JP3255690B2 - Optical element molding die and manufacturing method - Google Patents

Optical element molding die and manufacturing method

Info

Publication number
JP3255690B2
JP3255690B2 JP5965292A JP5965292A JP3255690B2 JP 3255690 B2 JP3255690 B2 JP 3255690B2 JP 5965292 A JP5965292 A JP 5965292A JP 5965292 A JP5965292 A JP 5965292A JP 3255690 B2 JP3255690 B2 JP 3255690B2
Authority
JP
Japan
Prior art keywords
molding
materials
optical element
joining
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5965292A
Other languages
Japanese (ja)
Other versions
JPH05221665A (en
Inventor
健 川俣
俊明 林
弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP5965292A priority Critical patent/JP3255690B2/en
Publication of JPH05221665A publication Critical patent/JPH05221665A/en
Application granted granted Critical
Publication of JP3255690B2 publication Critical patent/JP3255690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To readily obtain the subject metallic mold capable of preventing a fin and a shrinkage from occurring in a formed product by working a forming surface after joining plural materials having different thermal conductivities and preventing a gap or a stepped part from occurring. CONSTITUTION:Plural materials 1 and 2 having different thermal conductivities are joined to form a metallic mold material 5 so as to provide a forming surface 4 where the materials 1 and 2 having the different thermal conductivities of the material 5 are continuous. Thereby, the objective metallic mold having one or more joining parts 3 and the forming surface 4 in which the materials 1 and 2 are continuous to form a continuous surface passing through the joining parts 3. As a result, a phenomenon called a shrinkage and a fin caused by an increased difference in temperature distribution in the interior of the glass are prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学素子成形用金型お
よび製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for molding an optical element and a manufacturing method.

【0002】[0002]

【従来の技術】従来、ガラス素材を加熱軟化して光学素
子を加圧成形する製造方法が知られている。上記製造方
法では、型形状をガラスへ正確に転写することが重要と
なるが、肉厚差の大きな成形品等の場合、ガラス内部に
おける温度分布の差が大きくなり、いわゆる「ヒケ」と
呼ばれる現象が生じる欠点があった。
2. Description of the Related Art Conventionally, there has been known a manufacturing method in which a glass material is heated and softened to form an optical element under pressure. In the above manufacturing method, it is important to accurately transfer the mold shape to the glass. However, in the case of a molded article having a large difference in thickness, the difference in temperature distribution inside the glass increases, which is a phenomenon called so-called sink mark. There is a drawback that occurs.

【0003】因って、上記欠点を解決すべく、型成形面
部を熱伝導率の異なる材料で形成することにより、ガラ
スの冷却速度に差をつける方法が提案されている。例え
ば、特開平1−148716号公報記載の発明において
は、同心状に少なくとも2つ以上の型部材にて分割して
構成したガラス光学素子成形用型が開示されている。
[0005] Therefore, in order to solve the above-mentioned drawbacks, there has been proposed a method of forming a molding surface portion with materials having different thermal conductivities to make a difference in a cooling rate of glass. For example, in the invention described in Japanese Patent Application Laid-Open No. 1-148716, a glass optical element molding die which is concentrically divided by at least two or more mold members is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかるに、前記特開平
1−148716号公報に開示される様な同心状に分割
された型を製造するにはかなりの困難を伴う。
However, there is considerable difficulty in manufacturing a concentrically divided mold as disclosed in Japanese Patent Application Laid-Open No. 1-148716.

【0005】すなわち、分割された型どうしに隙間や段
差が少しでもあれば、そこにガラスがくいこんでバリが
発生してしまう。そこで、隙間や段差が小さくなる様
に、同心状に組み合わせる部分の内外径はその径寸法や
円筒度等を公差1〜2μm内で形成しなければらず、加
工が非常に難しい。特に、ガラス光学素子成形用型とし
て使用される耐熱材料は超硬合金や各種セラミックス等
であり、これらの難削材を上述の様な公差で加工するこ
とは現状では困難である。
[0005] That is, even if there is a small gap or a step between the divided molds, the glass penetrates there and burrs are generated. Therefore, the inner and outer diameters of the parts concentrically combined must be formed within a tolerance of 1 to 2 μm in terms of the diameter, cylindricity, and the like so that the gaps and steps are reduced, and processing is extremely difficult. In particular, heat-resistant materials used as molds for molding glass optical elements are cemented carbides and various ceramics, and it is difficult at present to process these difficult-to-cut materials with the above-mentioned tolerances.

【0006】また、加工することができたとしても、そ
れぞれの部材の隙間が非常に小さいため、組み合わせる
ことが困難であり、作業性が悪い。組み合わせる際に、
僅かでも傾きがあれば、両部材がコジってしまう。
[0006] Even if it can be processed, it is difficult to combine it because the gap between the members is very small, and the workability is poor. When combining
If there is even a slight inclination, both members will be damaged.

【0007】さらに、全く隙間の無いものを作ることは
現実に無理であり、前記公報にて示された型を使用でき
るのは、バリが発生しても使用上差し支えないものを成
形する場合か、あるいは成形後に後加工をしてコストが
大幅にアップしても良い場合に限られてしまう。
Furthermore, it is actually impossible to produce a product having no gap at all, and the mold disclosed in the above-mentioned publication can be used for molding a product which does not hinder use even if burrs are generated. Or, it is limited to the case where post-processing after molding may increase the cost significantly.

【0008】因って、本発明は前記従来技術における問
題点に鑑みて開発されたもので、型成形面部を熱伝導率
の異なる材料で形成し、ヒケの防止効果を有するととも
に製造が容易な光学素子成形用金型および製造方法の提
供を目的とする。
Accordingly, the present invention has been developed in view of the above-mentioned problems in the prior art, and has an effect of preventing sink marks and being easy to manufacture by forming the mold surface with materials having different thermal conductivity. An object of the present invention is to provide an optical element molding die and a manufacturing method.

【0009】[0009]

【課題を解決するための手段】本発明は、ガラス素材を
加熱軟化して押圧成形する2種類以上の材料からなる光
学素子成形用金型において、所定の熱伝導率を有する第
1材料をこの第1材料とは熱伝導率の異なる第2材料に
載置して接合した接合面と、前記第1材料と前記第2材
料に、前記接合面を横切るように連続して形成した成形
面と、を有するものである。
According to the present invention, there is provided an optical element molding die made of two or more kinds of materials for heat-softening and press-molding a glass material. A joining surface mounted and joined to a second material having a different thermal conductivity from the first material; and a molding surface formed continuously on the first material and the second material across the joining surface. .

【0010】また、ガラス素材を加熱軟化して押圧成形
する2種類以上の材料からなる光学素子成形用金型の製
造方法において、所定の熱伝導率を有する第1材料をこ
の第1材料とは熱伝導率の異なる第2材料に載置して接
合する工程と、前記第1材料と前記第2材料に、前記第
1材料と前記第2材料とを接合した接合面を横切るよう
に連続して成形面を加工する工程と、を有するものであ
る。
In a method of manufacturing a mold for molding an optical element comprising two or more kinds of materials for heat-softening and press-molding a glass material, a first material having a predetermined thermal conductivity is defined as the first material. Placing on the second material having a different thermal conductivity and joining, and connecting the first material and the second material continuously across the joining surface where the first material and the second material are joined. And processing the molding surface.

【0011】[0011]

【作用】本発明は、予め熱伝導率の異なる2種類以上の
材料を接合しておくので、加工公差を厳しくする必要が
なく、組合せの作業も不要である。また、接合後に成形
面を加工するので、隙間や段差が発生しない。
According to the present invention, since two or more materials having different thermal conductivities are joined in advance, it is not necessary to tighten processing tolerances, and it is not necessary to combine them. Further, since the molding surface is processed after joining, no gap or step is generated.

【0012】[0012]

【実施例1】図1および図2は本実施例を示す断面図で
ある。高純度(99%以上)の第1材料としてのc−B
Nパウダー85wt%,TiN11wt%,TiC2w
t%および残部Niから成る混合粉末をWC基超硬合金
2上に載置し、温度150℃,圧力40000kg/c
で焼結して第2材料としてのWC基超硬合金2と第
1材料としてのc−BN焼結体1との一体接合品を得た
(図1参照)。
Embodiment 1 FIGS. 1 and 2 are sectional views showing the present embodiment. C-B as the first material of high purity (99% or more)
N powder 85wt%, TiN11wt%, TiC2w
The mixed powder composed of t% and the balance of Ni was placed on the WC-based cemented carbide 2 at a temperature of 150 ° C. and a pressure of 40000 kg / c.
and sintered at m 2 was obtained as WC-based cemented carbide 2 as the second material integrally bonded article of the c-BN sintered body 1 as the first material (see FIG. 1).

【0013】つづいて、上記一体接合品に成形面4およ
び型をマウントに固定するためのフランジ部5の概略形
状を放電加工にて形成する。さらに、研削加工にて各部
を所定の寸法精度に仕上げる(図2参照)。次に、成形
面4を研磨加工して所望の粗度・形状に仕上げる。
Subsequently, a schematic shape of the flange portion 5 for fixing the molding surface 4 and the mold to the mount is formed on the integrally joined product by electric discharge machining. Further, each part is finished to a predetermined dimensional accuracy by grinding (see FIG. 2). Next, the molding surface 4 is polished to finish it to a desired roughness and shape.

【0014】上記方法により製造した光学素子成形用型
は、成形面4の中心が超硬合金(熱伝導率0.17ca
l/cm・sec・deg),外周がc−BN焼結体
(熱伝導率0.09cal/cm・sec・deg)に
より形成されており、ヒケを防止できる効果がある。そ
して、超硬合金とc−BN焼結体との間に隙間や段差が
無いので、成形品にバリが生ずることもない。
In the optical element molding die manufactured by the above method, the center of the molding surface 4 is a cemented carbide (having a thermal conductivity of 0.17 ca).
1 / cm · sec · deg), and the outer periphery is formed of a c-BN sintered body (thermal conductivity: 0.09 cal / cm · sec · deg), which has the effect of preventing sink marks. Since there is no gap or step between the cemented carbide and the c-BN sintered body, no burrs are formed on the molded product.

【0015】本実施例によれば、接合部3は焼結時の拡
散接合であるため、熱間でも接合強度が極めて強固であ
り、ガラス光学素子成形時における高温・高荷重にても
ズレたりハガレたりすることがない。
According to this embodiment, since the bonding portion 3 is a diffusion bonding at the time of sintering, the bonding strength is extremely strong even when hot, and the bonding portion 3 is displaced even at a high temperature and a high load at the time of molding a glass optical element. There is no peeling.

【0016】[0016]

【実施例2】図3は本実施例を示す断面図である。本実
施例は、前記実施例1における図2または同様である。
その後、成形面4に厚さ0.1mmのCrメッキを施す
(図3参照)。つづいて、成形面4を研磨加工して所望
の粗度・形状に仕上げた。
Embodiment 2 FIG. 3 is a sectional view showing the present embodiment. This embodiment is the same as or similar to FIG. 2 in the first embodiment.
Thereafter, a Cr plating having a thickness of 0.1 mm is applied to the molding surface 4 (see FIG. 3). Subsequently, the molding surface 4 was polished to obtain a desired roughness and shape.

【0017】c−BN焼結体(ビッカース硬度Hv=4
500)と超硬合金(ビッカース硬度Hv=1400)
とは硬さが大きく異なるため、研磨加工時の磨耗度が異
なり、連続面を形成するのは難しいが、本実施例では両
部材の上にCrメッキを施したことにより、研磨加工が
極めて容易にできた。
C-BN sintered body (Vickers hardness Hv = 4)
500) and cemented carbide (Vickers hardness Hv = 1400)
Since the hardness is greatly different from the above, the degree of wear during polishing is different and it is difficult to form a continuous surface. However, in this embodiment, the polishing is extremely easy due to the Cr plating on both members. I was able to.

【0018】[0018]

【実施例3】図4〜図7は本実施例を示す断面図であ
る。11は第2材料としてのW(熱伝導率0.38ca
l/cm・sec・deg)で形成されたベースで、断
面が凸形状に形成されている(図4参照)。12は第1
材料としてのSi(熱伝導率0.07cal/c
m・sec・deg)の焼結体で、ベース11上に載置
できる寸法に加工されている(図5参照)。ベース11
と焼結体12とをNiおよびTiを主成分とする活性金
属ハクを介して重ね合わせ、ホットプレス法により接合
した(図6参照)。
Embodiment 3 FIGS. 4 to 7 are sectional views showing this embodiment. 11 is W (thermal conductivity 0.38 ca) as the second material
1 / cm · sec · deg), and the cross section is formed in a convex shape (see FIG. 4). 12 is the first
Si 3 N 4 as material (thermal conductivity 0.07 cal / c
(m · sec · deg), and is processed into a size that can be placed on the base 11 (see FIG. 5). Base 11
The sintered body 12 and the sintered body 12 were overlapped with each other via an active metal shell mainly composed of Ni and Ti, and joined by a hot press method (see FIG. 6).

【0019】つづいて、ベース11と焼結体12の接合
体を上部の成形面13が凸形状となる様に加工した(図
7参照)。さらに、ガラスとの離型性を良くするため、
成形面13にRFマグネトロンスパッタ法により厚さ5
000ÅのAlN膜を形成した。
Subsequently, the joined body of the base 11 and the sintered body 12 was processed so that the upper molding surface 13 became convex (see FIG. 7). Furthermore, in order to improve the mold releasability with glass,
The thickness 5 is formed on the molding surface 13 by RF magnetron sputtering.
An AlN film of 000 ° was formed.

【0020】上記方法により製造した型は、成形品の薄
肉部に対応する型中心が熱伝導の悪いSi3 4 により
形成されており、ヒケを防止できる効果があった。
In the mold manufactured by the above method, the center of the mold corresponding to the thin portion of the molded product is formed of Si 3 N 4 having poor heat conductivity, and has an effect of preventing sink marks.

【0021】本実施例によれば、活性金属ハクを利用し
たものであり、熱間での接合強度は前記各実施例と比較
すればやや劣るものの、極めて簡易的な方法であり、容
易に実施できる。
According to this embodiment, an active metal mold is used. Although the bonding strength during hot welding is slightly inferior to that of each of the above embodiments, it is a very simple method and can be easily implemented. it can.

【0022】尚、本発明は接合する部材の材質を本実施
例の材質に限定するものではなく、線膨張係数が比較的
近く、熱伝導率の異なる材質であれば、様々な材質から
選択可能である。また、本実施例で用いた活性金属ハク
に代えて、銀ろう付けによる接合法としても良い。
The present invention does not limit the material of the members to be joined to the material of the present embodiment, but can be selected from various materials as long as the materials have relatively close linear expansion coefficients and different thermal conductivity. It is. Further, instead of the active metal mold used in the present embodiment, a joining method using silver brazing may be used.

【0023】[0023]

【実施例4】図8および図9は本実施例を示す断面図で
ある。第2材料としてのSiC焼結体21上にSiCと
Siとの粉末を1:1で混合した第1材料として
の粉末22を載置し、さらにその上にSi粉末2
3を載せる(図8参照)。なお、粉末22と粉末23の
関係でみると、粉末22が第2材料に相当し、粉末23
が第1材料に相当する。続いて、これを10MPa,1
700℃でHIP処理を行う。この処理により、SiC
(熱伝導率0.20cal/cm・sec・deg)か
らSi(熱伝導率0.07cal/cm・sec
・deg)への傾斜材料で形成される。
Embodiment 4 FIGS. 8 and 9 are sectional views showing this embodiment. A powder 22 as a first material in which a powder of SiC and Si 3 N 4 is mixed at a ratio of 1: 1 is placed on a SiC sintered body 21 as a second material, and a Si 3 N 4 powder 2 is further placed thereon.
3 (see FIG. 8). In the relationship between the powder 22 and the powder 23, the powder 22 corresponds to the second material,
Corresponds to the first material. Then, this was changed to 10 MPa, 1
HIP processing is performed at 700 ° C. By this processing, SiC
(Thermal conductivity of 0.20 cal / cm · sec · deg) to Si 3 N 4 (thermal conductivity of 0.07 cal / cm · sec)
Deg) formed of graded material.

【0024】つづいて、これを所望の成形面24形状に
加工する。さらに、成形面24へ熱CVD法によりSi
C膜25を厚さ0.2mmに形成する。このSiC膜2
5を精研削加工および研磨加工して成形品に合わせた形
状とする。つづいて、離型性を良くするために、成形面
24へ6000ÅのHfN膜26をイオンビームスパッ
タリング法により形成した(図9参照)。
Subsequently, this is processed into a desired molding surface 24 shape. Further, Si is formed on the molding surface 24 by thermal CVD.
A C film 25 is formed to a thickness of 0.2 mm. This SiC film 2
5 is precisely ground and polished to a shape conforming to the molded product. Subsequently, a 6000 ° HfN film 26 was formed on the molding surface 24 by an ion beam sputtering method to improve the releasability (see FIG. 9).

【0025】本実施例によれば、成形品の厚肉部に対応
する型中心から薄肉部に対応する型外周に向かって、徐
々に型の熱伝導率が変化する構成であり、ガラス内部を
均温化してヒケを防止する効果が極めて大きい。
According to this embodiment, the thermal conductivity of the mold gradually changes from the center of the mold corresponding to the thick part of the molded article toward the outer periphery of the mold corresponding to the thin part. The effect of equalizing the temperature to prevent sink marks is extremely large.

【0026】(参考例) 図10および図11は参考例を示す断面図である。参考
例では、前記実施例4が縦方向に部材を重ね合わせたの
に対し、横方向に部材を重ね合わせた点が異なり、他の
構成は同一の構成部分から成るもので、同一番号を付し
てその説明を省略する。参考例は、円柱形状のSiC焼
結体21の外周面にSiCとSiとの粉末22お
よびSi粉末23を同心状となる様に順次重ね合
わせたものである(図10参照)。次に、その上端部を
所望の成形面24形状に加工する(図11参照)。以
下、前記実施例4と同様な構成であり、構成の説明を省
略する。
(Reference Example) FIGS. 10 and 11 are sectional views showing a reference example. In the reference example, the fourth embodiment differs from the fourth embodiment in that the members are overlapped in the vertical direction, but the members are overlapped in the horizontal direction, and the other components are the same. The description is omitted. In the reference example, a powder 22 of SiC and Si 3 N 4 and a Si 3 N 4 powder 23 are sequentially superposed on the outer peripheral surface of a cylindrical SiC sintered body 21 so as to be concentric (FIG. 10). reference). Next, the upper end is processed into a desired shape of the molding surface 24 (see FIG. 11). Hereinafter, the configuration is the same as that of the fourth embodiment, and the description of the configuration is omitted.

【0027】[0027]

【0028】[0028]

【0029】[0029]

【発明の効果】以上説明した様に、本発明に係る光学素
子成形用金型および製造方法によれば、成形品における
バリの発生が防止できるとともに、ヒケの防止効果を有
した光学素子成形用金型を容易に製造することができ
る。
As described above, according to the optical element molding die and the manufacturing method according to the present invention, it is possible to prevent the occurrence of burrs in the molded product and to prevent the occurrence of sink marks. The mold can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1を示す断面図である。FIG. 1 is a cross-sectional view illustrating a first embodiment.

【図2】実施例1を示す断面図である。FIG. 2 is a sectional view showing the first embodiment.

【図3】実施例2を示す断面図である。FIG. 3 is a sectional view showing a second embodiment.

【図4】実施例3を示す断面図である。FIG. 4 is a sectional view showing a third embodiment.

【図5】実施例3を示す断面図である。FIG. 5 is a sectional view showing a third embodiment.

【図6】実施例3を示す断面図である。FIG. 6 is a sectional view showing a third embodiment.

【図7】実施例3を示す断面図である。FIG. 7 is a sectional view showing a third embodiment.

【図8】実施例4を示す断面図である。FIG. 8 is a sectional view showing a fourth embodiment.

【図9】実施例4を示す断面図である。FIG. 9 is a sectional view showing a fourth embodiment.

【図10】 参考例を示す断面図である。FIG. 10 is a sectional view showing a reference example.

【図11】 参考例を示す断面図である。FIG. 11 is a sectional view showing a reference example.

【符号の説明】[Explanation of symbols]

1 c−BN焼結体 2 WC基超硬合金 3 接合部 4 成形面 5 フランジ部 DESCRIPTION OF SYMBOLS 1 c-BN sintered compact 2 WC-base cemented carbide 3 Joint 4 Molding surface 5 Flange

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03B 11/00 - 11/16 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C03B 11/00-11/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラス素材を加熱軟化して押圧成形する
2種類以上の材料からなる光学素子成形用金型におい
て、 所定の熱伝導率を有する第1材料をこの第1材料とは熱
伝導率の異なる第2材料に載置して接合した接合面と、 前記第1材料と前記第2材料に、前記接合面を横切るよ
うに連続して形成した成形面と、 を有することを特徴とする光学素子成形用金型。
1. An optical element molding die made of two or more types of materials for heat-softening and press-molding a glass material, wherein a first material having a predetermined thermal conductivity is replaced with a first material having a predetermined thermal conductivity. And a joining surface mounted on and joined to a different second material, and a molding surface formed continuously on the first material and the second material so as to cross the joining surface. Mold for molding optical elements.
【請求項2】 ガラス素材を加熱軟化して押圧成形する
2種類以上の材料からなる光学素子成形用金型の製造方
法において、 所定の熱伝導率を有する第1材料をこの第1材料とは熱
伝導率の異なる第2材料に載置して接合する工程と、 前記第1材料と前記第2材料に、前記第1材料と前記第
2材料とを接合した接合面を横切るように連続して成形
面を加工する工程と、 を有することを特徴とする光学素子成形用金型の製造方
法。
2. A method of manufacturing a mold for molding an optical element comprising two or more types of materials for heat-softening and press-molding a glass material, wherein a first material having a predetermined thermal conductivity is defined as a first material. Placing on the second material having a different thermal conductivity and joining; and continuously joining the first material and the second material across the joining surface where the first material and the second material are joined. A method of processing a molding surface by using the method.
JP5965292A 1992-02-14 1992-02-14 Optical element molding die and manufacturing method Expired - Fee Related JP3255690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5965292A JP3255690B2 (en) 1992-02-14 1992-02-14 Optical element molding die and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5965292A JP3255690B2 (en) 1992-02-14 1992-02-14 Optical element molding die and manufacturing method

Publications (2)

Publication Number Publication Date
JPH05221665A JPH05221665A (en) 1993-08-31
JP3255690B2 true JP3255690B2 (en) 2002-02-12

Family

ID=13119352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5965292A Expired - Fee Related JP3255690B2 (en) 1992-02-14 1992-02-14 Optical element molding die and manufacturing method

Country Status (1)

Country Link
JP (1) JP3255690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477373B2 (en) * 2015-09-11 2019-03-06 株式会社オートネットワーク技術研究所 Circuit assembly and electrical junction box

Also Published As

Publication number Publication date
JPH05221665A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
EP0500031A1 (en) Method of manufacturing a sputtering target
US8444281B2 (en) Optical device
JPH07228967A (en) Long-sized cylindrical sputtering target
US4350528A (en) Method for diffusion bonding workpieces and article fabricated by same
JP3212477B2 (en) Manufacturing method of sheet molding die
JP3255690B2 (en) Optical element molding die and manufacturing method
JPS5916644A (en) Forging die
JPH09254198A (en) Optical disk molding die device
WO2018068458A1 (en) Preparation method for structural component, housing and electronic device
JP4594486B2 (en) Cavity forming mold manufacturing method and cavity forming mold
JPH09194222A (en) Molding method for glass optical element and its molding method
JPS59368B2 (en) Seikeiyou Kanagata
JPH0243304A (en) Production of composite member
JPS62170405A (en) Production of composite material consisting of metal and ceramics
CN110713389B (en) Method for forming non-spherical ceramic mold core
JP2746430B2 (en) Mold for optical element molding
JP2501578B2 (en) Mold for molding
JPS60181208A (en) Manufacture of multi-shaft cylinder for plastic molding machine
JP2004210550A (en) Molding mold
JP3199825B2 (en) Optical element molding method
JP3130612B2 (en) Optical element molding die
JP2005272254A (en) Die for molding optical element, its manufacturing method and optical element
JP2810706B2 (en) Mold manufacturing method
JPH1052850A (en) Method for manufacturing extrusion molding die
JP3219460B2 (en) Optical element mold and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011120

LAPS Cancellation because of no payment of annual fees