JP3255706B2 - Silicone compound - Google Patents

Silicone compound

Info

Publication number
JP3255706B2
JP3255706B2 JP13264292A JP13264292A JP3255706B2 JP 3255706 B2 JP3255706 B2 JP 3255706B2 JP 13264292 A JP13264292 A JP 13264292A JP 13264292 A JP13264292 A JP 13264292A JP 3255706 B2 JP3255706 B2 JP 3255706B2
Authority
JP
Japan
Prior art keywords
silicone compound
parts
group
resin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13264292A
Other languages
Japanese (ja)
Other versions
JPH05320350A (en
Inventor
義弘 中田
幸雄 瀧川
繁明 八木
紀男 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13264292A priority Critical patent/JP3255706B2/en
Publication of JPH05320350A publication Critical patent/JPH05320350A/en
Priority to US08/544,670 priority patent/US5763540A/en
Application granted granted Critical
Publication of JP3255706B2 publication Critical patent/JP3255706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は新規シリコーン化合物に
関し、更に詳しくは、電子材料、接着剤などの熱硬化性
樹脂の可とう性付与剤として利用可能な新規シリコーン
化合物及びその製法に関する。本発明は更に、エポキシ
樹脂、マレイミド樹脂、及びポリイミド樹脂等の熱硬化
性樹脂用の可とう性付与剤にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel silicone compound, and more particularly to a novel silicone compound which can be used as a flexibility imparting agent for thermosetting resins such as electronic materials and adhesives, and a method for producing the same. The invention further relates to a flexibility-imparting agent for thermosetting resins such as epoxy resins, maleimide resins, and polyimide resins.

【0002】[0002]

【従来技術】近年、電子、電気機器、輸送機などの小型
軽量化、高性能化が進み、これに伴い耐熱性に優れた材
料が望まれている。耐熱性樹脂としてはマレイミド樹
脂、ポリイミド樹脂が一般に知られているが、いずれも
硬化物が硬くて脆く、適用分野が限定されている。ま
た、エポキシ樹脂も同様に硬化物が硬く、また、硬化時
の収縮応力による接着表面の剥離、クラックなどの問題
が生じている。
2. Description of the Related Art In recent years, the size, weight, and performance of electronic, electric, and transportation equipment have been reduced, and accordingly, materials having excellent heat resistance have been desired. As the heat-resistant resin, a maleimide resin and a polyimide resin are generally known, but the cured product is hard and brittle, and the application field is limited. Similarly, the cured product of the epoxy resin is hard, and problems such as peeling and cracking of the adhesive surface due to shrinkage stress during curing are caused.

【0003】従来、かかる問題を解決するため、例えば
カルボキシ基を2個以上有するポリブタジエンと水酸基
又はアルコキシ基を1個以上有するシリコーン樹脂との
反応物を配合した半導体封止用エポキシ樹脂組成物(特
開昭59−113021)、あるいはエポキシ基を有す
る変性シリコーンオイルとフェノールノボラック樹脂と
の予備反応物である可とう化剤(特開昭63−4621
6)等が開示されている。しかし、これらの樹脂組成物
あるいは可とう化剤も未だその性能が不十分であり、か
つ適用樹脂が制限されている。
[0003] Conventionally, in order to solve such a problem, for example, an epoxy resin composition for semiconductor encapsulation containing a reaction product of a polybutadiene having two or more carboxy groups and a silicone resin having one or more hydroxyl groups or alkoxy groups (particularly, Japanese Patent Application Laid-Open No. Sho 63-11621, or a pre-reaction product of a modified silicone oil having an epoxy group and a phenol novolak resin.
6) and the like are disclosed. However, the performance of these resin compositions or plasticizers is still insufficient, and the applicable resins are limited.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
に示したような従来技術の欠点を解消するためになされ
たものであり、種々の分野において有利に使用すること
ができる、耐熱性、可とう性、耐クラック性、密着性お
よび疎水性に優れた樹脂組成物を提供するためのシリコ
ーン化合物および該化合物から成る可とう性付与剤を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and is intended to be used in various fields. Another object of the present invention is to provide a silicone compound for providing a resin composition having excellent flexibility, crack resistance, adhesion and hydrophobicity, and a flexibility imparting agent comprising the compound.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記課題
を解決するため鋭意研究を重ねた結果、新規な一定のシ
リコーン化合物、すなわち、シルフェニレンジシロキサ
ン−シロキサンコポリマーが特に耐熱性と可とう性付与
に寄与することの知見を得た。すなわち、一方のコポリ
マー成分中の骨格構造のシロキサンおよび側鎖のアルキ
ル基、ビニル基が硬化時の収縮に伴う応力緩和および疎
水性向上に寄与し、他方のコポリマー成分の芳香環が組
成物の耐熱性低下を防止することの知見を得て本発明を
完成した。
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, a novel silicone compound, namely, a silphenylene disiloxane-siloxane copolymer, has a particularly high heat resistance. The knowledge that it contributes to imparting flexibility was obtained. That is, the siloxane having a skeletal structure and the alkyl group and vinyl group in the side chain in one copolymer component contribute to stress relaxation and improvement in hydrophobicity due to shrinkage during curing, and the aromatic ring in the other copolymer component serves as a heat-resistant component of the composition. The present invention was completed based on the knowledge of preventing a decrease in the properties.

【0006】また、本発明化合物を添加する熱硬化性樹
脂は、エポキシ樹脂、マレイミド樹脂、ポリイミド樹
脂、メラミン樹脂、尿素樹脂、フェノール樹脂等熱硬化
性樹脂全般に有効であることの知見も得られた。かくし
て、本発明のシリコーン化合物は、次式I:
It has also been found that the thermosetting resin to which the compound of the present invention is added is effective for all thermosetting resins such as epoxy resin, maleimide resin, polyimide resin, melamine resin, urea resin and phenol resin. Was. Thus, the silicone compounds of the present invention have the formula I:

【0007】[0007]

【化4】 Embedded image

【0008】(式中、R1 は低級アルキル基を表わし、
2 およびR3 は互いに独立しておりかつ、それぞれ、
ビニル基もしくは低級アルキル基、又はフェニル基を表
わし、n:mは0.2:1〜2:1の割合を表わす) で表わされる、分子量500〜100000のシリコー
ン化合物であることを特徴とする。
Wherein R 1 represents a lower alkyl group;
R 2 and R 3 are independent of each other and
Which represents a vinyl group or a lower alkyl group or a phenyl group, and n: m represents a ratio of 0.2: 1 to 2: 1), and is characterized by being a silicone compound having a molecular weight of 500 to 100,000.

【0009】また、前記シリコーン化合物の製造方法
は、次式II:
The method for producing the silicone compound is represented by the following formula II:

【0010】[0010]

【化5】 Embedded image

【0011】(式中、R1 は低級アルキル基を表わし、
4 は低級アルコキシ基又はハロゲン原子を表わす)で
表わされるシルフェニレン化合物を、次式III :
(Wherein R 1 represents a lower alkyl group;
R 4 represents a lower alkoxy group or a halogen atom), and a silphenylene compound represented by the following formula III:

【0012】[0012]

【化6】 Embedded image

【0013】(式中、R2 およびR3 は互いに独立して
おりかつ、それぞれ、ビニル基もしくは低級アルキル
基、又はフェニル基を表わし、R5 は低級アルコキシ基
又はハロゲン原子を表わし、ただしR 4 とは異なる) で表わされる珪素化合物とを反応させることを特徴とす
る。更に本発明の可とう性付与剤は、前記式Iのシリコ
ーン化合物から成ることを特徴とする。
[0013] (wherein, R 2 and R 3 independently of one another are
OriKatsu, respectively, a vinyl group or a lower alkyl group, or a phenyl group, R 5 is Table Wa lower alkoxy group or a halogen atom, provided that the reaction of a silicon compound represented by different) from R 4 Features. Furthermore, the flexibility-imparting agent of the present invention is characterized by comprising the silicone compound of the formula I.

【0014】本発明において、定義された低級アルキル
基は、炭素数1〜4のアルキル基を意味し、好ましくは
炭素数1〜2のアルキル基である。また、低級アルコキ
シ基は炭素数1〜4のアルコキシ基を意味し、好ましく
は炭素数1〜2のアルコキシ基である。又、ハロゲン原
子は、塩素、臭素、ヨウ素、フッ素原子を意味し、好ま
しくは塩素原子である。
In the present invention, the defined lower alkyl group means an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms. The lower alkoxy group means an alkoxy group having 1 to 4 carbon atoms, preferably an alkoxy group having 1 to 2 carbon atoms. Further, the halogen atom means a chlorine, bromine, iodine or fluorine atom, preferably a chlorine atom.

【0015】本発明のシリコーン化合物の分子量は50
0〜100000が好ましい。これは500未満では組
成物の耐熱性、可とう性を劣化させ、100000超で
は組成物との相溶性低下による硬化物表面へのブリード
アウトならびに耐熱性を劣化させるからである。本発明
の前記シリコーン化合物は、前記の如く式IIのシルフェ
ニレン化合物と式III の珪素化合物とを共重合させるこ
とによって得ることができる。
The silicone compound of the present invention has a molecular weight of 50
0 to 100000 is preferred. This is because if it is less than 500, the heat resistance and flexibility of the composition will be degraded, and if it exceeds 100,000, bleed out to the surface of the cured product due to reduced compatibility with the composition and heat resistance will be degraded. The silicone compound of the present invention can be obtained by copolymerizing the silphenylene compound of the formula II and the silicon compound of the formula III as described above.

【0016】共重合反応は、溶剤中で重合反応触媒を用
いて行うことが好ましい。溶媒としては、トルエン、メ
チルイソブチルケトン、メチルエチルケトン、メチルセ
ロソルブ、エチルセロソルブ、ブチルセロソルブ、N−
メチル−2−ピロリドン、ジメチルアセトアミド、ジメ
チルホルムアミド、ジメチルスルホキシドなどが挙げら
れるが、いずれも脱水処理を行ったものを使用する。ま
た、場合によっては2種以上の混合溶媒にしても差し支
えない。
The copolymerization reaction is preferably carried out in a solvent using a polymerization reaction catalyst. As the solvent, toluene, methyl isobutyl ketone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, butyl cellosolve, N-
Methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide and the like can be mentioned, and all of them are those subjected to a dehydration treatment. In some cases, a mixture of two or more solvents may be used.

【0017】本発明では、モノマーの官能基を加水分解
しシラノールを形成した後、脱水縮合反応を行うことに
よって重合させる。この脱水縮合反応を促進させる触媒
としては、塩酸、硫酸、硝酸などの酸触媒を好ましく用
いることができる。また、本発明では、用途ならびに保
存安定化を行うために末端基である水酸基をシリル化し
ても差し支えない。シリル化剤としては、トリメチルク
ロルシラン、トリフェニルクロルシラン、トリビニルク
ロルシラン、ジビニルメチルクロルシラン、ジメチルビ
ニルクロルシラン、ジビニルフェニルクロルシラン、ジ
フェニルビニルクロルシラン、メチルフェニルビニルク
ロルシランなどの一官能のクロルシランであれば差し支
えない。また、シリル化を促進させるために、ピリジ
ン、トリエチルアミンなどの塩基性触媒を用いても差し
支えない。
In the present invention, polymerization is carried out by performing a dehydration condensation reaction after hydrolyzing a functional group of a monomer to form a silanol. As a catalyst for promoting the dehydration condensation reaction, an acid catalyst such as hydrochloric acid, sulfuric acid, and nitric acid can be preferably used. Further, in the present invention, a hydroxyl group as a terminal group may be silylated in order to stabilize use and storage. Examples of the silylating agent include trimethylchlorosilane, triphenylchlorosilane, trivinylchlorosilane, divinylmethylchlorosilane, dimethylvinylchlorosilane, divinylphenylchlorosilane, diphenylvinylchlorosilane, and methylphenylvinylchlorosilane. Chlorsilane can be used. In order to promote silylation, a basic catalyst such as pyridine or triethylamine may be used.

【0018】更に反応温度は60℃〜150℃の温度範
囲で好ましく行うことができる。本発明のシリコーン化
合物は先に示したように、モノマー(1)式とモノマー
(2)式との共重合化により製造するが、その際に注意
する点は、R4 ,R5 の官能基が同一であり、且つ同時
加水分解を行うと、共役系、非共役系および直鎖性の違
いにより共重合化反応を阻害してしまう。そこで、本発
明の特徴としてR 4 ,R5 をそれぞれ異なる官能基(例
えば、R4 がメトキシ基、R5 がクロル基等)を用いる
ことにより、これらの問題点を解決することができる。
すなわち、共重合比の高いシリコーン化合物を製造する
ことができる。
Further, the reaction temperature is in a temperature range of 60 ° C. to 150 ° C.
It can be preferably carried out in a box. Siliconization of the present invention
The compound is, as shown above, the monomer (1) formula and the monomer
(2) Production by copolymerization with the formula
The point to do is RFour, RFiveHave the same functional group and
Hydrolysis can lead to differences in conjugated, non-conjugated and linear
This would inhibit the copolymerization reaction. Therefore,
R as a feature of Ming Four, RFiveWith different functional groups (eg
For example, RFourIs a methoxy group, RFiveUses chloro group etc.)
Thus, these problems can be solved.
That is, a silicone compound having a high copolymerization ratio is produced.
be able to.

【0019】[0019]

【作用】本発明によるシリコーン化合物は、上記示した
ような特性改善が挙げられるが、熱硬化性樹脂硬化物の
耐熱性向上、疎水性向上、可とう性向上、耐クラック性
向上、密着性向上に対して有効に作用する。従って、耐
熱性、疎水性、可とう性、耐クラック性、離型性、密着
性の同時的改善を実現することができる。
The silicone compound according to the present invention has the above-mentioned property improvements, but the heat resistance, hydrophobicity, flexibility, crack resistance, and adhesion of the cured thermosetting resin are improved. Works effectively against Therefore, it is possible to simultaneously improve heat resistance, hydrophobicity, flexibility, crack resistance, mold release, and adhesion.

【0020】以下、更に本発明を実施例により説明する
が、本発明がこれらの実施例に制限されないことはもと
よりである。
Hereinafter, the present invention will be further described with reference to examples, but it is needless to say that the present invention is not limited to these examples.

【0021】[0021]

【実施例】実施例1 1,4−ビス(ジメチルメトキシシリル)ベンゼン9
1.6g(0.4mol )、ジビニルジクロロシラン3
2.26g(0.2mol )をメチルイソブチルケトン2
00gに溶解させ、1lの反応容器に仕込んだ。純水2
5.2g(1.4mol )を滴下し30分放置した。塩酸
1.5g添加し、118℃,5時間加熱した。この際、
2 ガスをバブリングし、加水分解時の残存水ならびに
反応縮合水を除去した。得られた反応溶液を分液ロート
にて5回洗浄した後、10mmHgの条件下で濃縮した。次
に、得られた生成物をベンゼンに溶解させ凍結乾燥を行
い、シリコーン化合物78gを得た。得られたシリコー
ン化合物は、ゲルパーミュエーションクロマトグラムよ
り重量平均分子量22000(図1)であることがわか
った。また、 1H−NMRスペクトル(図2)より、6
ppm 付近にビニル基の存在が確認でき、その含有量はシ
ルフェニレンモノマー1に対し約0.25であった。実施例2 1,4−ビス(ジメチルメトキシシリル)ベンゼン9
1.6g(0.4mol )、ジビニルジクロロシラン6
0.52g(0.4mol )をメチルイソブチルケトン2
00gに溶解させ、1lの反応容器に仕込んだ。純水2
8.8g(1.6mol )を滴下し30分放置した。塩酸
1.5g添加し、118℃,5時間加熱した。この際、
2 ガスをバブリングし、加水分解時の残存水ならびに
反応縮合水を除去した。得られた反応溶液を分液ロート
にて5回洗浄した後、10mmHgの条件下で濃縮した。次
に、得られた生成物をベンゼンに溶解させ凍結乾燥を行
い、シリコーン化合物89gを得た。得られたシリコー
ン化合物は、ゲルパーミュエーションクロマトグラムよ
り重量平均分子量18000であることがわかった。応用例1 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)100部、フェノールノボラック樹脂(水酸基当
量105)55部、トリフェニルホスフィン1部、実施
例1により得られたシリコーン化合物5部を加熱混合
し、150℃,10hで硬化させ、ガラス転移温度、弾
性率、吸水率、アルミ板との密着性を評価した。
EXAMPLE 1 1,4-bis (dimethylmethoxysilyl) benzene 9
1.6 g (0.4 mol), divinyldichlorosilane 3
2.26 g (0.2 mol) of methyl isobutyl ketone 2
The reaction mixture was dissolved in 00 g and charged in a 1-liter reaction vessel. Pure water 2
5.2 g (1.4 mol) was added dropwise and left for 30 minutes. 1.5 g of hydrochloric acid was added, and the mixture was heated at 118 ° C. for 5 hours. On this occasion,
N 2 gas was bubbled to remove water remaining during hydrolysis and water of reaction condensation. The obtained reaction solution was washed five times with a separating funnel and then concentrated under the condition of 10 mmHg. Next, the obtained product was dissolved in benzene and freeze-dried to obtain 78 g of a silicone compound. The obtained silicone compound was found to have a weight average molecular weight of 22,000 (FIG. 1) from a gel permeation chromatogram. Also, from the 1 H-NMR spectrum (FIG. 2), 6
The presence of a vinyl group could be confirmed at around ppm, and the content was about 0.25 with respect to the silphenylene monomer 1. Example 2 1,4-bis (dimethylmethoxysilyl) benzene 9
1.6 g (0.4 mol), divinyldichlorosilane 6
0.52 g (0.4 mol) of methyl isobutyl ketone 2
The reaction mixture was dissolved in 00 g and charged in a 1-liter reaction vessel. Pure water 2
8.8 g (1.6 mol) was added dropwise and left for 30 minutes. 1.5 g of hydrochloric acid was added, and the mixture was heated at 118 ° C. for 5 hours. On this occasion,
N 2 gas was bubbled to remove water remaining during hydrolysis and water of reaction condensation. The obtained reaction solution was washed five times with a separating funnel and then concentrated under the condition of 10 mmHg. Next, the obtained product was dissolved in benzene and freeze-dried to obtain 89 g of a silicone compound. The obtained silicone compound was found to have a weight average molecular weight of 18,000 from a gel permeation chromatogram. Application Example 1 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 100 parts, 55 parts of a phenol novolak resin (hydroxyl equivalent 105), 1 part of triphenylphosphine, and 5 parts of the silicone compound obtained in Example 1 were heated and mixed, and cured at 150 ° C. for 10 hours. The elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated.

【0022】なお、全ての応用例における物性の評価は
次の試験規格および方法によった。 ガラス転移温度 熱機械分析装置(943TMA,Du
pont) 弾性率 動的粘弾性測定装置(983DM
A,Dupont) 吸水率 JIS K6911 密着性 アルミ板上で樹脂を硬化(180
℃,1時間)させ超音波探傷装置を用いて剥離状態を観
察した。
The evaluation of physical properties in all the applied examples was based on the following test standards and methods. Glass transition temperature Thermomechanical analyzer (943TMA, Du
pont) Elastic modulus Dynamic viscoelasticity measuring device (983DM)
A, Dupont) Water absorption JIS K6911 Adhesion Cure resin on aluminum plate (180
C. for 1 hour) and the peeled state was observed using an ultrasonic flaw detector.

【0023】結果を後記の表1および表2に示す。なお
表中、の密着性の評価判定基準は次の通りである: ◎ 剥離無し ○ 微小の剥離 △ 半面剥離
× 全面剥離応用例2 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)100部、フェノールノボラック樹脂(水酸基当
量105)55部、トリフェニルホスフィン1部、実施
例1により得られたシリコーン化合物10部を加熱混合
し、150℃,10hで硬化させ、ガラス転移温度、弾
性率、吸水率、アルミ板との密着性を評価した。結果を
後記の表1および表2に示す。応用例3 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)100部、フェノールノボラック樹脂(水酸基当
量105)55部、トリフェニルホスフィン1部、実施
例1により得られたシリコーン化合物20部を加熱混合
し、150℃,10hで硬化させ、ガラス転移温度、弾
性率、吸水率、アルミ板との密着性を評価した。結果を
後記の表1および表2に示す。応用例4 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)100部、フェノールノボラック樹脂(水酸基当
量105)55部、トリフェニルホスフィン1部、実施
例2により得られたシリコーン化合物5部を加熱混合
し、150℃,10hで硬化させ、ガラス転移温度、弾
性率、吸水率、アルミ板との密着性を評価した。結果を
後記の表1および表2に示す。応用例5 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)100部、フェノールノボラック樹脂(水酸基当
量105)55部、トリフェニルホスフィン1部、実施
例2により得られたシリコーン化合物10部を加熱混合
し、150℃,10hで硬化させ、ガラス転移温度、弾
性率、吸水率、アルミ板との密着性を評価した。結果を
後記の表1および表2に示す。応用例6 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)100部、フェノールノボラック樹脂(水酸基当
量105)55部、トリフェニルホスフィン1部、実施
例2により得られたシリコーン化合物20部を加熱混合
し、150℃,10hで硬化させ、ガラス転移温度、弾
性率、吸水率、アルミ板との密着性を評価した。結果を
後記の表1および表2に示す。応用例7 ビスマレイミド100部、ジアミノジフェニルメタン5
0部、実施例1により得られたシリコーン化合物5部を
加熱混合し、200℃,10hで硬化させ、ガラス転移
温度、弾性率、吸水率、アルミ板との密着性を評価し
た。結果を後記の表1および表2に示す。応用例8 ビスマレイミド100部、ジアミノジフェニルメタン5
0部、実施例1により得られたシリコーン化合物10部
を加熱混合し、200℃,10hで硬化させ、ガラス転
移温度、弾性率、吸水率、アルミ板との密着性を評価し
た。結果を後記の表1および表2に示す。応用例9 ビスマレイミド100部、ジアミノジフェニルメタン5
0部、実施例1により得られたシリコーン化合物20部
を加熱混合し、200℃,10hで硬化させ、ガラス転
移温度、弾性率、吸水率、アルミ板との密着性を評価し
た。結果を後記の表1および表2に示す。応用例10 ビスマレイミド100部、ジアミノジフェニルメタン5
0部、実施例2により得られたシリコーン化合物5部を
加熱混合し、200℃,10hで硬化させ、ガラス転移
温度、弾性率、吸水率、アルミ板との密着性を評価し
た。結果を後記の表1および表2に示す。応用例11 ビスマレイミド100部、ジアミノジフェニルメタン5
0部、実施例2により得られたシリコーン化合物10部
を加熱混合し、200℃,10hで硬化させ、ガラス転
移温度、弾性率、吸水率、アルミ板との密着性を評価し
た。結果を後記の表1および表2に示す。応用例12 ビスマレイミド100部、ジアミノジフェニルメタン5
0部、実施例2により得られたシリコーン化合物20部
を加熱混合し、200℃,10hで硬化させ、ガラス転
移温度、弾性率、吸水率、アルミ板との密着性を評価し
た。結果を後記の表1および表2に示す。比較例1 クレゾールノボラック型エポキシ樹脂(エポキシ当量2
00)100部、フェノールノボラック樹脂(水酸基当
量105)55部、トリフェニルホスフィン1部を加熱
混合し、150℃,10hで硬化させ、ガラス転移温
度、弾性率、吸水率、アルミ板との密着性を評価した。
結果を後記の表1および表2に示す。比較例2 ビスマレイミド100部、ジアミノジフェニルメタン5
0部を加熱混合し、200℃,10hで硬化させ、ガラ
ス転移温度、弾性率、吸水率、アルミ板との密着性を評
価した。結果を後記の表1および表2に示す。
The results are shown in Tables 1 and 2 below. In the table, the evaluation criteria for the adhesion are as follows: 無 し No peeling ○ Small peeling △ Half-face peeling
× Full peel application example 2 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 100 parts, 55 parts of a phenol novolak resin (hydroxyl equivalent: 105), 1 part of triphenylphosphine, and 10 parts of the silicone compound obtained in Example 1 were heated and mixed, and cured at 150 ° C. for 10 hours. The elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 3 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 100 parts, 55 parts of a phenol novolak resin (hydroxyl equivalent 105), 1 part of triphenylphosphine, and 20 parts of the silicone compound obtained in Example 1 were heated and mixed, and cured at 150 ° C. for 10 hours. The elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 4 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 100 parts, 55 parts of a phenol novolak resin (hydroxyl equivalent 105), 1 part of triphenylphosphine, and 5 parts of the silicone compound obtained in Example 2 were heated and mixed, and cured at 150 ° C. for 10 hours. The elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 5 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 100 parts, 55 parts of a phenol novolak resin (hydroxyl equivalent 105), 1 part of triphenylphosphine, and 10 parts of the silicone compound obtained in Example 2 were heated and mixed, and cured at 150 ° C. for 10 hours. The elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 6 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 100 parts, 55 parts of a phenol novolak resin (hydroxyl equivalent 105), 1 part of triphenylphosphine, and 20 parts of the silicone compound obtained in Example 2 were mixed by heating and cured at 150 ° C. for 10 hours. The elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 7 100 parts of bismaleimide, diaminodiphenylmethane 5
0 parts and 5 parts of the silicone compound obtained in Example 1 were mixed by heating and cured at 200 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to an aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 8 100 parts of bismaleimide, diaminodiphenylmethane 5
0 parts and 10 parts of the silicone compound obtained in Example 1 were mixed by heating and cured at 200 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 9 100 parts of bismaleimide, diaminodiphenylmethane 5
0 parts and 20 parts of the silicone compound obtained in Example 1 were mixed by heating and cured at 200 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to an aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 10 100 parts of bismaleimide, diaminodiphenylmethane 5
0 parts and 5 parts of the silicone compound obtained in Example 2 were mixed by heating and cured at 200 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to an aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 11 100 parts of bismaleimide, diaminodiphenylmethane 5
0 parts and 10 parts of the silicone compound obtained in Example 2 were mixed by heating and cured at 200 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Application Example 12 100 parts of bismaleimide, diaminodiphenylmethane 5
0 parts and 20 parts of the silicone compound obtained in Example 2 were mixed by heating and cured at 200 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to an aluminum plate were evaluated. The results are shown in Tables 1 and 2 below. Comparative Example 1 Cresol novolak type epoxy resin (epoxy equivalent 2
00) 100 parts, 55 parts of phenol novolak resin (hydroxyl equivalent: 105) and 1 part of triphenylphosphine were mixed under heating and cured at 150 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to aluminum plate were obtained. Was evaluated.
The results are shown in Tables 1 and 2 below. Comparative Example 2 100 parts of bismaleimide, diaminodiphenylmethane 5
0 parts were mixed by heating and cured at 200 ° C. for 10 hours, and the glass transition temperature, elastic modulus, water absorption, and adhesion to the aluminum plate were evaluated. The results are shown in Tables 1 and 2 below.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明は、以上説明したように構成され
るものであるから、エポキシ樹脂、マレイミド樹脂など
の熱硬化性樹脂組成物の耐熱性、疎水性、可とう性、密
着性などの特性を有効に改善する効果を奏する。
As described above, the present invention is constructed as described above. Therefore, the thermosetting resin composition such as an epoxy resin or a maleimide resin has a heat resistance, a hydrophobic property, a flexibility, and an adhesion property. This has the effect of effectively improving the characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のシリコーン化合物の重量平
均分子量を示すグラフである。
FIG. 1 is a graph showing the weight-average molecular weight of a silicone compound according to one embodiment of the present invention.

【図2】本発明の一実施例のシリコーン化合物の 1H−
NMRスペクトルのチャートである。
FIG. 2 shows 1 H- of the silicone compound of one embodiment of the present invention.
It is a chart of an NMR spectrum.

フロントページの続き (72)発明者 猿渡 紀男 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特公 昭41−14111(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C08G 77/52 Continuation of the front page (72) Inventor Norio Saruwatari 1015 Uedanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (56) References Japanese Patent Publication No. Sho 41-14111 (JP, B1) (58) Fields surveyed (Int. Cl. 7, DB name) C08G 77/52

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 次式I: 【化1】 (式中、R1 は低級アルキル基を表わし、R2 およびR
3 は互いに独立しておりかつ、それぞれ、ビニル基もし
くは低級アルキル基、又はフェニル基を表わし、n:m
は0.2:1〜2:1の割合を表わす) で表わされる、分子量500〜100000のシリコー
ン化合物。
1. The following formula I: (Wherein, R 1 represents a lower alkyl group, and R 2 and R
3 are independent of each other and each represents a vinyl group, a lower alkyl group, or a phenyl group;
Represents a ratio of 0.2: 1 to 2: 1). A silicone compound having a molecular weight of 500 to 100,000.
【請求項2】 請求項1のシリコーン化合物の製造方法
であって、 次式II: 【化2】 (式中、R1 は低級アルキル基を表わし、R4 は低級ア
ルコキシ基又はハロゲン原子を表わす) で表わされるシルフェニレン化合物を、次式III : 【化3】 (式中、R2 およびR3 は互いに独立しておりかつ、そ
れぞれ、ビニル基もしくは低級アルキル基、又はフェニ
ル基を表わし、R5 は低級アルコキシ基又はハロゲン原
子を表わし、ただしR 4 とは異なる) で表わされる珪素化合物とを反応させることを特徴とす
る、前記製造方法。
2. The method for producing a silicone compound according to claim 1, comprising the following formula II: (Wherein R 1 represents a lower alkyl group, R 4 represents a lower alkoxy group or a halogen atom), and a silphenylene compound represented by the following formula III: (Wherein R 2 and R 3 are independent of each other and
Respectively, represents a vinyl group or a lower alkyl group, or a phenyl group, wherein R 5 is Table Wa lower alkoxy group or a halogen atom, provided that the reaction of a silicon compound represented by different) from R 4 The manufacturing method described above.
【請求項3】 反応溶媒中、60℃ないし150℃の温
度で反応を行う請求項2の製造方法。
3. The process according to claim 2, wherein the reaction is carried out in a reaction solvent at a temperature of 60 ° C. to 150 ° C.
【請求項4】 請求項1のシリコーン化合物から成るこ
とを特徴とする、熱硬化性樹脂用可とう性付与剤。
4. A flexible agent for a thermosetting resin, comprising the silicone compound according to claim 1.
JP13264292A 1992-05-22 1992-05-25 Silicone compound Expired - Fee Related JP3255706B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13264292A JP3255706B2 (en) 1992-05-25 1992-05-25 Silicone compound
US08/544,670 US5763540A (en) 1992-05-22 1995-10-18 Epoxy resin composition for encapsulating semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13264292A JP3255706B2 (en) 1992-05-25 1992-05-25 Silicone compound

Publications (2)

Publication Number Publication Date
JPH05320350A JPH05320350A (en) 1993-12-03
JP3255706B2 true JP3255706B2 (en) 2002-02-12

Family

ID=15086103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13264292A Expired - Fee Related JP3255706B2 (en) 1992-05-22 1992-05-25 Silicone compound

Country Status (1)

Country Link
JP (1) JP3255706B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972477B2 (en) * 1997-08-28 2007-09-05 凸版印刷株式会社 Electronic device parts and heat-resistant low dielectric constant compounds used therefor
JP5345908B2 (en) 2009-08-21 2013-11-20 信越化学工業株式会社 Organopolysilmethylene and organopolysilmethylene composition
JP5294414B2 (en) 2009-08-21 2013-09-18 信越化学工業株式会社 Organopolysilmethylene composition and cured product thereof
JP5533906B2 (en) 2011-02-28 2014-06-25 信越化学工業株式会社 Addition reaction curable organopolysilmethylenesiloxane copolymer composition
US10858518B2 (en) 2016-12-19 2020-12-08 Shin-Etsu Chemical Co., Ltd. Arylene group-containing organopolysiloxane and curable organopolysiloxane composition using same
CN107033356A (en) * 2017-05-12 2017-08-11 惠州市佳的利实业有限公司 A kind of silicon systems polymer of silicon phenolic group block and preparation method thereof and composition

Also Published As

Publication number Publication date
JPH05320350A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
JP3299522B2 (en) Curable package encapsulant composition
JP3128291B2 (en) Maleimide resin composition and resin-sealed semiconductor device using the same
US7625636B2 (en) Insulating-film forming composition, insulating film and preparation process thereof
JP2991786B2 (en) Silicone resin composition
EP2386591A2 (en) Novel silphenylene skeleton-containing silicon type polymer and method for manufacturing the same
JP3467503B2 (en) Crosslinkable carbosilane polymer formulation
JP3255706B2 (en) Silicone compound
JP6763293B2 (en) Aryl compound and its production method
US5763540A (en) Epoxy resin composition for encapsulating semiconductor
WO2000014136A1 (en) Aromatic polycarbodiimide and sheet thereof
US20160300644A1 (en) Polyhexahydrotriazine dielectrics
JPH05347107A (en) Thermosetting mixture of silicone polyimide and epoxy resin
CA2443846A1 (en) Organic compositions
JP2713051B2 (en) Polyamic acid and polyimide resin, their production method, and semiconductor device protection material
JP2513096B2 (en) Curable compound, method for producing the same, insulating protective film forming agent, and protective agent for electronic parts
JPS6322822A (en) Silicone-modified epoxy resin and production thereof
US7534292B2 (en) Film-forming composition, insulating film obtained from the composition and electronic device having the same
JP2001040094A (en) Epoxy group-containing silicone resin
JP2809885B2 (en) Resin composition for semiconductor encapsulation
JP4035892B2 (en) Coating composition
JPH05320348A (en) Terminal maleimidepropyl-modified silicone compound
TW200909519A (en) Thermosetting resin composition and hardened article thereof
JP2812133B2 (en) Fluorine-modified acid anhydride and method for producing the same
JPH0673338A (en) Polyimide resin solution composition and coating agent
EP0317205B1 (en) Imido group-containing silicon oligomers and cured product thereof, and their preparation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees