or N-order Hadamard matrix. It is good if it is a series.

【0023】上述の各実施例では各通信局に於いて使用
する系列符号として配列常数N=2n 個のM系列を並べ
たものを考えたが、本発明はこれに限らず並べるべきM
系列の数Nは、α1 ,α2 ,α3 ,…αp を夫々任意の
素数とした場合、次式 N=2n ・α1 ・α2 ・α3
αp (10)に表されるように少なくとも1つの
素数と2の冪乗との積で算出した数としても良い。この
際、1フレーム中の中でM0 *の交番パターンが完結する
ためには前記式(10)を次式、 ci =N/ui (i=0,1,2,…) (11) に(ここで、ci はサイクルの数/フレームを、ui
0 *のユニット数/サイクルを表す)置き換えて、これ
を満たすような式(10)の値を選定する。
[0023] Although considered those in each of the above-described embodiments by arranging an array constant N = 2 n pieces of M-sequence as a sequence code used at each communication station, the present invention is to arrange not limited to this M
When α 1 , α 2 , α 3 ,... Α p are each an arbitrary prime number, the number N of sequences is expressed by the following equation: N = 2 n · α 1 · α 2 · α 3 ···
It may be a number calculated by the product of at least one prime number and a power of 2 as represented by α p (10). In this case, the following equation the formula (10) in order to M 0 * alternating pattern in one frame is completed, c i = N / u i (i = 0,1,2, ...) (11 ) (Where c i represents the number of cycles / frame and u i represents the number of units / cycle of M 0 * ), and the value of equation (10) that satisfies this is selected.

【0024】この例に於いて系列符号を形成する各M系
列を非反転又は反転させるパターンは、例えば前記Nを
3 と素数3との積、即ちN=24とし、M系列の非反
転及び反転を夫々記号+及び−で表した場合、上記条件
を満たす配列としては図12(a)に示すようにその
+、−の交番パターンを定めれば、そのパターンは系列
符号の1フレーム長に於いて完結させることができる。
このようにして生成した系列符号はその態様から公倍数
形と称し、各系列符号のスペクトルは上述した系列符号
と同様にそのM系列の非反転及び反転のパターンに基づ
いて互いに重ならないようにすることができる。図12
(b)はこの例に於ける各パターンの線スペクトルを表
し、この場合はN=2n の場合と異なり配列パターン相
互間に於いて若干周波数成分が重複するが、重複点は次
式 ci0 =cj0 ′ (k0,k0 ′:奇数)
(12)を満たす場合であって、その重複点は非常に少
ないから、この例に於ける配列パターンは配列常数N=
n の場合と比較しても実用上問題なく、又この配列パ
ターンの種類NS はci が正数になる場合をci =1と
すれば次式 NS =Σci [ci =正数](13)の
ように表せる。
In this example, the pattern for non-inverting or inverting each of the M sequences forming the sequence code is, for example, the above-mentioned N is a product of 2 3 and a prime number 3, that is, N = 24. In the case where the inversion is represented by symbols + and-, respectively, if an alternating pattern of + and-is determined as an array satisfying the above conditions as shown in FIG. 12A, the pattern becomes one frame length of the sequence code. It can be completed at
The sequence code generated in this manner is called a common multiple form from that aspect, and the spectrum of each sequence code should not overlap each other based on the pattern of non-inversion and inversion of the M sequence similarly to the above-described sequence code. Can be. FIG.
(B) represents the line spectrum of each pattern in this example. In this case, unlike in the case of N = 2 n , the frequency components slightly overlap between the arrangement patterns, but the overlapping point is represented by the following equation c i k 0 = c j k 0 ′ (k 0 , k 0 ′: odd number)
Since (12) is satisfied and the number of overlapping points is very small, the array pattern in this example has an array constant N =
2 n no practical problem even when compared to that of, and the type N S of the arrangement pattern c i c i = 1 Tosureba the case where is positive equation N S = Σc i [c i = Positive number] (13).

【0025】又、上述の交番M系列、再拡散形系列に於
いてもスペクトルが一部重なる場合があるが、それ等に
ついても重なる度合いが少なければ同様に実用上問題な
く本発明の効果が得られる。即ち、各通信局に周波数ス
ペクトルが互いに重ならない系列符号、換言するならば
周波数スペクトルに於ける相関値が互いにゼロの系列符
号を割り当てる場合が本発明の効果は大きいが、本発明
はこれに限らず相互の周波数スペクトルに於ける相関値
が小さければ初段増幅器の飽和を防止するには充分であ
る。
Also, in the alternating M series and the re-spreading series described above, the spectra may partially overlap. However, if the overlapping degree is small, the effect of the present invention can be similarly obtained without practical problems. Can be In other words, the effect of the present invention is great when a sequence code whose frequency spectrum does not overlap each other, that is, a sequence code whose correlation value in the frequency spectrum is mutually zero is assigned to each communication station, but the present invention is not limited to this. However, if the correlation value in the mutual frequency spectrum is small, it is sufficient to prevent the saturation of the first-stage amplifier.

【0026】更に、上述した交番M系列は図2の配列パ
ターンのみを用いる場合、このパターンの種類もアドレ
ス空間に利用すると考えた際の総アドレス容量NA *及び
BPSK方式の総アドレス容量NA はH(M0 *)をM系
列長がM0 *の場合の利用可能な系列数を求める関数とす
れば次式 NA *=NS ・H(M0 *) (14)NA
=H(NM0 *) (15) のように表される。ここで、H(NM0 *)の値は一般に
NM0 *≠2m −1であって、近傍の2個のM系列、ME1
とME2を選びH(ME1)とH(ME2)の比例配分値を近
似値とする。
Furthermore, the alternating M-sequence described above in the case of using only the arrangement pattern of FIG. 2, the total address volume N A total address volume N A * and BPSK method when considered to utilize this kind of pattern in the address space If a is H (M 0 *) as a function of M-sequence length determining the number of available sequences in the case of M 0 * equation N a * = N S · H (M 0 *) (14) N a
= H (NM 0 * ) (15) Here, the value of H (NM 0 * ) is generally NM 0 * ≠ 2 m −1, and two neighboring M sequences, M E1
And M E2 are selected, and the proportional distribution value of H (M E1 ) and H (M E2 ) is set as an approximate value.

【0027】 この両式から、アドレス効率ηを次式 η=NA */NA (16) のように定義し、横軸にlog2 (NB :ビット数/フ
レーム)をとった場合の交番M系列のアドレス効率ηは
シュミレーションを行った結果、図13の実線のように
表される。この図から明らかなように交番M系列はNと
して比較的小さい値を用いるとη>1となり、BPSK
よりも配列パターン数を増加する観点で有利となる。
又、実用的観点から配列パターン数を増加させるために
Nを大きくするとアドレス効率は周期的に増減し、夫々
最大アドレス効率がサイクリックに現われることが理解
できよう。
From these two equations, the address efficiency η is defined as the following equation η = N A * / N A (16), and log 2 (N B : number of bits / frame) is taken on the horizontal axis. As a result of the simulation, the address efficiency η of the alternating M series is represented as a solid line in FIG. As is clear from this figure, if a relatively small value is used as N for the alternating M sequence, η> 1 and BPSK
This is advantageous from the viewpoint of increasing the number of arrangement patterns.
From a practical point of view, it can be understood that when N is increased to increase the number of array patterns, the address efficiency periodically increases and decreases, and the maximum address efficiency appears cyclically in each case.

【0028】同様に、図13には他の系列、即ち上述し
た公倍数形系列、再拡散形P(MMN)系列及びP(M
NM)系列に対するアドレス効率ηのシュミレーション
の結果を夫々点線、一点鎖線及び二点鎖線にて示した
が、夫々固有の特徴をもち、又Nの増加に対し効率最大
値が周期的に現われる傾向にあること上記基本交番M系
列と同様である。
Similarly, FIG. 13 shows other sequences, that is, the common multiple type sequence, the re-spread type P (MMN) sequence, and the P (M
The results of the simulation of the address efficiency η for the NM) series are shown by the dotted line, the one-dot chain line, and the two-dot chain line, respectively, each having unique characteristics, and the efficiency maximum value tends to appear periodically as N increases. This is similar to the above basic alternation M series.

【0029】上述の実施例では、周波数スペクトルが互
いに重ならない系列符号を予め各通信局に割り当てた
が、本発明はこれに限らず、初段増幅器が他の通信局の
送信波の影響を受けて不都合を生じた場合にその送信波
の周波数スペクトルを分析し、その周波数スペクトルに
重ならないスペクトルの送信波を生成するのに必要な系
列符号に変更すると共に、初段増幅器の前段に設けたフ
ィルタの特性を変更後のスペクトル成分のみを通過可能
なように変更する。尚、通信途中に系列符号を変更する
には相手局にもその旨を伝える必要があるが、その手段
としては低速度制御情報を極めて長いM系列を用いて伝
送する方法、或はFH方法等の活用が考えられる。
In the above-described embodiment, sequence codes whose frequency spectra do not overlap each other are assigned to each communication station in advance. However, the present invention is not limited to this, and the first-stage amplifier is affected by transmission waves of other communication stations. When a problem occurs, the frequency spectrum of the transmitted wave is analyzed, and the sequence code required to generate a transmitted wave having a spectrum that does not overlap the frequency spectrum is changed. Is changed so that only the changed spectral components can pass. In order to change the sequence code during communication, it is necessary to notify the partner station of the change. For this purpose, a method of transmitting low-speed control information using an extremely long M sequence, an FH method, or the like is used. Utilization of is considered.

【0030】或は、本発明は上述したように複数の通信
局が互いに基地局を介して通信を行う方式に於いても、
初段増幅器が他の通信局の送信波の影響を受けて不都合
を生じる場合は上述したように周波数スペクトルに於け
る相関値が小さい所要数の系列符号を当該通信局夫々に
割当ると共に、各通信局は自局に割り当てられた系列符
号のスペクトルのみを通過可能なフィルタを初段増幅器
の前段に設けるようにすれば適用可能であることは自明
であろう。 尚、上述の実施例では互いに周波数スペク
トルが重なりが少ない系列符号で初段増幅器の飽和問題
を解決する手段を述べたが、本発明はこのような目的の
みならず、以下述べるような目的を達成することができ
る。
Alternatively, the present invention relates to a system in which a plurality of communication stations communicate with each other via a base station as described above.
If the first-stage amplifier is disadvantageous due to the influence of the transmission wave of another communication station, as described above, a required number of sequence codes having a small correlation value in the frequency spectrum are allocated to each of the communication stations, and It is obvious that a station can be applied if a filter capable of passing only the spectrum of the sequence code assigned to the station is provided before the first-stage amplifier. In the above-described embodiment, the means for solving the problem of the saturation of the first-stage amplifier with the sequence code having a small overlap between the frequency spectra has been described. However, the present invention achieves not only such an object but also the following object. be able to.

【0031】即ち、上述したようなM系列符号及び伝送
すべきデータは矩形波で構成するのが一般的である。こ
のため、矩形波の高調波成分の影響で、スペクトラム拡
散信号は不要な信号成分が多数生じ、しかもこの不要な
信号成分と本来のスペクトラム拡散信号成分の周波数は
非常に接近し、或は混在するため、両者を区別すること
は非常に困難である。従って、複数のスペクトラム拡散
信号相互の相関値をゼロにすることは事実上不可能であ
る。
That is, the M-sequence code and the data to be transmitted as described above are generally constituted by rectangular waves. For this reason, a large number of unnecessary signal components are generated in the spread spectrum signal due to the harmonic component of the rectangular wave, and the frequency of the unnecessary signal component and the frequency of the original spread spectrum signal component are very close to each other or are mixed. Therefore, it is very difficult to distinguish between the two. Therefore, it is practically impossible to make the correlation value between a plurality of spread spectrum signals zero.

【0032】この問題を解決するため、本発明では図1
4に示すように送信側に於いて上述したような系列符号
に基づく周波数成分のみを通過可能なフィルタをスペク
トラム拡散用乗算器の後段に設ける。このようにすれ
ば、前記フィルタによって上述したような不要な信号成
分を除去することができるから、複数のスペクトラム拡
散信号相互の相関値をゼロに近付けることができ、S/
Nを向上する上で有効である。
In order to solve this problem, in the present invention, FIG.
As shown in FIG. 4, a filter capable of passing only the frequency component based on the above-mentioned sequence code on the transmission side is provided at the subsequent stage of the spread spectrum multiplier. In this way, the unnecessary signal components as described above can be removed by the filter, so that the correlation value between a plurality of spread spectrum signals can be made close to zero, and S / S
This is effective in improving N.

【0033】同様の効果を得るには、前記フィルタをス
ペクトラム拡散用乗算器の前段に設けるか、或は伝送す
べきデータの高調波成分除去用フィルタ、即ちデータを
そのデータレートの周波数帯域内に制限するためのフィ
ルタを設けても良く、ここで述べたフィルタは適宜組み
合わせても良いことは自明であろう。更に、ここで示し
た効果を得る手段はこれに限らず、例えば図15に示す
ように前記不要な信号成分を除去したスペクトラム拡散
信号をメモリに記憶し、伝送すべきデータ値及びPN配
列符号の種類から前記メモリの所定アドレスを論理回路
で求めて、前記メモリから所要のスペクトラム拡散信号
を読み出すようにしても良い。
To obtain the same effect, the filter is provided before the spread spectrum multiplier, or a filter for removing a harmonic component of the data to be transmitted, that is, the data is placed in the frequency band of the data rate. It is obvious that a filter for limiting may be provided, and the filters described here may be appropriately combined. Further, the means for obtaining the effect shown here is not limited to this. For example, as shown in FIG. 15, a spectrum spread signal from which the unnecessary signal component is removed is stored in a memory, and a data value to be transmitted and a PN array code are transmitted. A predetermined address of the memory may be determined from a type by a logic circuit, and a required spread spectrum signal may be read from the memory.

【0034】又、上述の実施例では、周波数スペクトル
の重なりが少ない系列符号を各通信チャネルに割り当
て、初段増幅器の飽和問題を解決したが、図2に示すア
ダマール行列のパターンのすべてを使って伝送する方式
も実現できる。それは図2のパターンは互いに直交する
からである。例えば局Aから基地局Eに向けて送信する
場合に複数種類あるM0 *の中のパターンの1つを(A→
E)通信用に定めておき、局Aは2つのM0 *をベースと
する図2の8種のパターンの何れか1個を選択して(M
0 *Nビット)のフレームを伝送する。局Eでは8種のパ
ターンの反転、非反転を識別するための計16個の復調
器を準備しその中のいずれか1個の最大相関出力を送信
した復調器の相関パターンを送信パターンとして識別す
る。この場合、1フレームの符号系列(M0 *Nビット)
を送信することにより、log2(N×2)[N=8の場合
はlog2(8×2)=4]ビット/フレームの伝送ができ
る。すなわち、多値伝送をアダマール行列のパターンを
選用することにより実現できる。この場合のアドレス効
率は図13の縦軸を2倍にしたことに相当し、したがっ
てηはほとんどの場合1より大となる。すなわち、通常
の単純なM系列を用いる場合より有利となる。上記の場
合は、飽和問題を解決する効果はない。しかし、図18
で例えば3つの経路に対し、次の 伝送経路(A→E):P0 , P1 ( 2ビット/ フレーム) 〃 (B→E):P2 ,P4 ( 2ビット/ フレーム) 〃 (C→E):P3 ,P5 ,P6 ,P7 ( 3ビット/ フレーム) のようにパ ターンを割り当てた場合、経路〜はフレーム当り2
〜3ビット伝送ができる。しかも異なる経路向けの信号
が干渉として入来しても異なる経路に属する符号系列間
の相互相関は(経路の符号系列と及びのそれの間
に若干存在するが)ほとんど0に近づけることができ
る。また同一の経路内のパターンは同じスペクトルをも
つが、互いに直交しているので同期が確保されている限
り(1つの経路に関する伝送では通常成立する条件)互
いの干渉は0となる。したがって、遠近問題に対処しつ
つ、多値伝送を実現できる。この場合のアドレス効率は
アダマールの全パターンを1経路で独占使用する場合と
同様に高い値となる。
Further, in the above-described embodiment, a sequence code having a small overlap of the frequency spectrum is allocated to each communication channel to solve the problem of the saturation of the first-stage amplifier, but the transmission is performed using all the Hadamard matrix patterns shown in FIG. Can be realized. This is because the patterns in FIG. 2 are orthogonal to each other. For example, when transmitting from the station A to the base station E, one of the patterns in a plurality of types M 0 * is changed to (A →
E) Predetermined for communication, station A selects any one of the eight patterns of FIG. 2 based on two M 0 * (M
0 * N bits). The station E prepares a total of 16 demodulators for discriminating inversion and non-inversion of eight patterns, and identifies a correlation pattern of a demodulator that has transmitted any one of the maximum correlation outputs as a transmission pattern. I do. In this case, a code sequence of one frame (M 0 * N bits)
Is transmitted, log 2 (N × 2) [when N = 8, log 2 (8 × 2) = 4] bits / frame can be transmitted. That is, multilevel transmission can be realized by selecting a pattern of the Hadamard matrix. The address efficiency in this case is equivalent to doubling the vertical axis of FIG. 13, and therefore η is almost always greater than 1. That is, it is more advantageous than the case where a normal simple M sequence is used. In the above case, there is no effect of solving the saturation problem. However, FIG.
For example, for three paths, the following transmission paths (A → E): P 0 , P 1 (2 bits / frame) 〃 (B → E): P 2 , P 4 (2 bits / frame) 〃 (C → E): When patterns are assigned such as P 3 , P 5 , P 6 , P 7 (3 bits / frame), the path is 2 per frame.
Up to 3 bits can be transmitted. Moreover, even if signals for different paths enter as interference, the cross-correlation between code sequences belonging to different paths can be close to zero (although there is a little between and with the code sequence of the path). Also, the patterns in the same path have the same spectrum, but are orthogonal to each other, so that as long as synchronization is ensured (a condition normally satisfied in transmission on one path), mutual interference becomes zero. Therefore, it is possible to realize multi-level transmission while dealing with the near-far problem. The address efficiency in this case has a high value as in the case where all the Hadamard patterns are exclusively used by one route.

【0035】上述の実施例で説明したように、伝送すべ
き2進データの複数ビットを系列符号に対応させて、多
値データ伝送手段に利用することができ、この場合、単
位時間当たりに伝送可能な通信量を増やすことができ
る。又、ここで使用するPN配列符号のパターン数をN
とした場合、実効帯域減少率βは次式、 β=(log
2 2N)-1 (17)で表され、パターン数Nは上
述したように増やすことができるから、減少率βは小さ
くすることができ、通信路の周波数帯域を有効利用する
上で、都合が良いであろう。
As described in the above embodiment, a plurality of bits of binary data to be transmitted can be used for the multi-level data transmission means in association with the sequence code. Possible communication volume can be increased. Also, the number of patterns of the PN array code used here is N
, The effective band reduction rate β is given by the following equation: β = (log
Represented by 2 2N) -1 (17), since the pattern number N can be increased as described above, the reduction rate β may be reduced, in order to effectively utilize the frequency band of the communication channel, convenient Would be good.

【0036】更に、本発明は互いに周波数が重ならない
複数の系列符号を使用して同一データを伝送すれば、周
波数ダイバーシィティ通信方式として利用することがで
き、耐フェージング特性を向上する上で有効であろう。
又、本発明は上述したように相関値が小さい複数のPN
配列符号を使用して複数回同一データを伝送する際にC
RC符号をデータに付加し、受信側に於いて送られたC
RC符号の結果から、良好な受信信号のみを復調するよ
うにすれば、通信の誤り率を改善する上で都合が良いで
あろう。
Furthermore, the present invention can be used as a frequency diversity communication system by transmitting the same data using a plurality of sequence codes that do not overlap in frequency, and is effective in improving fading resistance. Will.
Further, as described above, the present invention provides a plurality of PNs having a small correlation value.
When transmitting the same data multiple times using an array code,
An RC code is added to the data, and the C
If only a good received signal is demodulated from the result of the RC code, it will be convenient in improving the communication error rate.

【0037】上述の実施例では本発明を無線通信に利用
したが、本発明はこれに限らず有線通信に利用できるこ
とは自明であろう。又、図16に示すように複数の通信
局が互いに有線通信路を介してスペクトラム拡散通信を
行う従来の手段では、各通信局の受信機は有線通信路の
伝送特性に起因して悪化する伝送信号を等化器を用いて
S/Nを改善する場合がある。しかし、所定の周波数領
域に於いて減衰した伝送信号を等化器で増幅した場合、
雑音も一緒に増幅してしまうため、S/Nの改善には限
界があった。これに対して、本発明は上述したようにス
ペクトラム拡散信号の周波数パターンを所定の周波数に
集中させることができるから、伝送特性が劣悪な周波数
領域を避けた周波数パターンのスペクトラム拡散信号を
使用するように、系列符号を設定すれば、各通信局は復
調を希望する信号成分と不要な雑音成分とを分けること
ができ、多くの雑音成分のみをフィルタで抑圧できるた
め、従来の手段と比較してS/Nを改善する上で有効で
あろう。
In the above embodiment, the present invention is used for wireless communication. However, it is obvious that the present invention is not limited to this and can be used for wired communication. Also, as shown in FIG. 16, in the conventional means in which a plurality of communication stations perform spread spectrum communication with each other via a wired communication path, the receiver of each communication station uses transmission characteristics that are deteriorated due to the transmission characteristics of the wired communication path. In some cases, the S / N is improved by using an equalizer for the signal. However, when a transmission signal attenuated in a predetermined frequency region is amplified by an equalizer,
Since noise is also amplified, there is a limit to the improvement of S / N. On the other hand, the present invention can concentrate the frequency pattern of the spread spectrum signal on a predetermined frequency as described above, so that a spread spectrum signal having a frequency pattern that avoids a frequency region having poor transmission characteristics is used. By setting a sequence code, each communication station can separate a signal component desired to be demodulated from an unnecessary noise component, and can suppress only many noise components with a filter. It will be effective in improving S / N.

【0038】又、上述の実施例では送信機側はスペクト
ラム拡散した後に伝送すべきデータで変調し、一方受信
機側はスペクトラム拡散信号にキャリア周波数信号を混
合することによって復調し、その後に逆拡散するように
したが、この順序を入れ換えてもその後に配置するフィ
ルタの特性が相違するのみであり、基本的な違いはな
い。
Further, in the above embodiment, the transmitter side modulates the data to be transmitted after spread spectrum, while the receiver side demodulates the signal by mixing the spread spectrum signal with the carrier frequency signal, and then despreads. However, even if the order is changed, only the characteristics of the filters to be arranged thereafter are different, and there is no fundamental difference.

【0039】[0039]

【発明の効果】本発明は以上説明したように、周波数ス
ペクトルに於ける相関値が小さい所要数の系列符号を互
いに通信を希望しない通信局夫々に割当ると共に、これ
等の各通信局の初段増幅器の前段には自局に割り当てら
れた系列符号のスペクトルのみ通過可能なフィルタを設
けて、通信を希望しない局から送出された大電力のスペ
クトラム拡散信号を抑圧するようにしたから、そのスペ
クトラム拡散信号に起因する初段増幅器の飽和を防止す
ることができ、円滑な通信を行うことが可能なスペクト
ラム拡散通信方法を提供する上で著効を奏する。
As described above, according to the present invention, a required number of sequence codes having a small correlation value in the frequency spectrum are allocated to communication stations not wishing to communicate with each other, and the first stage of each of these communication stations is allocated. A filter that can pass only the spectrum of the sequence code assigned to its own station is provided at the front stage of the amplifier to suppress a high-power spread-spectrum signal transmitted from a station that does not desire communication. This is effective in providing a spread spectrum communication method capable of preventing saturation of the first-stage amplifier due to a signal and performing smooth communication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)乃至(e)は本発明に係る交番M系列を
説明するための図。
FIGS. 1A to 1E are diagrams for explaining an alternating M-sequence according to the present invention.

【図2】8次アダマール行列の配列パターンを示す図。FIG. 2 is a diagram showing an array pattern of an eighth-order Hadamard matrix.

【図3】(a)乃至(d)は交番M系列のスペクトルを
示す特性図。
FIGS. 3A to 3D are characteristic diagrams showing a spectrum of an alternating M series.

【図4】本発明の一実施例を示す構成図。FIG. 4 is a configuration diagram showing one embodiment of the present invention.

【図5】本発明の一実施例を説明するための図。FIG. 5 is a diagram for explaining one embodiment of the present invention.

【図6】本発明の一実施例で使用する系列符号PA を示
す図。
Shows the sequence code P A to be used in an embodiment of the present invention; FIG.

【図7】本発明の一実施例で使用する系列符号PB を示
す図。
FIG. 7 is a diagram showing a sequence code P B used in one embodiment of the present invention.

【図8】本発明に係る他の交番M系列を説明するための
図。
FIG. 8 is a diagram for explaining another alternating M-sequence according to the present invention.

【図9】(a)及び(b)は本発明に係る他の系列符号
(再拡散形P(MMN)系列)の構成例を示す図。
9A and 9B are diagrams showing a configuration example of another sequence code (respread P (MMN) sequence) according to the present invention.

【図10】(a)及び(b)は本発明に係る他の系列符
号(再拡散形P(MNM)系列)の構成例を示す図。
FIGS. 10A and 10B are diagrams illustrating a configuration example of another sequence code (respread P (MNM) sequence) according to the present invention.

【図11】(a)乃至(d)は再拡散形P(MMN)系
列及びP(MNM)系列のスペクトルを示す特性図。
FIGS. 11A to 11D are characteristic diagrams showing spectra of a re-spread type P (MMN) sequence and a P (MNM) sequence.

【図12】(a)及び(b)は本発明に係る他の系列符
号(公倍数形系列)の構成例を示す図及びそのスペクト
ルを示す図。
12A and 12B are a diagram showing a configuration example of another sequence code (common multiple type sequence) according to the present invention and a diagram showing its spectrum.

【図13】本発明に係る系列符号夫々のアドレス効率η
を示す特性図。
FIG. 13 shows the address efficiency η of each of the sequence codes according to the present invention.
FIG.

【図14】本発明の他の実施例を示す構成図。FIG. 14 is a configuration diagram showing another embodiment of the present invention.

【図15】本発明の他の実施例を示す構成図。FIG. 15 is a configuration diagram showing another embodiment of the present invention.

【図16】本発明の他の実施例を示す構成図。FIG. 16 is a configuration diagram showing another embodiment of the present invention.

【図17】従来のスペクトラム拡散通信方法に於ける送
信機及び受信機の構成図。
FIG. 17 is a configuration diagram of a transmitter and a receiver in a conventional spread spectrum communication method.

【図18】従来のスペクトラム拡散通信方法を説明する
ための図。
FIG. 18 is a diagram for explaining a conventional spread spectrum communication method.

【符号の説明】[Explanation of symbols]

2 送信機、 R2 受信機、12 発振器、13及
び17 符号発生器、14、15及び21 乗算器、
16 局部発振器、 18 フィルタ、 19増幅器、
20 ミキサ、 22 バンドパスフィルタ、 23
検波器。
T 2 transmitters, R2 receiver, 12 an oscillator, 13 and 17 code generators, 14, 15 and 21 multipliers,
16 local oscillators, 18 filters, 19 amplifiers,
20 mixer, 22 bandpass filter, 23
Detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 敏勝 神奈川県高座郡寒川町小谷二丁目1番1 号 東洋通信機株式会社内 (56)参考文献 特開 昭64−30340(JP,A) 特開 昭62−45232(JP,A) 特開 平4−150332(JP,A) 特開 平2−143740(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04B 1/69 - 1/713 H04J 13/00 - 13/06 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Toshikatsu Naito 2-1-1 Kotani, Samukawa-cho, Koza-gun, Kanagawa Prefecture Toyo Communication Equipment Co., Ltd. (56) References JP-A-64-30340 (JP, A) JP-A-62-45232 (JP, A) JP-A-4-150332 (JP, A) JP-A-2-143740 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H04B 1 / 69-1/713 H04J 13/00-13/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 伝送すべきデータを該データの周期長と
同じビット周期長を有する擬似雑音(PN系列)を乗じ
て送出するスペクトラム拡散通信方法に於いて、周波数
スペクトルの重なりが互いに少なくなるように、前記ビ
ット周期長よりも短い周期長を持つ擬似雑音(PN系
列)であるPN系列符号を、N行N列アダマール行列の
各行のパターンにしたがって非反転及び/又は反転して
複数個配列したPN配列符号を複数個作り、該PN配列
符号の一つ又は複数種類を夫々の通信チャネルに割り当
てたことを特徴とするスペクトラム拡散通信方法。
1. The data to be transmitted is defined as a period length of the data.
In a spread spectrum communication method in which pseudo noise (PN sequence) having the same bit cycle length is multiplied and transmitted, the above-mentioned video signal is transmitted so that frequency spectrum overlaps are reduced.
Pseudo-noise (PN system)
Column) is converted to an N-by-N Hadamard matrix
Inverting and / or inverted in accordance with the pattern of each line
Plurality create a PN sequence code in which a plurality sequences, the PN sequence
A spread spectrum communication method, wherein one or more types of codes are assigned to respective communication channels.
【請求項2】 受信側に於いて前記通信チャンネルに割
り当てられたそれぞれの前記PN配列符号の周波数スペ
クトルパターンに応じたフィルタを使用して干渉波を除
去するようにしたことを特徴とする請求項1記載のスペ
クトラム拡散通信方法。
2. The receiving side allocates the communication channel .
2. The spread spectrum communication method according to claim 1, wherein an interference wave is removed by using a filter corresponding to a frequency spectrum pattern of each of said assigned PN sequence codes.
【請求項3】 前記伝送すべきデータをそのデータレー
トの周波数帯域内に制限する手段を具えることによっ
て、受信側に配備した他の拡散符号との間の相互相関値
をゼロに近付けたことを特徴とする請求項1又は2記載
のスペクトラム拡散通信方法。
3. A method for limiting the data to be transmitted within a frequency band of the data rate so that a cross-correlation value between the spreading code and another spreading code provided on the receiving side is close to zero. 3. The spread spectrum communication method according to claim 1, wherein:
【請求項4】 前記PN配列符号を生成する符号発生器
と前記伝送すべきデータに前記符号発生器から発生され
たPN配列符号を乗じる乗算器との間若しくは前記乗
算器出力側に帯域制限フィルタを挿入することによっ
て、送信信号を主要スペクトル帯域の範囲内に制限した
ことを特徴とする請求項1乃至3のいずれかに記載のス
ペクトラム拡散通信方法。
4. A code generator for generating the PN array code.
And the data to be transmitted is generated from the code generator.
4. A transmission signal is limited within a range of a main spectrum band by inserting a band-limiting filter between the multiplier and a multiplier that multiplies the PN array code or by inserting a band-limiting filter at an output side of the multiplier. The spread spectrum communication method according to any one of the above.
JP18618492A 1992-06-20 1992-06-20 Spread spectrum communication method Expired - Fee Related JP3274885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18618492A JP3274885B2 (en) 1992-06-20 1992-06-20 Spread spectrum communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18618492A JP3274885B2 (en) 1992-06-20 1992-06-20 Spread spectrum communication method

Publications (2)

Publication Number Publication Date
JPH066324A JPH066324A (en) 1994-01-14
JP3274885B2 true JP3274885B2 (en) 2002-04-15

Family

ID=16183862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18618492A Expired - Fee Related JP3274885B2 (en) 1992-06-20 1992-06-20 Spread spectrum communication method

Country Status (1)

Country Link
JP (1) JP3274885B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083648C (en) 1994-02-17 2002-04-24 普罗克西姆公司 A high-data-rate wireless local-area network
JP3697714B2 (en) 2003-01-15 2005-09-21 ソニー株式会社 Communication apparatus and communication method
IL173069A0 (en) * 2006-01-10 2006-06-11 Zion Hadad Dr Cellular system and method
US8725502B2 (en) * 2008-06-05 2014-05-13 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8825480B2 (en) 2008-06-05 2014-09-02 Qualcomm Incorporated Apparatus and method of obtaining non-speech data embedded in vocoder packet
US8855100B2 (en) 2009-06-16 2014-10-07 Qualcomm Incorporated System and method for supporting higher-layer protocol messaging in an in-band modem

Also Published As

Publication number Publication date
JPH066324A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
RU2142201C1 (en) Alternating rate station transmission in spread spectrum communication system using group encoding
KR100488431B1 (en) Constant amplitude coded bi-orthogonal coding and decoding apparatus
US20090201974A1 (en) Methods and apparatus for spread spectrum modulation and demodulation
USRE37420E1 (en) Automobile on-board and/or portable telephone system
KR19990024992A (en) Quasi-orthogonal code generation in a code division multiple access communication system, spreading apparatus and method using the same
RU97112109A (en) METHOD AND DEVICE FOR USING WALSH PHASE MANIPULATION IN A SYSTEM FOR COMMUNICATION WITH AN EXTENDED SIGNAL SPECTRUM
JPH03256419A (en) Spread spectrum communication equipment
JPH04230137A (en) Method of modulation/demodulation, spectrum diffusion modulator and spectrum diffusion receiver
US6674790B1 (en) System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
US5796774A (en) Spread spectrum communication apparatus with conversion of input patterns to uniform spectral patterns
US7894504B2 (en) Coherent and non-coherent hybrid direct sequence/frequency hopping spread spectrum systems with high power and bandwidth efficiency and methods thereof
JP3274885B2 (en) Spread spectrum communication method
EP0589683B1 (en) Method for frequency comb spread spectrum modulation
JP2002164810A (en) Cyclic shift code division multiplex communication system
JP2797921B2 (en) Spreading code generation method
US6954422B1 (en) Comb-form spectrum communication systems using repeated complementary sequence modulation
Mowbray et al. Wideband coding for uncoordinated multiple access communication
JP2003023675A (en) Communication system employing cross-correlation suppression type spread system set
JP2941651B2 (en) Mobile communication system
JP3534796B2 (en) Spread spectrum communication method, transmitter and receiver thereof
JP2000101481A (en) Frequency hopping method and frequency hopping communication system
JP2700746B2 (en) Frequency hopping communication system
USRE39954E1 (en) Automobile on-board and/or portable telephone system
JP2990468B2 (en) Spread spectrum communication system
JPH07135473A (en) Transmitter-receiver

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees