JP3248672B2 - Manufacturing method of lead monoxide fine particles - Google Patents

Manufacturing method of lead monoxide fine particles

Info

Publication number
JP3248672B2
JP3248672B2 JP24738496A JP24738496A JP3248672B2 JP 3248672 B2 JP3248672 B2 JP 3248672B2 JP 24738496 A JP24738496 A JP 24738496A JP 24738496 A JP24738496 A JP 24738496A JP 3248672 B2 JP3248672 B2 JP 3248672B2
Authority
JP
Japan
Prior art keywords
lead
particle size
powder
lead monoxide
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24738496A
Other languages
Japanese (ja)
Other versions
JPH1095616A (en
Inventor
直樹 岡田
雄治 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP24738496A priority Critical patent/JP3248672B2/en
Publication of JPH1095616A publication Critical patent/JPH1095616A/en
Application granted granted Critical
Publication of JP3248672B2 publication Critical patent/JP3248672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉砕混合が容易で
焼結性に優れたセラミック原料としての一酸化鉛の製造
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing lead monoxide as a ceramic raw material which is easily pulverized and mixed and has excellent sinterability.

【0002】[0002]

【従来技術】セラミック原料に使用される一酸化鉛は、
高純度で微粒子であって、かつ易焼結性に優れた粉体が
望まれている。その製造方法は、金属鉛を焼成し酸化鉛
とした後、機械的に粉砕する方法が一般的である。しか
し、この方法では、機械的粉砕によるため微粒化に限界
があることや、原料として高純度の金属鉛を用いても粉
砕機からの不純物の混入が避けられない等の問題点があ
げられる。
2. Description of the Related Art Lead monoxide used for ceramic raw materials is:
A powder having high purity, fine particles, and excellent sinterability is desired. The production method is generally a method in which metal lead is calcined into lead oxide and then mechanically pulverized. However, in this method, there are problems that there is a limit to atomization due to mechanical pulverization, and that mixing of impurities from a pulverizer is inevitable even when high-purity metallic lead is used as a raw material.

【0003】また、セラミック原料粉末、たとえばPb
TiO3、Pb(Zr1-xTix)O3、PbZrO3など
を合成する方法として一般的には固相反応が用いられて
いる。この方法によれば、各酸化物を粉砕混合し焼成す
ことにより合成するが、原料粒子径が大きいことや反応
性が悪ければ、その焼成温度は高温にしなければならな
くなり、結晶粒径を大きくする原因となり、しかも不均
一になるという欠点がみられた。
In addition, ceramic raw material powders such as Pb
TiO 3, Pb (Zr 1- x Ti x) O 3, generally the solid phase reaction PbZrO 3 or the like as a method of synthesis are used. According to this method, each oxide is synthesized by pulverizing, mixing and firing, but if the raw material particle size is large or the reactivity is poor, the firing temperature must be increased, and the crystal grain size increases. And the disadvantage of non-uniformity was observed.

【0004】本発明は、上記した従来の欠点を解消し、
微粉末の鉛系セラミック原料を製造することができる原
料となる一酸化鉛の製造方法を提供しようとするもので
ある。
[0004] The present invention solves the above-mentioned conventional disadvantages,
An object of the present invention is to provide a method for producing lead monoxide which is a raw material from which a fine powder lead-based ceramic raw material can be produced.

【0005】[0005]

【問題点を解決するための具体的手段】本発明者らは、
かかる従来技術の問題点に鑑み鋭意検討の結果、本発明
に到達したものである。
[Specific means for solving the problem]
As a result of intensive studies in view of the problems of the related art, the present invention has been achieved.

【0006】すなわち本発明は、重炭酸アンモニウム水
溶液に硝酸鉛水溶液を添加し反応せしめ、生成した炭酸
鉛の白色沈殿を濾取した後、この沈殿を乾燥後550℃
以下の低温で酸素のない窒素あるいはアルゴン雰囲気で
焼成することによって、得られる一酸化鉛の微粒子の製
造法を提供するものである。
That is, according to the present invention, an aqueous solution of lead nitrate is added to an aqueous solution of ammonium bicarbonate to cause a reaction, and a white precipitate of the generated lead carbonate is collected by filtration.
An object of the present invention is to provide a method for producing fine particles of lead monoxide obtained by firing in a nitrogen or argon atmosphere without oxygen at a low temperature as described below.

【0007】本発明においては、得られる結晶形はリサ
ージであり、かつ、一次粒子に分散容易な二次粒子を形
成しているため粉砕混合が容易で、焼結性に優れた鉛系
セラミック原料となるものである。
In the present invention, a lead-based ceramic material excellent in sinterability which is easy to pulverize and mix because the obtained crystal form is litharge and forms secondary particles which are easily dispersed in primary particles. It is what becomes.

【0008】なお、本発明での一次粒子は、BET比表
面積より計算した粒子径、二次粒子は、レーザー式粒度
分布測定器で測定した粒子径をいう。この発明は、微細
な結晶粒径を有する鉛系セラミック原料粉末の製造方法
に関するものである。すなわちこの発明の要旨とすると
ころは、(1) 重炭酸アンモニウム水溶液に硝酸鉛水溶
液を添加し反応せしめ、生成した炭酸鉛の白色沈殿を濾
取した後、この沈殿を乾燥することからなる第一の工程
と、(2) 第一の工程によって得られた炭酸鉛を550
℃以下の低温でかつ酸素のない窒素あるいはアルゴン雰
囲気で焼成する第二の工程と、からなる一酸化鉛微粒子
の製造法であって、この方法によって得られた一酸化鉛
微粒子の結晶形がリサージである一酸化鉛微粒子の製造
方法である。
In the present invention, the primary particles refer to the particle diameter calculated from the BET specific surface area, and the secondary particles refer to the particle diameter measured using a laser type particle size distribution analyzer. The present invention relates to a method for producing a lead-based ceramic raw material powder having a fine crystal grain size. That is, the gist of the present invention is as follows. (1) A first method comprising adding an aqueous solution of lead nitrate to an aqueous solution of ammonium bicarbonate and allowing it to react, filtering the white precipitate of generated lead carbonate, and drying the precipitate. And (2) 550 g of the lead carbonate obtained in the first step.
A second step of baking in a nitrogen or argon atmosphere at a low temperature of not more than ℃ or less, and wherein the crystal form of the fine particles of lead monoxide obtained by this method is a laser surge. This is a method for producing lead monoxide fine particles.

【0009】上述した工程において、第一の工程の反応
においては、重炭酸アンモニウムの代わりに炭酸アンモ
ニウムを用いてもよいが、反応生成によって得られる炭
酸鉛の一次粒子径が少し大きくなるので好ましくは重炭
酸アンモニウムの方がよい。添加順序を逆の硝酸鉛水溶
液に重炭酸アンモニウム水溶液を加えてもよく、添加速
度や撹拌速度等の条件も厳密に設定しなくても反応生成
する炭酸鉛の一次粒子径には大差ない。また、反応温度
においても重炭酸アンモニウムの分解温度の60℃以下
であれば良い。しかし、スラリー濃度が低くなると二次
粒子径が小さくなり炭酸鉛のスラリー濾過時間が長くな
るため好ましくは10wt%程度が望ましい。
In the above-mentioned step, in the reaction of the first step, ammonium carbonate may be used instead of ammonium bicarbonate. However, since the primary particle diameter of lead carbonate obtained by the reaction is slightly increased, it is preferable. Ammonium bicarbonate is better. An aqueous solution of ammonium bicarbonate may be added to an aqueous solution of lead nitrate in the reverse order of addition, and the primary particle size of the lead carbonate produced by the reaction does not greatly differ even if conditions such as addition speed and stirring speed are not strictly set. The reaction temperature may be 60 ° C. or lower, which is lower than the decomposition temperature of ammonium bicarbonate. However, the lower the slurry concentration, the smaller the secondary particle diameter and the longer the lead carbonate slurry filtration time.

【0010】第二の工程においては焼成温度が低いほど
得られる一酸化鉛の粒子径は小さい。しかし、炭酸鉛の
分解温度が330℃付近であるため好ましくは400℃
以上が良い。このとき焼成雰囲気が酸素のない雰囲気で
ある必要がある。もし、酸素が混入すればPb34が生
成する。550℃近辺を超えると酸素があっても一酸化
鉛が生成するがその結晶形はマシコットとなる。
In the second step, the lower the firing temperature, the smaller the particle size of the obtained lead monoxide. However, since the decomposition temperature of lead carbonate is around 330 ° C., it is preferably 400 ° C.
Above is good. At this time, the firing atmosphere needs to be an oxygen-free atmosphere. If oxygen is mixed in, Pb 3 O 4 is generated. If the temperature exceeds about 550 ° C., lead monoxide is generated even if oxygen is present, but its crystal form becomes a mascot.

【0011】本発明の製造方法により得られる一酸化鉛
の粒径は、一次粒子で1μm以下、二次粒子で4μm以
下である。また、一酸化鉛の純度は、原料に市販品の高
純度品を用いれば良く、後工程で粉砕等の必要がないの
で不純物の混入のおそれはない。
The particle diameter of lead monoxide obtained by the production method of the present invention is 1 μm or less for primary particles and 4 μm or less for secondary particles. Further, the purity of the lead monoxide may be a commercially available high-purity product as a raw material, and there is no need for pulverization or the like in a subsequent step, so there is no risk of contamination of impurities.

【0012】他の湿式法での可能性としては、アンモニ
ア水との反応によって水酸化鉛を合成し焼成する方法が
あるが、その得られる一酸化鉛の粒子径は焼成温度にも
よるが市販品よりも大きく数μm〜数十μmであった。
As another possibility of the wet method, there is a method of synthesizing lead hydroxide by reaction with ammonia water and calcining it. The particle size of the obtained lead monoxide depends on the calcining temperature, but it is commercially available. It was several μm to several tens μm larger than the product.

【0013】[0013]

【実施例】以下、本発明を実施例に従って詳細に説明す
るが、かかる実施例に限定されるものではない。
The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0014】実施例1〜4 反応槽内に重炭酸アンモニウム58gと水285gを入
れ溶解する。これに、硝酸鉛94gを水191gに溶解
した溶液を撹拌しながら約30分で添加した。生成した
スラリーを濾過洗浄後約60℃において乾燥した。乾燥
粉末はX線回折で炭酸鉛であることを確認した。この乾
燥粉末をほぐしてるつぼに取り電気炉内にセットした
後、窒素ガスを導入する。その約1時間後より昇温開始
し500℃において5時間保持した。
Examples 1-4 In a reaction vessel, 58 g of ammonium bicarbonate and 285 g of water are put and dissolved. To this, a solution of 94 g of lead nitrate dissolved in 191 g of water was added with stirring for about 30 minutes. The resulting slurry was filtered, washed and dried at about 60 ° C. The dry powder was confirmed to be lead carbonate by X-ray diffraction. After the dried powder is loosened and set in an electric furnace, nitrogen gas is introduced. About one hour after that, the temperature was raised and maintained at 500 ° C. for 5 hours.

【0015】焼成後の粉末はほぐして、X線回折、レー
ザー式粒度分布、BET粒子径を測定した。その結果を
表1に示すが、微粒子で分散性の良いセラミック原料粉
体が得られた。
The fired powder was loosened and measured for X-ray diffraction, laser particle size distribution and BET particle size. The results are shown in Table 1. As a result, fine ceramic powder having good dispersibility was obtained.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例5 反応槽内に炭酸アンモニウム85gと水157gを入れ
溶解する。これに、硝酸鉛114gを水344gに溶解
した溶液を撹拌しながら約30分で添加した。生成した
スラリーを濾過洗浄後約60℃において乾燥した。乾燥
粉末はX線回折で炭酸鉛であることを確認した。この乾
燥粉末をほぐしてるつぼに取り電気炉内にセットした
後、窒素ガスを導入する。その約1時間後より昇温開始
し500℃において5時間保持した。
Example 5 85 g of ammonium carbonate and 157 g of water are put in a reaction vessel and dissolved. To this, a solution of 114 g of lead nitrate dissolved in 344 g of water was added in about 30 minutes while stirring. The resulting slurry was filtered, washed and dried at about 60 ° C. X-ray diffraction confirmed that the dry powder was lead carbonate. After the dried powder is loosened and set in an electric furnace, nitrogen gas is introduced. About one hour after that, the temperature was raised and maintained at 500 ° C. for 5 hours.

【0018】焼成後の粉末は、ほぐして、X線回折、レ
ーザー式粒度分布、BET粒子径を測定した。その結果
を表1に示すが、微粒子で分散性の良いセラミック原料
粉体が得られた。
The fired powder was loosened and measured for X-ray diffraction, laser particle size distribution and BET particle size. The results are shown in Table 1. As a result, fine ceramic powder having good dispersibility was obtained.

【0019】実施例6 実施例1で得た炭酸鉛の乾燥粉末を同様に窒素雰囲気で
焼成するがその焼成温度を400℃とし5時間保持し焼
成した。焼成後の粉末は同様にほぐして、X線回折、レ
ーザー式粒度分布、BET粒子径を測定した。その結果
を表1に示すが、微粒子で分散性の良いセラミック原料
粉体が得られた。
Example 6 The dry powder of lead carbonate obtained in Example 1 was similarly fired in a nitrogen atmosphere, but was fired at a firing temperature of 400 ° C. for 5 hours. The fired powder was similarly loosened and measured for X-ray diffraction, laser particle size distribution, and BET particle size. The results are shown in Table 1. As a result, fine ceramic powder having good dispersibility was obtained.

【0020】比較例1 実施例1で得た炭酸鉛の乾燥粉末を同様に窒素雰囲気で
焼成するがその焼成温度を600℃とし5時間保持して
焼成した。
Comparative Example 1 The dry powder of lead carbonate obtained in Example 1 was similarly fired in a nitrogen atmosphere, but was fired at a firing temperature of 600 ° C. for 5 hours.

【0021】焼成後の粉末は、ほぐして、X線回折、レ
ーザー式粒度分布、BET粒子径を測定した。その結果
を表1に示すが、その結晶形はマシコットで、二次粒子
径3.5μm、一次粒子径1.8μmとともに大きくなっ
た。
The fired powder was loosened and measured for X-ray diffraction, laser particle size distribution, and BET particle size. The results are shown in Table 1. The crystal form was Mascot, which increased with the secondary particle size of 3.5 μm and the primary particle size of 1.8 μm.

【0022】比較例2 実施例1で得た炭酸鉛の乾燥粉末を、空気中500℃に
おいて5時間保持し焼成した。焼成後の粉末は、ほぐし
て、X線回折、レーザー式粒度分布、BET粒子径を測
定した。その結果を表1に示すが、得られた粉末は、P
bOではなくPb34であった。
Comparative Example 2 The dry powder of lead carbonate obtained in Example 1 was kept at 500 ° C. in air for 5 hours and calcined. The fired powder was loosened and measured for X-ray diffraction, laser particle size distribution, and BET particle size. Table 1 shows the results.
It was Pb 3 O 4 instead of bO.

【0023】比較例3 反応槽内に硝酸鉛208gと純水457g入れ溶解す
る。これにアンモニア水89gを撹拌しながら約30分
で添加した。生成したスラリーを濾過洗浄後約60℃に
おいて乾燥した。この乾燥粉末をほぐしてるつぼに取り
電気炉内にセットした後、500℃で5時間保持した。
焼成後の粉末はほぐして、X線回折、レーザー式粒度分
布、BET粒子径を測定した。その結果を表1に示す。
灰分が約2%残り、その粒子径は、一次粒子4.5μ
m、二次粒子16μmとともに大きくなった。
Comparative Example 3 In a reaction vessel, 208 g of lead nitrate and 457 g of pure water were put and dissolved. 89 g of aqueous ammonia was added to this over about 30 minutes while stirring. The resulting slurry was filtered, washed and dried at about 60 ° C. The dried powder was loosened and placed in a crucible, set in an electric furnace, and kept at 500 ° C. for 5 hours.
The fired powder was unraveled and measured for X-ray diffraction, laser particle size distribution, and BET particle size. Table 1 shows the results.
About 2% of ash remains, and the particle size is 4.5 μm for primary particles.
m, with secondary particles 16 μm.

【0024】実施例7 実施例6の焼成粉末をセラミック製造プロセスに準じて
ボールミルで粉砕混合しその粒子径を測定して粉砕のさ
れやすさを確認した。その結果を図1に示す。比較のた
めに比較例3で製造した粉末をも同様にボールミルで粉
砕し比較した。
Example 7 The fired powder of Example 6 was pulverized and mixed in a ball mill in accordance with the ceramic production process, and the particle size was measured to confirm the ease of pulverization. The result is shown in FIG. For comparison, the powder produced in Comparative Example 3 was similarly pulverized with a ball mill and compared.

【0025】その結果、一酸化鉛は粉砕されにくいので
一次粒子を小さくしないと粉砕してもその粒子径は小さ
くできない。このことは、セラミック焼結体を製造する
際の固相反応において焼結密度の低下を招く。
As a result, since lead monoxide is hard to be crushed, the particle size cannot be reduced even if crushed unless the primary particles are reduced. This leads to a decrease in the sintering density in the solid-phase reaction when producing a ceramic sintered body.

【0026】[0026]

【発明の効果】本発明の方法により、高純度かつ易焼結
性の微細な一酸化鉛粒子粉末の製造を可能にした。
According to the method of the present invention, fine lead monoxide particles having high purity and easy sinterability can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例6および比較例3において製造した一酸
化鉛の粉砕時間と粒子径との関係を示す。
FIG. 1 shows the relationship between the grinding time and the particle size of lead monoxide produced in Example 6 and Comparative Example 3.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−5298(JP,A) 特開 平3−93629(JP,A) 特公 昭15−6538(JP,B1) 特公 昭48−43559(JP,B1) 日本化学会編,「親実験化学講座8 無機化合物の合成▲I▼」,丸善,昭和 51年12月20日,257−258頁 (58)調査した分野(Int.Cl.7,DB名) C01G 21/06 C01G 21/02 CA(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-5298 (JP, A) JP-A-3-93629 (JP, A) JP-B-15-6538 (JP, B1) JP-B-48 43559 (JP, B1) edited by The Chemical Society of Japan, “Parent Experimental Chemistry Lecture 8 Synthesis of Inorganic Compounds I”, Maruzen, December 20, 1977, pp. 257-258 (58) Fields investigated (Int. . 7, DB name) C01G 21/06 C01G 21/02 CA (STN )

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重炭酸アンモニウム水溶液に硝酸鉛水溶
液を添加し反応せしめ、生成した炭酸鉛の白色沈殿を濾
取した後、この沈殿を乾燥後330〜550℃の範囲で
かつ酸素のない窒素あるいはアルゴン雰囲気で焼成する
ことを特徴とする一酸化鉛微粒子の製造法。
1. An aqueous solution of lead nitrate is added to an aqueous solution of ammonium bicarbonate to cause a reaction. A white precipitate of the generated lead carbonate is collected by filtration, and the precipitate is dried. A method for producing lead monoxide fine particles, characterized by firing in an argon atmosphere.
JP24738496A 1996-09-19 1996-09-19 Manufacturing method of lead monoxide fine particles Expired - Fee Related JP3248672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24738496A JP3248672B2 (en) 1996-09-19 1996-09-19 Manufacturing method of lead monoxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24738496A JP3248672B2 (en) 1996-09-19 1996-09-19 Manufacturing method of lead monoxide fine particles

Publications (2)

Publication Number Publication Date
JPH1095616A JPH1095616A (en) 1998-04-14
JP3248672B2 true JP3248672B2 (en) 2002-01-21

Family

ID=17162636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24738496A Expired - Fee Related JP3248672B2 (en) 1996-09-19 1996-09-19 Manufacturing method of lead monoxide fine particles

Country Status (1)

Country Link
JP (1) JP3248672B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本化学会編,「親実験化学講座8 無機化合物の合成▲I▼」,丸善,昭和51年12月20日,257−258頁

Also Published As

Publication number Publication date
JPH1095616A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
Ciftci et al. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
JP4984204B2 (en) Indium oxide powder and method for producing the same
US3577487A (en) Preparation of submicron sized alkaline earth titanate and zirconate powders
US5508242A (en) Yttrium oxide/titanium oxide ceramic compositions
JP2004107186A (en) Method for manufacturing nanosphere particle ceria compound powder having easy sintering property
JP2617140B2 (en) Ultrafine WC powder and method for producing the same
JPH1179746A (en) Perovskite composite oxide and its production
JP3248672B2 (en) Manufacturing method of lead monoxide fine particles
JPS61186219A (en) Production of lead-containing fine powder
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
JP2764111B2 (en) Method for producing perovskite ceramic powder
Pfaff Peroxide route to synthesize calcium titanate powders of different composition
CN115057487A (en) Single-crystal cobalt-free cathode material, preparation method thereof and lithium ion battery
JP4195931B2 (en) Scandium compound ultrafine particles and method for producing the same
JP5142468B2 (en) Method for producing barium titanate powder
JPH03141115A (en) Production of fine yttrium oxide powder
JP3216160B2 (en) Method for producing perovskite-type composite oxide powder
JPH0769645A (en) Production of lead-containing multiple oxide
JPH0262496B2 (en)
JP2001270714A (en) Method for producing yag fine powder
JPH11116242A (en) Production of powdery barium titanate
JPS63222014A (en) Production of oxide fine powder of perovskite type
JPH0559846B2 (en)
JPS61186221A (en) Production of fine powder of lead-containing oxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees