JP3246572B2 - Load constant measurement method for motor drive system - Google Patents

Load constant measurement method for motor drive system

Info

Publication number
JP3246572B2
JP3246572B2 JP02987093A JP2987093A JP3246572B2 JP 3246572 B2 JP3246572 B2 JP 3246572B2 JP 02987093 A JP02987093 A JP 02987093A JP 2987093 A JP2987093 A JP 2987093A JP 3246572 B2 JP3246572 B2 JP 3246572B2
Authority
JP
Japan
Prior art keywords
load
motor
torque
drive system
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02987093A
Other languages
Japanese (ja)
Other versions
JPH06225564A (en
Inventor
利文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP02987093A priority Critical patent/JP3246572B2/en
Publication of JPH06225564A publication Critical patent/JPH06225564A/en
Application granted granted Critical
Publication of JP3246572B2 publication Critical patent/JP3246572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電動機駆動系の負荷定
数測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a load constant of a motor drive system.

【0002】[0002]

【従来の技術】電動機の負荷定数測定方法として、次の
ような方法が行われていた。 (1)電動機に角速度指令として正弦波を加え、正弦波
の周波数を変化させながら繰り返し運転し、その周波数
応答より慣性負荷を計算する。 (2)角速度のステップ応答により、その立ち上がりの
応答時間から速度ループの時定数を求め、それより慣性
負荷を計算する。 (3)電動機の発生トルクを積分し、その値と回転速度
差との比より慣性負荷を求める(例えば、特開昭61−
88780号)。
2. Description of the Related Art As a method of measuring a load constant of a motor, the following method has been used. (1) A sine wave is applied to the motor as an angular velocity command, and the motor is repeatedly operated while changing the frequency of the sine wave, and an inertial load is calculated from the frequency response. (2) Using the step response of the angular velocity, the time constant of the velocity loop is obtained from the response time of the rise, and the inertial load is calculated from the time constant. (3) The torque generated by the motor is integrated, and the inertial load is determined from the ratio between the value and the rotational speed difference.
88780).

【0003】[0003]

【発明が解決しようとする課題】ところが、前記(1)
の方法では、NC工作機等には電動機と負荷の間にボー
ルねじ等の減速機によるバックラッシュが存在するた
め、角速度指令として前記の正弦波を与えるのは機械の
減速機を破壊する等の問題がある。また前記(2)の方
法では、サーボアンプにおける電流出力の遅れや静止摩
擦などの影響により、無駄時間が生じたり、応答中にお
ける動摩擦の影響により速度指令に応じたトルクが出力
できずに、立ち上がり時間が長くなる等の問題があっ
た。そのため、正確な時定数を求めることができず、よ
って正確な慣性負荷を求めることができなかった。また
上記(3)の方法では、電動機の発生トルクを積分し、
その値と回転角速度差との比から慣性負荷を求めている
が、駆動系に慣性負荷以外の一定負荷がかかっている場
合、トルク積分値に慣性負荷以外の負荷トルクの積分値
が含まれることになり、純粋に慣性負荷を駆動するのに
要したトルクの積分値が使用されないため、慣性負荷の
計算値に多大な誤差を含むことになる。さらに上記
(3)の方法では、一定の加減速レート及び回転速度変
化幅で加減速を行い、加速時および減速時における電動
機発生トルクに比例する信号の積分量の差と回転角速度
の変化幅を演算することにより、負荷イナーシャを推定
する方法を上げているが、加速時と減速時では静止摩擦
および動摩擦による影響が異なるため、静止摩擦および
動摩擦の大きな駆動系では同様に正確な慣性負荷を求め
ることはできなかった。更に、上記(1)〜(3)の方
法に共通する問題点は、駆動系の慣性負荷のみに着目し
ているため、制御系設計に必要な粘性摩擦係数および動
摩擦トルクを測定できず、かつ負荷定数測定に特別の動
作シーケンスを必要とするため、負荷定数測定が運転中
できにくいことである。本発明の目的は、電動機駆動系
において、機械系のバックラッシュや静止摩擦、動摩擦
等の影響を受けず、電動機の制御方式依存せず、かつ通
常運転中に負荷定数を測定できる電動機駆動系の負荷定
数測定方法を提供することにある。
However, the above (1)
In the method of the above, since the NC machine tool or the like has a backlash due to a speed reducer such as a ball screw between the electric motor and the load, giving the sine wave as the angular velocity command is to destroy the speed reducer of the machine. There's a problem. In the method (2), the delay of the current output in the servo amplifier and the effect of static friction may cause a dead time, and the torque according to the speed command may not be output due to the effect of the dynamic friction during response. There were problems such as a longer time. Therefore, an accurate time constant cannot be obtained, and thus an accurate inertial load cannot be obtained. In the method (3), the torque generated by the motor is integrated, and
The inertial load is calculated from the ratio between the value and the rotational angular velocity difference.If a constant load other than the inertial load is applied to the drive system, the integrated value of the load torque other than the inertial load must be included in the torque integrated value. Since the integrated value of the torque required for purely driving the inertial load is not used, a large error is included in the calculated value of the inertial load. Further, in the above method (3), acceleration / deceleration is performed at a constant acceleration / deceleration rate and rotation speed change width, and the difference between the integral amount of the signal proportional to the motor-generated torque during acceleration and deceleration and the change width of the rotation angular speed are calculated. The method of estimating load inertia by calculation is raised.However, since the effects of static friction and dynamic friction are different between acceleration and deceleration, an accurate inertia load is similarly calculated for a drive system with large static friction and dynamic friction. I couldn't do that. Further, a problem common to the above methods (1) to (3) is that since only the inertial load of the drive system is focused on, the viscous friction coefficient and dynamic friction torque required for control system design cannot be measured, and Since a special operation sequence is required for the load constant measurement, it is difficult to perform the load constant measurement during operation. An object of the present invention is to provide a motor drive system that is not affected by mechanical backlash, static friction, dynamic friction, etc., does not depend on the control method of the motor, and can measure a load constant during normal operation. It is to provide a load constant measuring method.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
め、本発明では、上位コントローラ(4)は電動機
(1)に負荷をかけた状態で、定期的にサーボコントロ
ーラ(5)より出力トルクT、位置フィードバックから
角速度ω、差分等の周知の方法で求めた角加速度aを取
り込み、一時記憶バッファ(41)に記憶し、前記一時
記憶バッファ(41)中で次式のT,D,R,Jが一義
的に求められるような3サンプル分のデータを負荷定数
演算器(42)に入力し、 T−D−R・ω=J・a ここでTは電動機の出力トルク、Dは動摩擦トルク、R
粘性摩擦係数Jは慣性負荷 を用いて、慣性負荷、動摩擦トルク、粘性摩擦係数から
なる負荷定数を求めることを特徴とするものである。
In order to solve the above-mentioned problems, according to the present invention, the upper controller (4) periodically outputs the output torque from the servo controller (5) while a load is applied to the electric motor (1). T, the angular acceleration a obtained by a known method such as an angular velocity ω and a difference from the position feedback is fetched and stored in a temporary storage buffer (41). In the temporary storage buffer (41), T, D, R , J is unique
The data for three samples , which can be obtained in a typical manner, are input to the load constant calculator (42), and T−DR−ω = J · a where T is the output torque of the motor, D is the dynamic friction torque, and R
Is characterized in that a viscous friction coefficient J uses an inertial load to determine a load constant composed of an inertial load, a dynamic friction torque, and a viscous friction coefficient.

【0005】[0005]

【作用】一般に、電動機の駆動系は、図2のようなブロ
ック図で表され、電動機の負荷として角速度に比例する
粘性摩擦、動摩擦、そして慣性負荷を考える。電動機出
力トルクと負荷の力の釣合は、次の数式1で表される。
Generally, the drive system of a motor is represented by a block diagram as shown in FIG. 2, and considers viscous friction, dynamic friction, and inertia load proportional to the angular velocity as the load of the motor. The balance between the motor output torque and the load force is expressed by the following equation (1).

【0006】[0006]

【数1】 (Equation 1)

【0007】ここで、Tは電動機の出力トルク、Dは動
摩擦トルク、Rは粘性摩擦係数、Jは慣性負荷、ωは角
速度である。ただし、電動機自身の慣性はJに含まれる
ものとする。ここで、角加速度をaとすれば、d ω/dt=
a であるから、数式1は次の数式2で表される。
Here, T is the output torque of the motor, D is the dynamic friction torque, R is the viscous friction coefficient, J is the inertial load, and ω is the angular velocity. However, the inertia of the motor itself is included in J. Here, assuming that the angular acceleration is a, dω / dt =
Since it is a, Expression 1 is expressed by Expression 2 below.

【0008】[0008]

【数2】 (Equation 2)

【0009】ここで、時系列上の3点すなわちt0 、t
1 、t2 における出力トルクをT0、T1 、T2 、角速
度をω0 、ω、1 ω2 、角加速度をa0 、a1 、a2
すると、次の式が成り立つ。
Here, three points on the time series, that is, t 0 and t
If the output torque at 1 and t 2 is T 0 , T 1 , T 2 , the angular velocity is ω 0 , ω, 1 ω 2 , and the angular acceleration is a 0 , a 1 , a 2 , the following equation holds.

【0010】[0010]

【数3】 [Equation 3]

【0011】[0011]

【数4】 (Equation 4)

【0012】[0012]

【数5】 (Equation 5)

【0013】これを行列表現すれば、次の数式6とな
る。
When this is expressed in a matrix, the following equation 6 is obtained.

【0014】[0014]

【数6】 (Equation 6)

【0015】数式6よりFrom equation (6)

【0016】[0016]

【数7】 (Equation 7)

【0017】となり、時系列上の3点における出力トル
クT0 、T1 、T2 、角速度ω0 、ω、1 ω2 、角加速
度a0 、a1 、a2 より負荷定数J、R、Dを求めるこ
とができる。
From the output torques T 0 , T 1 , T 2 , angular velocities ω 0 , ω, 1 ω 2 , and angular accelerations a 0 , a 1 , a 2 at three points in the time series, load constants J, R, D can be determined.

【0018】[0018]

【実施例】以下、本発明の具体的実施例を図に基づいて
説明する。図1は実施例の構成図である。1は電動機、
2は負荷、3はパルスジェネレータ、4は位置指令を出
力する上位コントローラ、5は上位コントローラ4から
の位置指令とパルスジェネレータ3からのフィードバッ
クパルスとから、電動機1に駆動電流を出力するサーボ
コントローラである。上位コントローラ4は、電動機1
の運転中、定期的にサーボコントローラ5より出力トル
クT、位置フィードバックを取込む。そして位置フィー
ドバックから角速度ω、角加速度aを差分等の周知の方
法で求め、出力トルクTと共に一時記憶バッファ41に
記憶する。次に上位コントローラ4は一時記憶バッファ
41中の3サンプル分のデータを負荷定数演算器42に
入力し、数式7を用いて負荷定数を計算する。時刻を変
えて時系列上の3点におけるデータから、負荷定数計算
を繰り返すことにより、慣性負荷負荷J,静止摩擦およ
び動摩擦トルクD、粘性摩擦係数Rを求めるので、定数
測定精度が向上し、かつ動的な負荷変動も測定可能とな
る。測定された負荷定数は、サーボコントローラのチュ
ーニング等に利用される。なお、本発明は上位コントロ
ーラによって負荷定数等の演算を行うようにしている
が、上記実施例の構成に限定されるものではなく、サー
ボコントローラにて上記演算を行うことも可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment. 1 is an electric motor,
2 is a load, 3 is a pulse generator, 4 is a host controller that outputs a position command, and 5 is a servo controller that outputs a drive current to the electric motor 1 from a position command from the host controller 4 and a feedback pulse from the pulse generator 3. is there. The host controller 4 includes the motor 1
During the operation, the output torque T and the position feedback are periodically taken in from the servo controller 5. Then, the angular velocity ω and the angular acceleration a are obtained from the position feedback by a known method such as a difference, and are stored in the temporary storage buffer 41 together with the output torque T. Next, the host controller 4 inputs the data of three samples in the temporary storage buffer 41 to the load constant calculator 42, and calculates the load constant using Expression 7. The inertia load J, the static friction and the dynamic friction torque D, and the viscous friction coefficient R are obtained by changing the time and repeating the load constant calculation from the data at three points in the time series, so that the accuracy of the constant measurement is improved, and Dynamic load fluctuations can also be measured. The measured load constant is used for servo controller tuning and the like. In the present invention, the calculation of the load constant and the like is performed by the host controller. However, the present invention is not limited to the configuration of the above embodiment, and the servo controller may perform the calculation.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
電動機駆動系の運転中に、角速度、角加速度および出力
トルクから負荷定数を求めるので、機械系のバックラッ
シュや静止摩擦、動摩擦等の影響を受けず、電動機の制
御方式に依存せず、かつ通常運転中に負荷定数を測定で
きる効果がある。
As described above, according to the present invention,
Since the load constant is determined from the angular velocity, angular acceleration and output torque during operation of the motor drive system, it is not affected by mechanical backlash, static friction, dynamic friction, etc., does not depend on the control method of the motor, and is usually There is an effect that the load constant can be measured during operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】電動機の出力トルクと負荷トルクの釣合を示す
ブロック線図。
FIG. 2 is a block diagram showing a balance between an output torque and a load torque of the electric motor.

【符号の説明】[Explanation of symbols]

1 電動機 2 負荷 3 パルスジェネレータ 4 上位コントローラ 41 一時記憶バッファ 42 負荷定数演算器 5 サーボコントローラ DESCRIPTION OF SYMBOLS 1 Motor 2 Load 3 Pulse generator 4 Host controller 41 Temporary storage buffer 42 Load constant calculator 5 Servo controller

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上位コントローラ(4)は電動機(1)に
負荷をかけた状態で、定期的にサーボコントローラ
(5)より出力トルクT、位置フィードバックから角速
度ω、差分等の周知の方法で求めた角加速度aを取り込
み、一時記憶バッファ(41)に記憶し、前記一時記憶
バッファ(41)中で次式のT,D,R,Jが一義的に
求められるような3サンプル分のデータを負荷定数演算
器(42)に入力し、 T−D−R・ω=J・a ここでTは電動機の出力トルク、Dは動摩擦トルク、R
粘性摩擦係数Jは慣性負荷 を用いて、慣性負荷、動摩擦トルク、粘性摩擦係数から
なる負荷定数を求めることを特徴とする電動機駆動系の
負荷定数測定方法。
An upper controller (4) periodically obtains an output torque T from a servo controller (5) with a load applied to a motor (1) by a known method such as an angular velocity ω and a difference from position feedback. The angular acceleration a is taken and stored in a temporary storage buffer (41), and T, D, R, and J of the following equations are uniquely defined in the temporary storage buffer (41).
The data for the three samples to be obtained are input to the load constant calculator (42), and T−D−R · ω = J · a, where T is the output torque of the motor, D is the dynamic friction torque, and R is the dynamic friction torque.
Is a method of measuring a load constant of a motor drive system, wherein a viscous friction coefficient J is a load constant composed of an inertial load, a dynamic friction torque, and a viscous friction coefficient using an inertial load.
JP02987093A 1993-01-25 1993-01-25 Load constant measurement method for motor drive system Expired - Fee Related JP3246572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02987093A JP3246572B2 (en) 1993-01-25 1993-01-25 Load constant measurement method for motor drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02987093A JP3246572B2 (en) 1993-01-25 1993-01-25 Load constant measurement method for motor drive system

Publications (2)

Publication Number Publication Date
JPH06225564A JPH06225564A (en) 1994-08-12
JP3246572B2 true JP3246572B2 (en) 2002-01-15

Family

ID=12288013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02987093A Expired - Fee Related JP3246572B2 (en) 1993-01-25 1993-01-25 Load constant measurement method for motor drive system

Country Status (1)

Country Link
JP (1) JP3246572B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006262A5 (en) * 1991-11-26 1994-07-05 Mutoh Ind Ltd Guiding device and evacuation in a scanner paper type paper delivery.
US6037736A (en) * 1995-05-17 2000-03-14 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
JP5027423B2 (en) * 2006-02-15 2012-09-19 オリエンタルモーター株式会社 Stepping motor load estimation method and load estimation apparatus
JP4602921B2 (en) * 2006-03-07 2010-12-22 株式会社日立産機システム Motor control device and motor control method
JP5192925B2 (en) * 2008-06-30 2013-05-08 ヤマハ発動機株式会社 Load identification method and robot control system
CN105103437B (en) * 2013-03-29 2018-05-15 松下知识产权经营株式会社 The service regulation method of motor drive

Also Published As

Publication number Publication date
JPH06225564A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
EP0208788A1 (en) Speed control system for servo motors
KR100425819B1 (en) Mechanical vibration detection device and vibration suppression control device
JP2002304219A (en) Motor controller and mechanism characteristic measuring method
JP3246572B2 (en) Load constant measurement method for motor drive system
JP3230616B2 (en) Inertial load measurement method for motor drive system
US5091683A (en) Servo control apparatus
JP3479922B2 (en) Load constant measurement method for motor drive system
JP2772064B2 (en) Robot model identification device
EP0441983A1 (en) Method of controlling robot
JP3049946B2 (en) Load inertia measuring device
JP4045860B2 (en) Power transmission system test apparatus and control method thereof
JPH11352020A (en) Device and method for measuring dynamic torsion characteristic of damper assembly
JPS6337597B2 (en)
JP4013174B2 (en) Motor torque ripple measuring device
JP3049887B2 (en) Dynamometer drive
JP3165087B2 (en) Industrial robot failure detection method
JP2006074896A (en) Motor control device
JP3351979B2 (en) Position control system
JP2003333874A (en) Load inertia identifying device
JP3078273B2 (en) Ultrasonic motor speed control method and apparatus
JPH01178478A (en) Printing head travel controller for printer
JP2624847B2 (en) Engine test equipment
JPH0356084A (en) Measuring method for actual torque applied to driven body by motor with retarding device, and hybrid controlling method for position and force
JP4565426B2 (en) Motor control device
JP3329184B2 (en) Load state estimation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees