JP3264477B2 - Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device - Google Patents

Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device

Info

Publication number
JP3264477B2
JP3264477B2 JP18032796A JP18032796A JP3264477B2 JP 3264477 B2 JP3264477 B2 JP 3264477B2 JP 18032796 A JP18032796 A JP 18032796A JP 18032796 A JP18032796 A JP 18032796A JP 3264477 B2 JP3264477 B2 JP 3264477B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
energy beam
alignment film
crystal alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18032796A
Other languages
Japanese (ja)
Other versions
JPH1026760A (en
Inventor
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16081282&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3264477(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18032796A priority Critical patent/JP3264477B2/en
Priority to TW086109496A priority patent/TW515926B/en
Priority to PCT/JP1997/002354 priority patent/WO1998001789A1/en
Priority to CNB971912211A priority patent/CN1149437C/en
Priority to US09/029,870 priority patent/US6368681B1/en
Priority to KR1019980701804A priority patent/KR100258847B1/en
Publication of JPH1026760A publication Critical patent/JPH1026760A/en
Priority to JP36720499A priority patent/JP3468507B2/en
Priority to US10/010,537 priority patent/US20020054965A1/en
Publication of JP3264477B2 publication Critical patent/JP3264477B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶を用いた画像
表示装置およびその製造方法に関するものであり、特
に、TV画像やコンピュータ画像等を表示する液晶を用
いた平面表示パネルに用いる液晶配向膜およびその製造
方法およびそれを用いた液晶表示装置とその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image display device using a liquid crystal and a method of manufacturing the same, and more particularly, to a liquid crystal alignment film used for a flat display panel using a liquid crystal for displaying a TV image, a computer image, and the like. And a method of manufacturing the same, a liquid crystal display device using the same, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来カラー液晶表示パネルは、マトリッ
クス状に配置された対向電極を形成した2つの基板の間
にポリビニルアルコールやポリイミドをスピナーで塗布
焼成して形成した被膜をフェルト布で擦って(すなわち
ラビング)作製した液晶配向膜を介して液晶を封入した
装置が一般的であった。
2. Description of the Related Art Conventionally, in a color liquid crystal display panel, a film formed by applying and firing a polyvinyl alcohol or a polyimide with a spinner between two substrates having opposed electrodes arranged in a matrix is rubbed with a felt cloth. That is, a device in which liquid crystal was sealed through a liquid crystal alignment film produced by rubbing was generally used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
配向膜の作成は、上記したように、ポリビニルアルコー
ルやポリイミドを有機溶媒に溶解させ回転塗布法などを
用いて塗布形成した後、フェルト布等を用いてラビング
を行なう方法が用いられていたため、大面積パネル(例
えば14インチディスプレイ)では配向膜の均一コーテ
ィングが困難であり、また、回転塗布では塗布厚が数ミ
クロン程度にもなり、強誘電液晶のような1000オン
グストローム程度の厚みの配向膜を必要とする表示パネ
ルでは、性能が大幅に低減されるという大きな欠点があ
った。
However, as described above, a conventional orientation film is formed by dissolving polyvinyl alcohol or polyimide in an organic solvent, applying the solution using a spin coating method or the like, and then applying a felt cloth or the like. The rubbing method has been used, so that it is difficult to uniformly coat the alignment film on a large-area panel (for example, a 14-inch display). Such a display panel that requires an alignment film having a thickness of about 1000 angstroms has a great disadvantage that the performance is greatly reduced.

【0004】さらに、最近では、ポリビニルシンナメイ
トやポリイミド膜を用いて偏光膜をマスクに露光してラ
ビングフリーの配向膜を提供する方法が開発されつつあ
るが、ポリビニルシンナメイトやポリイミド膜は感光感
度が数J/cm2と極めて低く露光に必要とする時間が
数分もかかってしまい実用性に乏しかった。
Recently, a method of providing a rubbing-free alignment film by exposing a polarizing film to a mask using a polyvinyl cinnamate or polyimide film has been developed. However, the exposure time was extremely low at several J / cm 2 , and the time required for exposure took several minutes, which was not practical.

【0005】上記の問題点に鑑み、本発明の目的は、従
来のようなラビングを必要としない高信頼性の配向膜お
よびそれを短時間高能率に作成する方法を提供すること
にある。また、それを用いた表示パネルおよびその製造
方法を提供ことにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a highly reliable alignment film which does not require rubbing as in the prior art, and a method for forming it with high efficiency in a short time. Another object is to provide a display panel using the same and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の液晶配向膜は、
上述の目的を達成するものであり、エネルギービーム感
応性基及び熱反応性基をそれぞれ含むモノマーから共重
合された樹脂からなりかつ可視光域で透明な樹脂膜が電
極上に直接または任意の薄膜を介して間接的に形成さ
れ、少なくともエネルギービーム感応性基を反応架橋さ
れていることを特徴とする
Means for Solving the Problems The liquid crystal alignment film of the present invention comprises:
In order to achieve the above-mentioned object, a monomer containing an energy beam-sensitive group and a heat-reactive group is copolymerized.
Engaged the a resin and a transparent resin film in the visible light region is formed indirectly via a direct or any thin film on the electrode, characterized in that it is reacted crosslinking at least the energy beam sensitive radical .

【0007】また、本発明の液晶配向膜の製造方法は、
電極の形成された所定の基板表面に直接または任意の薄
膜を介して間接的に、エネルギービーム感応性基及び熱
反応性基をそれぞれ含むモノマーから共重合された樹脂
からなりかつ可視光域で透明な樹脂膜を塗布形成する工
程と、少なくとも任意のマスクを介してエネルギービー
ムを樹脂膜に照射してエネルギービーム感応性基を反応
架橋する工程とを有することを特徴とする
Further, the method for producing a liquid crystal alignment film according to the present invention comprises:
Resin copolymerized from a monomer containing an energy beam-sensitive group and a heat-reactive group, respectively , directly or indirectly through a thin film on a predetermined substrate surface on which electrodes are formed
A step becomes and the transparent resin film in the visible light region coating formed from, characterized by a step of reacting the crosslinking energy beam sensitive radical by irradiating an energy beam to the resin film via at least any of the mask And

【0008】そして上記の構成により、従来不良の発生
率が極めて高かったラビング工程を不要とし、それを用
いた表示パネルを極めて低コストに製造できる。
With the above structure, a rubbing step, which has conventionally had a very high rate of occurrence of defects, becomes unnecessary, and a display panel using the rubbing step can be manufactured at extremely low cost.

【0009】また本発明の液晶表示装置は、エネルギー
ビーム感応性基及び熱反応性基をそれぞれ含むモノマー
から共重合された樹脂からなりかつ可視光域で透明な樹
脂膜が電極上に直接または任意の薄膜を介して間接的に
形成され、少なくともエネルギービーム感応性基を反応
架橋されている液晶配向膜が2つの対向する電極の少な
くとも一方の電極上に形成されており、液晶が2つの対
向する電極に樹脂膜を介して挟まれていることを特徴と
する
Further, the liquid crystal display device of the present invention comprises a monomer having an energy beam-sensitive group and a heat-reactive group.
A liquid crystal alignment film composed of a resin copolymerized from and having a transparent resin film in the visible light region formed directly or indirectly through an optional thin film on the electrode, and having at least an energy beam-sensitive group reactively crosslinked. and characterized in that but is formed on at least one of the electrodes of the two opposing electrodes is sandwiched through the resin film to the electrodes the liquid crystal is two opposing
I do .

【0010】さらに本発明の液晶表示装置の製造方法
は、マトリックス状に載置された第1の電極群を有する
第1の基板上に直接または任意の薄膜を介して間接的に
エネルギービーム感応性基及び熱反応性基をそれぞれ含
むモノマーから共重合された樹脂からなりかつ可視光域
で透明な樹脂膜を塗布形成する工程と、少なくとも任意
のマスクを介してエネルギービームを照射してエネルギ
ービーム感応性基を反応架橋させる工程と、第1の電極
群と対向するように載置した第2の電極又は電極群を有
する第2の基板をそれぞれの電極側が対向するように位
置合わせして接着固定する工程と、第1と第2の基板に
所定の液晶を注入する工程とを有することを特徴とす
Further, according to the method of manufacturing a liquid crystal display device of the present invention, the energy beam sensitivity can be directly or indirectly applied via a thin film on a first substrate having a first electrode group mounted in a matrix. Groups and thermoreactive groups, respectively.
Coating and forming a transparent resin film made of a resin copolymerized from a monomer in the visible light range, and irradiating an energy beam through at least any mask to react and crosslink the energy beam sensitive group. A step of aligning and bonding and fixing a second electrode or a second substrate having an electrode group placed so as to face the first electrode group so that the respective electrode sides face each other; Injecting a predetermined liquid crystal into the second substrate .
You .

【0011】[0011]

【発明の実施の形態】以下では本発明の実施の形態にお
ける配向膜について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An alignment film according to an embodiment of the present invention will be described below.

【0012】そこでまず本実施の形態における配向膜の
概要について説明する。まずあらかじめ、電極の形成さ
れた所定の基板表面に直接または任意の薄膜を介して間
接的にエネルギービーム感応性基と熱反応性基を持つ可
視光域で透明な樹脂膜を塗布形成する。次に、任意のマ
スクを介してエネルギービームを照射して前記エネルギ
ービーム感応性基を反応架橋させる。
Therefore, first, the outline of the alignment film in the present embodiment will be described. First, a transparent resin film in the visible light region having an energy beam sensitive group and a thermally reactive group is applied and formed directly or indirectly through an arbitrary thin film on a predetermined substrate surface on which electrodes are formed. Next, an energy beam is irradiated through an arbitrary mask to react-crosslink the energy beam-sensitive group.

【0013】このとき、エネルギービーム感応性基が感
光性基であり、マスクを介して光を照射して前記被膜内
の感光性基を反応させ、主鎖間を架橋するとともに側鎖
基を配向固定する工程をもちいれば、従来のようなラビ
ングを必要とせず通常の露光機が使用可能となり液晶配
向膜の製造工程を簡略化できる。
At this time, the energy beam-sensitive group is a photosensitive group, and is irradiated with light through a mask to react the photosensitive group in the coating, cross-link between main chains and orient side groups. If the fixing step is used, a conventional exposure machine can be used without the need for rubbing as in the conventional case, and the manufacturing process of the liquid crystal alignment film can be simplified.

【0014】また、マスクとして偏光膜または回折格子
を介して露光すると、表面に筋状の凸凹を有する液晶配
向膜を高能率に製造できた。
Further, when exposure was performed through a polarizing film or a diffraction grating as a mask, a liquid crystal alignment film having streaky irregularities on the surface could be manufactured with high efficiency.

【0015】このとき、偏光膜および回折格子を介して
斜めより露光するか、あるいは偏光膜を介して露光した
後回折格子を介して斜め露光するか、回折格子を介して
露光した後を偏光膜介して斜め露光することで挟み込ん
だ液晶のプレチルト角まで制御できる液晶配向膜を製造
できた。なお、回折格子を介して露光する工程において
は、感光性の被膜の表面が凸凹になるまで露光すること
が配向性を安定化する上で重要であった。
At this time, exposure is performed obliquely through a polarizing film and a diffraction grating, or exposure is performed obliquely through a diffraction grating after exposure through a polarizing film, or exposure is performed through a diffraction grating. A liquid crystal alignment film that can control the pretilt angle of the interposed liquid crystal by obliquely exposing through the film was manufactured. In the step of exposing through a diffraction grating, it was important to perform exposure until the surface of the photosensitive film became uneven to stabilize the orientation.

【0016】また、エネルギービームを照射して前記エ
ネルギービーム感応性基を反応架橋する工程の前あるい
は後に加熱して熱反応性基を反応させておくと、液晶の
配向耐熱性が向上した。エネルギービームとして電子
線、X線、または紫外線が利用可能であるが、紫外線の
方が実用性が高かった。
Further, when the heat-reactive group is reacted by heating before or after the step of irradiating the energy beam with the energy beam to react and crosslink the energy beam-sensitive group, the alignment heat resistance of the liquid crystal is improved. Electron beams, X-rays, or ultraviolet rays can be used as energy beams, but ultraviolet rays have been more practical.

【0017】エネルギービーム感応性基と熱反応性基を
持つ可視光域で透明な樹脂として、下記に示す化学式で
表される物質を用いれば、紫外線感光性が高く熱架橋反
応も利用できるので液晶配向膜の製造には極めて好都合
であった。
When a substance represented by the following chemical formula is used as a transparent resin in the visible light region having an energy beam-sensitive group and a heat-reactive group, the liquid crystal has a high ultraviolet sensitivity and can utilize a thermal crosslinking reaction. It was very convenient for producing an alignment film.

【0018】[0018]

【化2】 Embedded image

【0019】なお、(化2)では、エネルギービーム感
応性のベンザルアセトフェノン基と熱反応性のグリシジ
ル基が側鎖基として導入されており、さらに炭化水素基
(ーCH3)が側鎖基として導入されているので、側鎖
基として炭化水素基を含んでいないものに比べさらに配
向安定性が向上した。また、この場合、透明な樹脂膜の
表面が筋状の1〜100nmの凸凹にななるまで露光す
ることが液晶の配向安定性を向上する上で重要であっ
た。
In the chemical formula (2), an energy beam-sensitive benzalacetophenone group and a thermally reactive glycidyl group are introduced as a side chain group, and a hydrocarbon group (--CH 3 ) is further added to the side chain group. As a result, the alignment stability was further improved as compared with those not containing a hydrocarbon group as a side chain group. Further, in this case, it is important to improve the alignment stability of the liquid crystal by exposing the transparent resin film until the surface of the transparent resin film becomes streaky unevenness of 1 to 100 nm.

【0020】以上のような方法で、エネルギービーム感
応性基と熱反応性基を持つ可視光域で透明な樹脂膜が電
極上に直接または任意の薄膜を介して間接的に形成さ
れ、少なくとも前記エネルギービーム感応性基を反応さ
せた被膜よりなるラビングフリーの液晶配向膜を極めて
簡便な方法で製造できた。
According to the method described above, a transparent resin film in the visible light region having an energy beam sensitive group and a thermally reactive group is formed directly on the electrode or indirectly through an arbitrary thin film. A rubbing-free liquid crystal alignment film composed of a film reacted with an energy beam-sensitive group could be manufactured by an extremely simple method.

【0021】そこで、実際の表示素子の製造では、あら
かじめマトリックス状に載置された第1の電極群を有す
る第1の基板上に直接または任意の薄膜を介して間接的
にエネルギービーム感応性基と熱反応性基を持つ可視光
域で透明な樹脂膜を塗布形成する工程と、および少なく
とも任意のマスクを介してエネルギービームを照射して
前記エネルギービーム感応性基を反応架橋する工程と、
前記第1の電極群と対向するように載置した第2の電極
叉は電極群を有する第2の基板を、それぞれの電極側が
対向するように位置合わせして接着固定する工程と、前
記第1と第2の基板に所定の液晶を注入する工程を用い
て、エネルギービーム感応性基と熱反応性基を持つ可視
光域で透明な樹脂膜が塗布形成され、少なくとも任意の
マスクを介してエネルギービームを照射して前記エネル
ギービーム感応性基を反応架橋させた被膜が、液晶用の
配向膜として2つの対向する電極の少なくとも一方の電
極上に形成されており、液晶が前記2つの対向する電極
に前記被膜を介して挟まれている構造の液晶表示装置を
極めて高効率で製造できた。
Therefore, in the actual manufacture of a display element, the energy beam sensitive substrate is directly or indirectly connected via a thin film on a first substrate having a first electrode group previously mounted in a matrix. A step of applying and forming a transparent resin film in a visible light region having a heat-reactive group, and a step of irradiating an energy beam through at least an arbitrary mask to react and cross-link the energy beam-sensitive group,
Positioning a second substrate having a second electrode or an electrode group placed so as to face the first electrode group so that the respective electrode sides face each other; Using a step of injecting a predetermined liquid crystal into the first and second substrates, a transparent resin film in the visible light region having an energy beam sensitive group and a thermally reactive group is applied and formed, and at least through an arbitrary mask A film formed by irradiating an energy beam to react and crosslink the energy beam-sensitive group is formed on at least one of two opposing electrodes as an alignment film for liquid crystal, and the liquid crystal is exposed to the two opposing electrodes. A liquid crystal display device having a structure sandwiched between the electrodes with the film interposed therebetween could be manufactured with extremely high efficiency.

【0022】次に以下では、本発明の実施の形態におけ
る液晶配向膜について図面を参照しながら詳細に説明す
る。
Next, a liquid crystal alignment film according to an embodiment of the present invention will be described in detail with reference to the drawings.

【0023】図1は、本発明の実施の形態における液晶
配向膜の製造工程断面図を示したものであり、以下では
図1(a)〜(d)に沿って本実施の形態を説明するこ
ととする。
FIG. 1 is a sectional view showing a manufacturing process of a liquid crystal alignment film according to an embodiment of the present invention. Hereinafter, the present embodiment will be described with reference to FIGS. 1 (a) to 1 (d). It shall be.

【0024】まず、あらかじめ、4’メタクリロイロキ
シカルコン(4’MC)とグリシジルメタアクリレート
(GMA)を1:4のモル比で共重合して、(化2)で
示されるような感光性のベンザルアセトフェノン基と熱
架橋性のグリシジル基およびメチル基が側鎖基として導
入された可視光域で透明な樹脂(すなわち、エネルギー
ビーム感応性基と熱反応性基を持つ樹脂)を作製し、シ
クロヘキサノンで0.5%に希釈して感光液を調製し
た。
First, 4 ′ methacryloyloxy chalcone (4 ′ MC) and glycidyl methacrylate (GMA) were previously copolymerized in a molar ratio of 1: 4 to obtain a photosensitive compound represented by the following chemical formula (2). A transparent resin (that is, a resin having an energy beam-sensitive group and a heat-reactive group) in the visible light region in which a glycidyl group and a methyl group capable of being thermally cross-linked with a benzalacetophenone group are introduced as a side group, The solution was diluted to 0.5% with cyclohexanone to prepare a photosensitive solution.

【0025】次に、図1(a)に示すような、あらかじ
め、ITOよりなる透明電極1の形成された所定のガラ
ス基板2の表面に、直接(またはSiO2等の絶縁性の
薄膜を介して間接的にでもよい)ディッピング法(また
はロールコーター、フレキソ印刷法が使用でも可)を用
いて上記の感光液を塗布し図1(b)に示すように感光
性でかつ熱硬化性の被膜3を形成した。
Next, as shown in FIG. 1A, a predetermined glass substrate 2 on which a transparent electrode 1 made of ITO is previously formed is directly (or through an insulating thin film such as SiO 2). Or indirectly) using a dipping method (or a roll coater or a flexographic printing method may be used) to apply the above-mentioned photosensitive solution to form a photosensitive and thermosetting film as shown in FIG. 1 (b). 3 was formed.

【0026】その後、100℃で10分間加熱して大部
分の溶媒を蒸発除去した(このときの膜厚はおよそ30
0nmであった)。次に、図1(c)に示すように、1
000本/mmの回折格子4(偏光板を用いても良い
が、その場合には光透過率が悪いので露光時間を長くす
る必要がある)をマスクとして用い、電極パターンと格
子が平行になるようセットして、垂直方向よりエネルギ
ービームとして500Wの超高圧水銀灯の365nm
(i線)の波長の紫外線5(マスク通過後28mJ/c
2)を5秒間照射して、前記感光性のベンザルアセト
フェノン基を反応架橋させると、回折格子パターン沿っ
て被膜表面にピッチ1000本/mmでおよそ30〜4
0nmの凸凹が形成された。
Thereafter, the mixture was heated at 100 ° C. for 10 minutes to evaporate and remove most of the solvent (at this time, the film thickness was about 30 minutes).
0 nm). Next, as shown in FIG.
The electrode pattern and the grating are parallel to each other using a diffraction grating 4 of 000 lines / mm (a polarizing plate may be used, but in that case, the exposure time needs to be increased because the light transmittance is low). With a 500 W ultra-high pressure mercury lamp as an energy beam from the vertical direction at 365 nm
Ultraviolet light 5 of wavelength (i-line) (28 mJ / c after passing through mask)
m 2 ) for 5 seconds to react and crosslink the photosensitive benzal acetophenone group, and the coating surface has a pitch of 1000 / mm along the diffraction grating pattern at a pitch of about 1000 / mm.
The unevenness of 0 nm was formed.

【0027】なお、この時の感光膜の分光感度特性を図
2に示す。この状態で、液晶表示セルを20ミクロンギ
ヤップで組み立て、ネマチック液晶(ZLI4792;
メルク社製)を注入して配向状態を確認すると、回折格
子パターンと交差する方向に液晶が配向していることが
確認できた。また、露光量に応じて注入した液晶のプレ
チルト角を制御できることが確認できた。
FIG. 2 shows the spectral sensitivity characteristics of the photosensitive film at this time. In this state, a liquid crystal display cell is assembled with a 20 micron gap, and a nematic liquid crystal (ZLI4792;
(Merck Co., Ltd.) was injected to confirm the orientation state, and it was confirmed that the liquid crystal was oriented in a direction crossing the diffraction grating pattern. It was also confirmed that the pretilt angle of the injected liquid crystal could be controlled according to the exposure amount.

【0028】一方、前述の露光工程において、回折格子
を用いて3秒間露光した後、さらに、市販のUV用偏光
板6(HNP’B;ポラロイド社製)をマスクとして用
い、回折格子パターンと偏光方向が垂直且つ基板に対し
て入射角度が45度の方向になるようセットして、エネ
ルギービームとして500Wの超高圧水銀灯を用いて3
65nm(i線)の波長の紫外線(マスク通過後3mJ
/cm2)を40秒間照射し(図1(d))、前記エネ
ルギービーム感応性基の未反応の残りをさらに反応架橋
させた。
On the other hand, in the above-mentioned exposure step, after exposing for 3 seconds using a diffraction grating, a commercially available UV polarizing plate 6 (HNP'B; manufactured by Polaroid) is used as a mask, and the diffraction grating pattern and polarization Using a 500 W ultra-high pressure mercury lamp as an energy beam, the direction was set so that the direction was perpendicular and the incident angle was 45 degrees with respect to the substrate.
UV light with a wavelength of 65 nm (i-line) (3 mJ after passing through the mask)
/ Cm 2 ) for 40 seconds (FIG. 1 (d)), and the unreacted residue of the energy beam-sensitive group was further reacted and cross-linked.

【0029】この状態で、液晶表示セルを組み立て、ネ
マチック液晶を注入して配向状態を確認すると、格子パ
ターンの方向に液晶が配向して、プレチルト角はおよそ
20度になっていることが確認できた。また、この2回
目の照射において照射角度を変えることで注入した液晶
のプレチルト角を制御できることも確認できた。なお、
上記2つのプロセスで作製された配向膜はそのままでも
それぞれ配向膜として利用可能であったが、150℃程
度で熱処理すると配向膜の配向性が劣化した。
In this state, the liquid crystal display cell was assembled, nematic liquid crystal was injected, and the alignment state was confirmed. It was confirmed that the liquid crystal was oriented in the direction of the lattice pattern and the pretilt angle was about 20 degrees. Was. It was also confirmed that the pretilt angle of the injected liquid crystal could be controlled by changing the irradiation angle in the second irradiation. In addition,
Although the alignment films produced by the above two processes could be used as alignment films as they were, heat treatment at about 150 ° C. deteriorated the alignment properties of the alignment films.

【0030】そこで、さらに配向膜の熱安定製を向上さ
せるため180℃で10分加熱して熱反応性のグリシジ
ル基(すなわち熱硬化性基)を開環架橋させた。この状
態で、液晶表示セルを組み立て、ネマチック液晶を注入
して配向状態を確認すると、格子パターンと垂直の方向
に液晶が配向して、プレチルト角はおよそ7度になって
いた。また、配向膜の熱安定性も170℃まで向上して
た。
Then, in order to further improve the thermal stability of the alignment film, the alignment layer was heated at 180 ° C. for 10 minutes to ring-open and crosslink the thermally reactive glycidyl group (ie, thermosetting group). In this state, the liquid crystal display cell was assembled, nematic liquid crystal was injected, and the alignment state was confirmed. The liquid crystal was aligned in a direction perpendicular to the lattice pattern, and the pretilt angle was about 7 degrees. Further, the thermal stability of the alignment film was improved to 170 ° C.

【0031】なお、このときの感光性で且つ熱硬化性の
被膜の露光による反応および加熱による反応は、下記の
反応式に示したように、いずれも架橋反応である。
The reaction by exposure of the photosensitive and thermosetting coating and the reaction by heating at this time are both crosslinking reactions as shown in the following reaction formula.

【0032】[0032]

【化3】 Embedded image

【0033】さらに炭化水素基(−CH3)を含まない
ものも合成して同様の実験を試みたが、液晶の配向制御
性特にプレチルト角制御安定性は−CH3を含むものに
比べて悪かった。
Further, the same experiment was attempted by synthesizing a compound containing no hydrocarbon group (-CH 3 ), but the alignment controllability of the liquid crystal, especially the pretilt angle control stability, was worse than that containing -CH 3. Was.

【0034】以上のように、本実施の形態の被膜では、
エネルギービーム感応性基が感光性基であり、マスクを
介して光を照射して前記被膜内の感光性基を反応させ、
主鎖間を架橋するとともに側鎖基を配向固定できた。ま
た、i線に感度があるため(図2参照)通常の露光機が
使用可能となり液晶配向膜の製造工程が簡略化できた。
As described above, in the coating of the present embodiment,
The energy beam-sensitive group is a photosensitive group, and reacts with the photosensitive group in the coating by irradiating light through a mask,
Cross-linking between the main chains and the orientation of the side chain groups could be fixed. In addition, since there is sensitivity to i-line (see FIG. 2), a normal exposure machine can be used, and the manufacturing process of the liquid crystal alignment film can be simplified.

【0035】また、マスクとして偏光膜または回折格子
を介して露光することで被膜表面に筋状の凸凹を有する
液晶配向膜を容易に製造できた。
Further, by exposing through a polarizing film or a diffraction grating as a mask, a liquid crystal alignment film having streaky irregularities on the film surface could be easily produced.

【0036】さらに、このとき露光量、あるいは偏光膜
および回折格子を介して斜めより露光するか、あるいは
偏光膜を介して斜めに露光した後回折格子を介して露光
するか、回折格子を介して露光した後を偏光膜介して斜
め露光することで挟み込んだ液晶のプレチルト角まで制
御でき、また、そのようにして配向性の安定した液晶配
向膜を製造できた。なお、1回露光でプレチルト角を安
定に制御するためには、感光性の被膜の表面が所定の凸
凹になるまで露光することが重要であった。
Further, at this time, the amount of exposure, or the oblique exposure through the polarizing film and the diffraction grating, the oblique exposure through the polarizing film and then the exposure through the diffraction grating, or the exposure through the diffraction grating By performing the oblique exposure after the exposure through the polarizing film, the pretilt angle of the sandwiched liquid crystal could be controlled, and a liquid crystal alignment film having stable alignment could be manufactured. In order to stably control the pretilt angle in a single exposure, it was important to perform exposure until the surface of the photosensitive film became a predetermined unevenness.

【0037】また、エネルギービームを照射して前記エ
ネルギービーム感応性基を反応架橋する工程の前あるい
は後に加熱して熱反応性基を反応させておくと、配向膜
の配向耐熱性が向上した。また、エネルギービームとし
て電子線、X線、または紫外線が利用可能であるが、実
際の製造工程では紫外線の方が実用性が高かった。
Further, when the heat-reactive group is reacted by heating before or after the step of irradiating the energy beam with the energy beam-sensitive group to react and crosslink the energy beam-sensitive group, the alignment film has improved alignment heat resistance. In addition, electron beams, X-rays, or ultraviolet rays can be used as energy beams, but ultraviolet rays were more practical in actual manufacturing processes.

【0038】以上のように、エネルギービーム感応性基
と熱反応性基を持つ可視光域で透明な樹脂膜が電極上に
直接または任意の薄膜を介して間接的に形成され、少な
くとも前記エネルギービーム感応性基を反応させた被膜
よりなるラビングフリーの液晶配向膜を極めて簡便な方
法で製造できた。
As described above, a transparent resin film in the visible light region having an energy beam sensitive group and a thermally reactive group is formed directly on the electrode or indirectly through an arbitrary thin film. A rubbing-free liquid crystal alignment film composed of a film having a sensitive group reacted was produced by an extremely simple method.

【0039】次に、以下では上記した液晶配向膜を用い
た液晶表示デバイス及びその製造方法について図3を参
照しながら詳細に説明する。
Next, a liquid crystal display device using the above liquid crystal alignment film and a method for manufacturing the same will be described in detail with reference to FIG.

【0040】まず、あらかじめ(化2)で示されるエネ
ルギービーム感応性基と熱反応性基を持つ可視光域で透
明な樹脂をシクロヘキサノンで0.5%に希釈して調製
した感光液を作製し、図3に示すように、マトリックス
状に載置された第1の電極群11とこの電極を駆動する
トランジスター群12を有する第1の基板13上、およ
び第1の電極群と対向するように載置したカラーフィル
ター群14と第2の電極15を有する第2の基板16上
の両方の電極上に、それぞれディッピング法を用いて塗
布し感光性で且つ熱硬化性の樹脂被膜を形成した。
First, a photosensitive liquid was prepared by previously diluting a transparent resin in the visible light region having an energy beam-sensitive group and a heat-reactive group represented by (Chemical Formula 2) to 0.5% with cyclohexanone. As shown in FIG. 3, on a first substrate 13 having a first electrode group 11 mounted in a matrix and a transistor group 12 for driving the electrodes, and facing the first electrode group. A photosensitive and thermosetting resin film was formed on both electrodes on the second substrate 16 having the mounted color filter group 14 and the second electrode 15 by dipping.

【0041】その後、100℃で10分間加熱してある
程度溶媒を除去し後、1000本/mmの回折格子をマ
スクとして用い、電極パターンと格子が平行になるよう
セットして、垂直方向よりエネルギービームとして50
0Wの超高圧水銀灯を用いて365nm(i線)の波長
の紫外線(マスク通過後28mJ/cm2)を5秒照射
して前記エネルギービーム感応性のベンザルアセトフェ
ノン基を反応架橋すると、電極パターンに沿っておよそ
30〜40nmの凸凹が形成された液晶配向膜17が作
製できた。
After heating at 100 ° C. for 10 minutes to remove a certain amount of the solvent, the electrode pattern and the grating were set in parallel using a 1000 / mm diffraction grating as a mask. As 50
Ultraviolet light of a wavelength of 365 nm (i-line) (28 mJ / cm 2 after passing through a mask) was irradiated for 5 seconds using an ultrahigh pressure mercury lamp of 0 W for 5 seconds to react and crosslink the energy beam-sensitive benzalacetophenone group. Thus, a liquid crystal alignment film 17 having irregularities of about 30 to 40 nm was formed.

【0042】次に、前記第1と第2の基板13、16を
対抗するように位置合わせしてスペーサー18と接着剤
19でおよそ5ミクロンのギャップで固定した。その
後、前記第1と第2の基板に前記液晶20を注入した
後、偏光板21、22を組み合わせて表示素子を完成し
た。
Next, the first and second substrates 13 and 16 were aligned so as to oppose each other, and were fixed with a spacer 18 and an adhesive 19 with a gap of about 5 μm. Then, after injecting the liquid crystal 20 into the first and second substrates, the display device was completed by combining the polarizing plates 21 and 22.

【0043】この様なデバイスは、バックライト23を
全面に照射しながら、ビデオ信号を用いて各々のトラン
ジスタを駆動することで矢印Aの方向に映像を表示でき
た。
In such a device, an image can be displayed in the direction of arrow A by driving each transistor using a video signal while irradiating the backlight 23 over the entire surface.

【0044】[0044]

【発明の効果】以上述べてきたように、本発明の液晶配
向膜は、電極の形成された所定の基板表面に直接または
任意の薄膜を介して間接的にエネルギービーム感応性基
と熱反応性基を持つ可視光域で透明な樹脂膜を塗布形成
する工程、および少なくとも任意のマスクを介してエネ
ルギービームを照射して前記エネルギービーム感応性基
を反応架橋する工程を用いているため、高能率で均一且
つ極めて薄い配向膜を作製できる。
As described above, the liquid crystal alignment film of the present invention can be directly or indirectly indirectly through an arbitrary thin film on the surface of a predetermined substrate on which an electrode is formed. A step of applying and forming a transparent resin film in a visible light region having a group, and a step of irradiating an energy beam through at least an arbitrary mask to react and crosslink the energy beam-sensitive group; Thus, a uniform and extremely thin alignment film can be produced.

【0045】また、このような液晶配向膜を用いること
で、従来のようなラビング工程を必要とせず、歩留まり
が高く極めて低コスト高信頼性の液晶表示装置を提供で
きる。
Further, by using such a liquid crystal alignment film, it is possible to provide a liquid crystal display device having a high yield, extremely low cost and high reliability without requiring a rubbing step as in the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における液晶配向膜の製造
工程断面図
FIG. 1 is a cross-sectional view illustrating a manufacturing process of a liquid crystal alignment film according to an embodiment of the present invention.

【図2】本発明の実施の形態における液晶配向膜中の感
光性且つ熱硬化性樹脂の分光感度特性を示す図
FIG. 2 is a diagram showing spectral sensitivity characteristics of a photosensitive and thermosetting resin in a liquid crystal alignment film according to an embodiment of the present invention.

【図3】本発明の実施の形態における液晶表示デバイス
の断面図
FIG. 3 is a cross-sectional view of the liquid crystal display device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電極 2 ガラス板 3 感光性且つ熱硬化性の樹脂膜 4 回折格子マスク 5 紫外光 6 偏光板マスク 11 第1の電極群 12 トランジスタ群 13 第1の基板 14 カラーフィルター群 15 第2の電極 16 第2の基板 17 ラビングフリー液晶配向膜 18 スぺーサー 19 接着剤 20 液晶 21,22 偏光板 23 バックライト Reference Signs List 1 electrode 2 glass plate 3 photosensitive and thermosetting resin film 4 diffraction grating mask 5 ultraviolet light 6 polarizing plate mask 11 first electrode group 12 transistor group 13 first substrate 14 color filter group 15 second electrode 16 Second substrate 17 Rubbing-free liquid crystal alignment film 18 Spacer 19 Adhesive 20 Liquid crystal 21, 22 Polarizing plate 23 Backlight

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エネルギービーム感応性基及び熱反応性基
それぞれ含むモノマーから共重合された樹脂からなり
かつ可視光域で透明な樹脂膜が電極上に直接または任意
の薄膜を介して間接的に形成され、少なくとも前記エネ
ルギービーム感応性基を反応架橋されていることを特徴
とする液晶配向膜。
1. A resin copolymerized from a monomer containing an energy beam sensitive group and a thermoreactive group, respectively.
And transparent resin film in the visible light region is formed indirectly via a direct or any thin film on the electrode, a liquid crystal alignment film, which has been reacted crosslinking at least the energy beam sensitive radical.
【請求項2】樹脂膜において、エネルギービーム感応性
基及び熱反応性基が側鎖基として導入されていることを
特徴とする請求項1記載の液晶配向膜。
2. The liquid crystal alignment film according to claim 1, wherein an energy beam sensitive group and a heat reactive group are introduced as a side chain group in the resin film.
【請求項3】樹脂膜において、エネルギービーム感応性
基、熱反応性基及び炭化水素基が側鎖基として導入され
ていることを特徴とする請求項1記載の液晶配向膜。
3. The liquid crystal alignment film according to claim 1, wherein an energy beam sensitive group, a heat reactive group, and a hydrocarbon group are introduced as a side chain group in the resin film.
【請求項4】樹脂膜の表面が筋状の凸凹に形成されてい
ることを特徴とする請求項1記載の液晶配向膜。
4. The liquid crystal alignment film according to claim 1, wherein the surface of the resin film is formed with streaks.
【請求項5】熱反応性基が反応架橋されていることを特
徴とする請求項1〜4いずれかに記載の液晶配向膜。
5. The liquid crystal alignment film according to claim 1, wherein the thermoreactive group is reactively crosslinked.
【請求項6】樹脂膜として下記の化学式で表される物質
を用いることを特徴とする請求項1記載の液晶配向膜。 【化1】
6. The liquid crystal alignment film according to claim 1, wherein a substance represented by the following chemical formula is used as the resin film. Embedded image
【請求項7】電極の形成された所定の基板表面に直接ま
たは任意の薄膜を介して間接的に、エネルギービーム感
応性基及び熱反応性基をそれぞれ含むモノマーから共重
合された樹脂からなりかつ可視光域で透明な樹脂膜を塗
布形成する工程と、少なくとも任意のマスクを介してエ
ネルギービームを前記樹脂膜に照射して前記エネルギー
ビーム感応性基を反応架橋する工程とを有する液晶配向
膜の製造方法。
7. Copolymerization of a monomer containing an energy beam sensitive group and a heat reactive group, respectively , directly or indirectly through a thin film on a predetermined substrate surface on which an electrode is formed.
A step of applying and forming a resin film made of a combined resin and transparent in the visible light range, and a step of irradiating the resin film with an energy beam through at least an arbitrary mask to react and crosslink the energy beam-sensitive group. A method for producing a liquid crystal alignment film comprising:
【請求項8】エネルギービーム感応性基を反応架橋する
工程の前あるいは後に加熱により熱反応性基を反応架橋
させる工程を付加したことを特徴とする請求項7記載の
液晶配向膜の製造方法。
8. The method for producing a liquid crystal alignment film according to claim 7, wherein a step of reacting and crosslinking the heat reactive group by heating is added before or after the step of reacting and crosslinking the energy beam sensitive group.
【請求項9】エネルギービーム感応性基が感光性基であ
り、マスクを介して紫外線を照射して樹脂膜内の感光性
基を反応させ、主鎖間を架橋するとともに側鎖基を配向
固定することを特徴とする請求項7記載の液晶配向膜の
製造方法。
9. The energy beam-sensitive group is a photosensitive group, and is irradiated with ultraviolet rays through a mask to react the photosensitive group in the resin film, thereby to crosslink between main chains and to fix side chain groups. The method for producing a liquid crystal alignment film according to claim 7, wherein:
【請求項10】マスクとして偏光膜または回折格子を用
いて露光することを特徴とする請求項7記載の液晶配向
膜の製造方法。
10. The method according to claim 7, wherein the exposure is performed using a polarizing film or a diffraction grating as a mask.
【請求項11】露光の際に、樹脂膜の表面が凸凹になる
まで露光を行うことを特徴とする請求項7記載の液晶配
向膜の製造方法。
11. The method according to claim 7, wherein the exposure is performed until the surface of the resin film becomes uneven.
【請求項12】エネルギービーム感応性基及び熱反応性
基をそれぞれ含むモノマーから共重合された樹脂からな
りかつ可視光域で透明な樹脂膜が電極上に直接または任
意の薄膜を介して間接的に形成され、少なくとも前記エ
ネルギービーム感応性基を反応架橋されている液晶配向
膜が2つの対向する電極の少なくとも一方の電極上に形
成されており、液晶が前記2つの対向する電極に前記樹
脂膜を介して挟まれていることを特徴とする液晶表示装
置。
12. A resin copolymerized from a monomer containing an energy beam-sensitive group and a thermo-reactive group.
In addition , a resin film transparent in the visible light region is formed directly on the electrode or indirectly via an arbitrary thin film, and at least the liquid crystal alignment film reactively cross-linked to the energy beam-sensitive group is formed on two opposite electrodes. Wherein the liquid crystal is interposed between the two opposing electrodes via the resin film.
【請求項13】マトリックス状に載置された第1の電極
群を有する第1の基板上に直接または任意の薄膜を介し
て間接的にエネルギービーム感応性基及び熱反応性基を
それぞれ含むモノマーから共重合された樹脂からなりか
可視光域で透明な樹脂膜を塗布形成する工程と、少な
くとも任意のマスクを介してエネルギービームを照射し
て前記エネルギービーム感応性基を反応架橋させる工程
と、前記第1の電極群と対向するように載置した第2の
電極又は電極群を有する第2の基板をそれぞれの電極側
が対向するように位置合わせして接着固定する工程と、
前記第1と第2の基板に所定の液晶を注入する工程とを
有する液晶表示装置の製造方法。
13. An energy beam-sensitive group and a heat-reactive group are directly or indirectly applied via a thin film on a first substrate having a first electrode group placed in a matrix.
Consists of a resin copolymerized from the monomers contained in each
One the step of the transparent resin film in the visible light region is formed by coating, a step of reacting crosslink by irradiation the energy beam sensitive radical energy beam via at least any of the mask, facing the first electrode group Bonding and fixing a second substrate having a second electrode or an electrode group mounted thereon such that the respective electrode sides face each other;
Injecting a predetermined liquid crystal into the first and second substrates.
JP18032796A 1996-07-10 1996-07-10 Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device Expired - Lifetime JP3264477B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP18032796A JP3264477B2 (en) 1996-07-10 1996-07-10 Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device
TW086109496A TW515926B (en) 1996-07-10 1997-07-05 Liquid crystal alignment film and method for producing the same, and liquid crystal display apparatus using the same and method for producing the same
US09/029,870 US6368681B1 (en) 1996-07-10 1997-07-07 Liquid crystal alignment film, method of manufacturing the film, liquid crystal display using the film and method, and method of manufacturing the liquid crystal display
CNB971912211A CN1149437C (en) 1996-07-10 1997-07-07 Liquid crystal alignment film, method for mfg. same, liquid crystal display using the film and method, and method for mfg. for display
PCT/JP1997/002354 WO1998001789A1 (en) 1996-07-10 1997-07-07 Liquid crystal alignment film, method of manufacturing the film, liquid crystal display using the film and method, and method of manufacturing the liquid crystal display
KR1019980701804A KR100258847B1 (en) 1996-07-10 1997-07-07 Liquid crystal alignment film, method manufacturing the film, liquid crystal display using the film and method, and method of manufacturing the liquid crystal
JP36720499A JP3468507B2 (en) 1996-07-10 1999-12-24 Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device
US10/010,537 US20020054965A1 (en) 1996-07-10 2001-12-05 Liquid crystal alignment film and method for producing the same, and liquid crystal display apparatus using the same and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18032796A JP3264477B2 (en) 1996-07-10 1996-07-10 Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP36720499A Division JP3468507B2 (en) 1996-07-10 1999-12-24 Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH1026760A JPH1026760A (en) 1998-01-27
JP3264477B2 true JP3264477B2 (en) 2002-03-11

Family

ID=16081282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18032796A Expired - Lifetime JP3264477B2 (en) 1996-07-10 1996-07-10 Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3264477B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4208168B2 (en) * 1999-12-17 2009-01-14 日東電工株式会社 Cholesteric liquid crystal composition, alignment film and multicolor reflector
GB2366874B (en) * 2000-06-26 2004-04-28 Ibm Liquid crystal display
JP4626039B2 (en) * 2000-09-26 2011-02-02 コニカミノルタホールディングス株式会社 Method for producing photo-alignment layer
EP1206975A3 (en) * 2000-11-14 2004-07-14 Matsushita Electric Industrial Co., Ltd. Chemical adsorption solution and method of producing chemically adsorbed film using the chemical adsorption solution
JP2005084147A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Method for forming alignment layer, alignment layer, substrate for electronic device, liquid crystal panel, and electronic apparatus
KR101184064B1 (en) * 2005-06-23 2012-09-21 엘지디스플레이 주식회사 Apparatus For Fabricating Alignment Film and Method For Fabricating Liquid Crystal Display Panel Using the same
EP1945737B1 (en) 2005-11-07 2013-03-06 LG Chem, Ltd. Copolymer for liquid crystal alignment, liquid crystal aligning layer including copolymer for liquid crystal alignment, and liquid crystal display including liquid crystal aligning layer

Also Published As

Publication number Publication date
JPH1026760A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
US20230273483A1 (en) Liquid crystal display device and manufacturing method thereof
KR100258847B1 (en) Liquid crystal alignment film, method manufacturing the film, liquid crystal display using the film and method, and method of manufacturing the liquid crystal
US6184959B1 (en) Liquid crystal display device having alignment film that provides alignment upon irradiation and manufacturing method the same
US8758871B2 (en) Liquid crystal display and method for manufacturing same
JP3178773B2 (en) Liquid crystal display device and method of manufacturing the same
US20060050222A1 (en) Method for forming alignment layer and method for manufacturing liquid crystal display device using the same
WO2010116565A1 (en) Liquid crystal display device, method for manufacturing liquid crystal display device, composition for forming photopolymer film, and composition for forming liquid crystal layer
JPH08254705A (en) Uv ray curing compound, oriented film for liquid crystal display element and liquid crystal display element
JPH0743689A (en) Information display device and its production
US8491973B2 (en) Photo-alignment material and liquid crystal display device and its manufacturing method using the same
JPH10232400A (en) Optical orienting composition, alignment layer formed from that composition, and liquid crystal display element equipped with that alignment layer
JP3264477B2 (en) Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device
JP2002023164A (en) Method for liquid crystal displaying, liquid crystal display device and device for manufacturing the same
JP3209166B2 (en) Method for manufacturing liquid crystal alignment film
JP4594484B2 (en) Alignment film for liquid crystal display elements
KR20080095663A (en) Liquid crystal display and method of fabricating the same
US6610462B1 (en) Liquid crystal alignment using photo-crosslinkable low molecular weight materials
KR100684182B1 (en) A method of making an element of a liquid crystal polymer, an element of a liquid crystal polymer made by the method and an optical device comprising the element
JP4342168B2 (en) Liquid crystal display device and manufacturing method thereof
JP3468507B2 (en) Liquid crystal alignment film, method for manufacturing liquid crystal alignment film, liquid crystal display device, and method for manufacturing liquid crystal display device
JP2000227595A (en) Production of liquid crystal display device
JP2002309103A (en) Liquid crystalline composition, color filter, and liquid crystal display device
JP3303856B2 (en) Liquid crystal display panel and manufacturing method
JPH09288206A (en) Production of diffraction optical element
JPH11202338A (en) Liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 12

EXPY Cancellation because of completion of term