JP3242192B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP3242192B2
JP3242192B2 JP07151893A JP7151893A JP3242192B2 JP 3242192 B2 JP3242192 B2 JP 3242192B2 JP 07151893 A JP07151893 A JP 07151893A JP 7151893 A JP7151893 A JP 7151893A JP 3242192 B2 JP3242192 B2 JP 3242192B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor substrate
laser device
layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07151893A
Other languages
Japanese (ja)
Other versions
JPH06283812A (en
Inventor
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP07151893A priority Critical patent/JP3242192B2/en
Publication of JPH06283812A publication Critical patent/JPH06283812A/en
Application granted granted Critical
Publication of JP3242192B2 publication Critical patent/JP3242192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光情報処理或は光応用
計測及び光通信用の光源に適する面発光型波長多重半導
体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting wavelength-division multiplexing semiconductor laser device suitable for a light source for optical information processing or optical measurement and optical communication.

【0002】[0002]

【従来の技術】従来の技術では、半導体基板に対して垂
直共振器を形成する面発光型の半導体レーザにおいて、
0.6μm帯の短波長領域や0.98μm帯の長波長領域
における電流注入型の室温における発振が報告されてい
る。例えば、公知例1)アイ・イ・イ・イ フォトニク
ス・テクノロジー・レタース1992年、4巻、1195頁(IEE
EPhoton.Technol.Lett.,4(1992)1195)及び公知例2)
アイ・イ・イ・イ ジャーナル・クオンタム・エレクト
ロニクス1991年、27巻、1359頁(IEEE J.Quantum Elect
ron.,27(1991)1359)において述べられている。
2. Description of the Related Art In the prior art, in a surface emitting type semiconductor laser in which a vertical cavity is formed with respect to a semiconductor substrate,
It has been reported that the current injection type oscillation at room temperature in the short wavelength region of the 0.6 μm band and the long wavelength region of the 0.98 μm band. For example, well-known example 1) I II Photonics Technology Letters 1992, 4, 1195 (IEE
EPhoton.Technol.Lett., 4 (1992) 1195) and known example 2).
I II Journal Quantum Electronics 1991, 27, 1359 (IEEE J. Quantum Elect
ron., 27 (1991) 1359).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、半
導体基板上に単一の発振波長を有する半導体レーザ光源
について述べられているだけで、同一基板上に同一空間
で発振波長の異なる多波長レーザ光源をもつ面発光型の
半導体レーザについては記述されていない。
In the above prior art, only a semiconductor laser light source having a single oscillation wavelength on a semiconductor substrate is described, but a multi-wavelength laser having a different oscillation wavelength in the same space on the same substrate. No description is given of a surface-emitting type semiconductor laser having a light source.

【0004】本発明の目的は、同一半導体基板上に発振
波長が異なる活性層構造を少なくとも2組以上縦に積層
して集積化することにより、同一空間内に多波長レーザ
光源を取り出すことができ、光吸収が非常に小さい垂直
共振器構造を作製した多波長面発光型半導体レーザ素子
を提供することにある。例えば、III−V族半導体レー
ザとII−VI族半導体レーザを縦構造として、同一基板上
に活性層,光導波層及び光反射膜構造を光吸収が問題と
ならないように多段階に集積化し、レーザ光の出射する
方向を指定することにより、3原色の赤緑青色を同一空
間にとりだす白色半導体レーザ素子として実現できる。
An object of the present invention is to provide a multi-wavelength laser light source in the same space by vertically stacking and integrating at least two or more sets of active layer structures having different oscillation wavelengths on the same semiconductor substrate. Another object of the present invention is to provide a multi-wavelength surface-emitting type semiconductor laser device having a vertical cavity structure with very small light absorption. For example, a group III-V semiconductor laser and a group II-VI semiconductor laser have a vertical structure, and an active layer, an optical waveguide layer and a light reflecting film structure are integrated in multiple stages on the same substrate so that light absorption does not become a problem. By specifying the direction in which the laser light is emitted, a white semiconductor laser element that takes out the three primary colors red, green and blue in the same space can be realized.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の手段を以下に説明する。
Means for achieving the above object will be described below.

【0006】同一半導体基板上に発振波長が異なる活性
層構造を少なくとも2組以上縦に積層して、同一空間内
に多波長レーザ光源を取り出すために、まずレーザ光の
出射方向を規定する。半導体基板のもつ禁制帯幅がその
上に積層する各活性層の禁制帯より小さいときには、光
吸収を避けるためにレーザ光を基板とは反対側からとり
出すように工夫する。このとき、積層した活性層の下側
に設ける光反射膜(DBR:Distributed Bragg Reflector)
構造を高反射率として全ての活性層から出射するレーザ
光は上側に向かうように設定する。一方、半導体基板の
もつ禁制帯幅がその上に積層する各活性層の禁制帯より
大きいときには、レーザ光を基板側からとり出してもよ
く、或いは半導体基板とは反対側からとり出してもよ
い。このとき、積層した活性層の下側に高反射膜を設け
たときには上側からレーザ光を出射し、活性層の上側に
高反射膜を設けたときには基板側からレーザ光を出射す
ることになる。
At least two or more sets of active layer structures having different oscillation wavelengths are vertically stacked on the same semiconductor substrate, and in order to take out a multi-wavelength laser light source in the same space, the emission direction of the laser light is first defined. When the forbidden band width of the semiconductor substrate is smaller than the forbidden band of each of the active layers laminated thereon, the laser light is extracted from the side opposite to the substrate to avoid light absorption. At this time, a light reflection film (DBR: Distributed Bragg Reflector) provided below the stacked active layer
The structure is set to have a high reflectance so that the laser light emitted from all the active layers is directed upward. On the other hand, when the forbidden band width of the semiconductor substrate is larger than the forbidden band of each active layer laminated thereon, the laser beam may be extracted from the substrate side, or may be extracted from the side opposite to the semiconductor substrate. . At this time, when a highly reflective film is provided below the stacked active layers, laser light is emitted from the upper side, and when the highly reflective film is provided above the active layer, laser light is emitted from the substrate side.

【0007】活性層の上側又は下側に設定される光反射
膜DBR構造は光吸収が非常に小さくかつ屈折率差を大き
くできる材料の組合せを選定し、かつ特定の活性層が有
する禁制帯幅領域で少なくとも90%以上の高反射率が
得られるように設計する。もう一方の共振器面は、半導
体基板側か或いは積層した半導体最上部に高反射膜構造
を誘電体膜か或いは金属薄膜により形成する。これによ
り、全ての活性層に対して垂直共振器構造が形成でき、
多波長で発振する同一基板上でかつ同一空間に面発光型
半導体レーザ素子が得られる。
For the light reflecting film DBR structure set on the upper side or the lower side of the active layer, a combination of materials capable of having a very small light absorption and a large difference in refractive index is selected, and the forbidden band width of a specific active layer is selected. It is designed so that a high reflectance of at least 90% or more can be obtained in the region. On the other resonator surface, a high reflection film structure is formed by a dielectric film or a metal thin film on the semiconductor substrate side or on the uppermost portion of the laminated semiconductor. Thereby, a vertical resonator structure can be formed for all the active layers,
A surface-emitting type semiconductor laser device oscillating at multiple wavelengths can be obtained on the same substrate and in the same space.

【0008】[0008]

【作用】目的を達成するため、上記手段について説明す
る。
The above means will be described in order to achieve the object.

【0009】同一半導体基板上にIII−V族半導体或い
はII−VI族半導体材料を用いて、レーザ発振波長が異な
る活性層構造を少なくとも2組以上縦に積層する。例え
ば、半導体基板にGaAs基板を用いたときに、エネルギー
が基板の禁制帯幅より大きい3原色赤緑青色の短波長レ
ーザ光源を同一空間に取り出すには、基板とは反対側か
らレーザ光を出射できるように高反射膜を設ける。3原
色赤緑青色の発振波長を有する各活性層をエネルギーの
小さい方から基板上に積層していき、各活性層の下側に
DBR構造を有する高反射膜を作製する。さらに、一方の
積層した半導体上部の表面には、非常に広い波長にわた
って高反射率の共振器面となる多層膜を誘電体或いは金
属膜により形成する。これにより、各活性層に対して垂
直共振器構造が形成できる。但し、このとき各活性層の
下側に設けたDBR構造高反射膜よりは反射率を若干低下
させて差をもたせることにより、基板とは反対側へ同一
空間上で発振波長の異なるレーザ光源を取り出せる。
On the same semiconductor substrate, at least two sets of active layer structures having different laser oscillation wavelengths are vertically stacked by using a III-V group semiconductor or a II-VI group semiconductor material. For example, when a GaAs substrate is used as a semiconductor substrate, in order to extract a short-wavelength laser light source of three primary colors red, green and blue whose energy is larger than the band gap of the substrate into the same space, a laser beam is emitted from the side opposite to the substrate. A highly reflective film is provided so that it can be formed. Each active layer having the three primary colors of red, green, and blue oscillation wavelengths is laminated on a substrate in order of energy, and
A highly reflective film having a DBR structure is manufactured. Further, on the upper surface of one of the stacked semiconductors, a multilayer film serving as a resonator surface having a high reflectance over a very wide wavelength is formed by a dielectric or metal film. Thereby, a vertical resonator structure can be formed for each active layer. However, at this time, by making the reflectivity slightly lower than that of the DBR structure high reflection film provided under each active layer to give a difference, laser light sources having different oscillation wavelengths in the same space on the opposite side of the substrate are provided. Can be taken out.

【0010】各活性層の下側に設けるDBR構造高反射膜
は、各活性層より大きな禁制帯幅を有するIII−V族半
導体或いはII−VI族半導体材料から形成され、屈折率の
異なる少なくとも2層以上の組合せを用いて90%以上
の反射率をもつようにする。例えば、図4に示したよう
に、GaAs基板に格子整合する組成をもつZnSSe層とZnMgS
Se層を組み合わせることによって、青色の波長域460
〜470nmにおいてほぼ100%に近い高反射率を得
ることができる。ここで、ZnSSe層は膜厚26nm,ZnM
gSSe層は膜厚43nmとして、30周期設けている。こ
のとき、緑色の波長域530nm付近や赤色の波長域6
30nm付近では、反射率が約30%以下にできている
ため、青緑赤色の3原色に対してこのZnSSe層とZnMgSSe
層で形成される反射膜は、青色の波長域でのみ100%
近い高反射膜となる。
The DBR structure highly reflective film provided below each active layer is formed of a III-V semiconductor or II-VI semiconductor material having a larger bandgap than each active layer, and has at least two different refractive indexes. A combination of layers or more is used to have a reflectance of 90% or more. For example, as shown in FIG. 4, a ZnSSe layer having a composition lattice-matched to a GaAs substrate and a ZnMgS
By combining the Se layer, the blue wavelength range 460
A high reflectance close to 100% can be obtained at about 470 nm. Here, the ZnSSe layer has a thickness of 26 nm,
The gSSe layer has a thickness of 43 nm and is provided for 30 periods. At this time, the green wavelength range around 530 nm or the red wavelength range 6
In the vicinity of 30 nm, since the reflectivity is reduced to about 30% or less, the ZnSSe layer and the ZnMgSSe
The reflection film formed by the layer is 100% only in the blue wavelength region.
It becomes a near high reflection film.

【0011】次に、図5に示したように、同様にZnSSe
層とZnMgSSe層を用いて、緑色の波長域520〜530
nmにおいてほぼ100%に近い高反射率を得ることが
できる。ここで、ZnSSe層は膜厚34nm,ZnMgSSe層は
膜厚55nmとして、30周期設けている。このとき、
青色の波長域460nm付近や赤色の波長域630nm
付近では、反射率が約20%以下にできているため、青
緑赤色の3原色に対してこのZnSSe層とZnMgSSe層で形成
される反射膜は、緑色の波長域でのみ100%近い高反
射膜となる。
Next, as shown in FIG.
Green wavelength range 520 to 530 using the layer and the ZnMgSSe layer.
A high reflectance close to 100% in nm can be obtained. Here, the ZnSSe layer has a thickness of 34 nm, and the ZnMgSSe layer has a thickness of 55 nm, and is provided for 30 periods. At this time,
Near blue wavelength range 460nm or red wavelength range 630nm
In the vicinity, since the reflectivity is about 20% or less, the reflection film formed of the ZnSSe layer and the ZnMgSSe layer for the three primary colors of blue, green, and red has high reflection close to 100% only in the green wavelength region. It becomes a film.

【0012】さらに、図6に示したように、AlGaInP層
とAlInP層を用いて、赤色の波長域625〜635nm
においてほぼ100%に近い高反射率を得ることができ
る。ここで、AlGaInP層は膜厚37nm,AlInP層は膜厚
51nmとして、30周期設けている。このとき、青色
の波長域460nm付近でもほぼ100%の高反射率と
なっており、一方緑色の波長域530nm付近では20
〜30%の低反射率となっているが、青色や緑色のレー
ザ光が相対的に禁制帯幅の小さいAlGaInP層を通らない
ように上に述べた高反射膜で遮って反対側に出射させる
ことができるので、このことは実際上関係なく問題とな
らない。また、図7に示したように、AlGaInP層とAlInP
層を用いて、緑色の波長域に対してのみ高反射膜を形成
することもできる。図6と図7の波長に対する反射率を
有する周期構造を付加して、青緑赤色のそれぞれの波長
域において高反射率とすることも可能である。また別
に、赤色の波長域に対しては基板側に誘電体膜や金属膜
の周期構造により高反射膜が形成でき、これを利用する
ことができるので赤色の波長域で図7におけるような低
反射率となっても問題は生じない。
Further, as shown in FIG. 6, a red wavelength region of 625 to 635 nm is formed by using an AlGaInP layer and an AlInP layer.
, A high reflectance close to 100% can be obtained. The AlGaInP layer has a thickness of 37 nm and the AlInP layer has a thickness of 51 nm, and is provided for 30 periods. At this time, the reflectance is almost 100% even in the vicinity of the blue wavelength range of 460 nm, while the reflectance is 20 in the vicinity of the green wavelength range of 530 nm.
Although it has a low reflectivity of about 30%, the laser light of blue or green is shielded by the above-described high reflection film so as not to pass through the AlGaInP layer having a relatively small band gap, and is emitted to the opposite side. This is not a problem, regardless of practicality. Also, as shown in FIG. 7, the AlGaInP layer and the AlInP
The layer can be used to form a highly reflective film only in the green wavelength range. It is also possible to add a periodic structure having a reflectance with respect to the wavelengths of FIGS. 6 and 7 to achieve a high reflectance in each of the blue, green and red wavelength ranges. Separately, in the red wavelength region, a high reflection film can be formed on the substrate side by a periodic structure of a dielectric film or a metal film, and this can be used. There is no problem even if the reflectance is obtained.

【0013】また、電流注入は基板の縦方向にレーザ光
を取り出す垂直共振器構造に対して横方向より行うこと
により実現できる。このとき、電極に対するコンタクト
層は該半導体基板と同じ半導体材料か又は該半導体基板
より禁制帯幅の大きい半導体材料により形成され、かつ
p型層或いはn型層の電極に対するオーミック性を確保
するために、禁制帯幅が非常に大きくかつキャリア濃度
がp型では少なくとも5×1018〜1×1019cm-3
上設定でき、n型では少なくとも1×1018〜5×10
18cm-3以上設定できる半導体材料を用いることが必要
である。
Further, the current injection can be realized by performing the current injection in the vertical direction of the substrate in the horizontal direction with respect to the vertical resonator structure for extracting the laser beam. At this time, the contact layer for the electrode is formed of the same semiconductor material as that of the semiconductor substrate or a semiconductor material having a larger forbidden band width than the semiconductor substrate, and in order to secure ohmic properties of the p-type layer or the n-type layer for the electrode. The band gap is very large and the carrier concentration can be set to at least 5 × 10 18 to 1 × 10 19 cm −3 for the p-type, and at least 1 × 10 18 to 5 × 10 for the n-type.
It is necessary to use a semiconductor material which can be set to 18 cm -3 or more.

【0014】[0014]

【実施例】(実施例1)本発明の一実施例を図1により
説明する。まず、(100)面から15。8゜オフした(511)傾
角基板1を用いて、その上にアンドープAl0.5In0.5P層
(d=51nm)とアンドープ(Alx1Ga1-x1)0.5In0.5P層(d=37n
m,x1=0.1〜0.2)を30周期設けた多周期DBR構造高反射
膜2,アンドープ(Al0.7Ga0.3)0.5In0.5P光導波層(d=0.
4〜1.0μm)3,アンドープ(Al0.5Ga0.5)0.5In0.5P量子
障壁(d=5〜10nm)4層とアンドープGax2In1-x2P歪量子井
戸(d=3〜13nm,x2=0.55〜0.70)5層とその両側にアンド
ープ(Al0.5Ga0.5) 0.5In0.5P光分離閉じ込め層(d=10〜6
0nm)を設けた多重量子井戸構造活性層4,アンドープ(A
l0.7Ga0.3)0.5In0.5P光導波層(d=0.4〜1.0μm)5,p型
ドープGaP層(d=5〜10nm,NA=5×1018〜1×1019cm-3)6を
まず有機金属気相成長(MOCVD)法により成長温度7
80℃においてエピタキシャル成長する。この後、SiO2
を蒸着してホトリソグラフィーによりマスクを作製し、
斜線部7の領域にZn拡散を行ってp型領域を形成し、さ
らに斜線部8の領域にSi拡散を行ってn型領域を形成す
る。次に、分子線エピタキシー(MBE)法により成長温
度350℃において、アンドープZn0.75Mg0.25S0.35S
e0.65層(d=55nm)とアンドープZnS0.06Se0.94層(d=34nm)
を30周期設けた多周期DBR構造高反射膜構造9,アン
ドープZn0.75Mg0.25S0.35Se0.65光導波層(d=0.4〜1.0μ
m)10,アンドープZnS0.06Se0.94量子障壁(d=5〜10nm)
4層とアンドープZnx3Cd1-x3Se歪量子井戸(d=5〜15nm,x
3=0.2〜0.3)5層とその両側にアンドープZnS0.06Se0.94
光分離閉じ込め層(d=10〜60nm)を設けた多重量子井戸構
造活性層11,アンドープZn0.75Mg0.25S0.35Se0.65
導波層(d=0.4〜1.0μm)12,p型ドープGaP層(d=5〜10n
m,NA=5×1018〜1×1019cm-3)6,さらにアンドープZn0.
75 Mg0.25S0.35Se0.65層(d=43nm)とアンドープZnS0.06S
e0.94層(d=26nm)を30周期設けた多周期DBR構造高反射
膜13,アンドープZn0.75Mg0.25S0.35Se0.65光導波層
(d=0.4〜1.0μm)14,アンドープZnS0.06Se0.94量子障
壁(d=5〜10nm)4層とアンドープZnSe歪量子井戸(d=5〜1
5nm)5層とその両側にアンドープZnS0.06Se0.94光分離
閉じ込め層を設けた多重量子井戸構造活性層15,アン
ドープZn0.75Mg0.25 S0.35Se0.65光導波層(d=0.4〜1.0
μm)16,p型ドープGaP層(d=5〜10nm,NA=5×1018〜1×
1019cm-3)6を順次エピタキシャル成長する。この後、
図1のように、ホトリソグラフィーによりマスクを形成
した後メサ状にエッチングし、マスクを利用して斜線部
の領域にNイオンを打ち込むか或いは不純物としてアル
カリ金属のLi,Na又はKを拡散してp型領域17を形成
し、さらに斜線部の領域にハロゲン化物イオンI,Br,Cl
又はFを打ち込むかハロゲン化亜鉛を原料として拡散を
行うことによりn型領域18を形成する。次に、半導体
基板1を図1の形状にマスクを利用してエッチング除去
して形成し、その後誘電体膜或いは金属膜又はそれらの
組合せにより高反射膜19を形成する。このとき、赤色
の波長域630nm付近において約90%以上の反射率
になるように、各誘電体膜或いは金属膜の膜厚を設定す
る。例えば、SiO2とAuの組合せを少なくとも2周期以上
設けることにより、可視域の広い波長範囲において90
%以上の反射率を容易に得ることができる。さらに、半
導体基板とは反対側において、高反射膜20を形成し、
結晶成長によるDBR構造高反射膜や基板側に形成した高
反射膜より相対的に小さい反射率とした70〜90%の
範囲に設定した。ただし、可視域の広い波長範囲におい
て、この反射率範囲を必要とするために、誘電体膜と金
属膜の組合せを周期的に設けて作製した。さらに、ホト
リソグラフィーとエッチング及びリフトオフにより、p
側電極21及びn側電極22を蒸着し、劈開スクライブ
して図1の断面図に示す素子の形状に切り出す。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG. First, (100) using a 15.8 ° off the (511) tilt the substrate 1 from the surface, an undoped Al 0 thereon. 5 In 0. 5 P layer
(d = 51 nm) and undoped (Al x1 Ga 1-x1) 0. 5 In 0. 5 P layer (d = 37n
m, x 1 = 0.1~0.2) a multi-periodic DBR structure high reflection film 2 provided 30 periods, an undoped (Al 0. 7 Ga 0. 3) 0. 5 In 0. 5 P optical waveguide layer (d = 0.
4~1.0μm) 3, an undoped (Al 0. 5 Ga 0. 5) 0. 5 In 0. 5 P quantum barrier (d = 5 to 10 nm) 4 layers and undoped Ga x2 In 1-x2 P strained quantum well ( d = 3~13nm, x 2 = 0.55~0.70 ) 5 layers and undoped on both sides (Al 0. 5 Ga 0. 5) 0. 5 in 0. 5 P light separation confinement layer (d = ten to six
0 nm), the multiple quantum well structure active layer 4, undoped (A
l 0. 7 Ga 0. 3 ) 0. 5 In 0. 5 P optical waveguide layer (d = 0.4~1.0μm) 5, p-type doped GaP layer (d = 5~10nm, N A = 5 × 10 18 ~ 1 × 10 19 cm −3 ) 6 was first grown at a growth temperature of 7 by metalorganic chemical vapor deposition (MOCVD).
Epitaxially grow at 80 ° C. After this, SiO 2
To make a mask by photolithography,
A p-type region is formed by performing Zn diffusion in the hatched area 7, and an n-type area is formed by performing Si diffusion in the hatched area 8. Next, the growth temperature 350 ° C. by molecular beam epitaxy (MBE), an undoped Zn 0. 75 Mg 0. 25 S 0. 35 S
e 0. 65 layers (d = 55nm) and undoped ZnS 0. 06 Se 0. 94 layers (d = 34nm)
The provided 30 periods Multi periodic DBR structure high reflection film structure 9, an undoped Zn 0. 75 Mg 0. 25 S 0. 35 Se 0. 65 optical waveguide layer (d = 0.4~1.0μ
m) 10, an undoped ZnS 0. 06 Se 0. 94 quantum barrier (d = 5 to 10 nm)
Four layers and undoped Zn x3 Cd 1-x3 Se strained quantum well (d = 5 to 15 nm, x
3 = 0.2 to 0.3), five-layer and undoped ZnS 0 on both sides. 06 Se 0. 94
Light separate confinement layer (d = 10 to 60 nm) multi-quantum well structure active layer 11 was provided, undoped Zn 0. 75 Mg 0. 25 S 0. 35 Se 0. 65 optical waveguide layer (d = 0.4~1.0μm) 12, p-type doped GaP layer (d = 5-10n
m, N A = 5 × 10 18 -1 × 10 19 cm −3 ) 6, and further undoped Zn 0 .
75 Mg 0. 25 S 0. 35 Se 0. 65 layers (d = 43 nm) and undoped ZnS 0. 06 S
e 0. 94 layers (d = 26 nm) the 30 cycles provided multi periodic DBR structure high reflection film 13, an undoped Zn 0. 75 Mg 0. 25 S 0. 35 Se 0. 65 optical waveguide layer
(d = 0.4~1.0μm) 14, an undoped ZnS 0. 06 Se 0. 94 quantum barrier (d = 5~10nm) 4 layers and undoped ZnSe strained quantum well (d = 5 to 1
5 nm) 5-layer undoped ZnS 0 on both sides. 06 Se 0. 94 multiple quantum well structure active layer 15 provided with the optical separate confinement layer, an undoped Zn 0. 75 Mg 0. 25 S 0. 35 Se 0. 65 optical Wave layer (d = 0.4 ~ 1.0
μm) 16, p-type doped GaP layer (d = 5 to 10 nm, N A = 5 × 10 18 to 1 ×
10 19 cm −3 ) 6 are epitaxially grown sequentially. After this,
As shown in FIG. 1, after forming a mask by photolithography, etching is performed in a mesa shape, and N ions are implanted into a hatched region using a mask, or Li, Na, or K of an alkali metal is diffused as an impurity. A p-type region 17 is formed, and halide ions I, Br, Cl
Alternatively, the n-type region 18 is formed by implanting F or by diffusing zinc halide as a raw material. Next, the semiconductor substrate 1 is formed by etching using a mask in the shape shown in FIG. 1, and then a high reflection film 19 is formed by a dielectric film, a metal film, or a combination thereof. At this time, the thickness of each dielectric film or metal film is set so that the reflectance becomes about 90% or more in the vicinity of the red wavelength region of 630 nm. For example, by providing a combination of SiO 2 and Au for at least two periods, 90
% Or more can be easily obtained. Further, on the side opposite to the semiconductor substrate, a high reflection film 20 is formed,
The reflectance was set to be 70 to 90%, which was set to be relatively lower than the reflectance of the DBR structure high reflection film formed by crystal growth or the high reflection film formed on the substrate side. However, in order to require this reflectance range in a wide wavelength range of the visible region, a combination of a dielectric film and a metal film was provided periodically to fabricate. Further, by photolithography, etching and lift-off, p
The side electrode 21 and the n-side electrode 22 are vapor-deposited, cleaved and scribed, and cut into an element shape shown in the sectional view of FIG.

【0015】本実施例において、横方向から電流を注入
すると、発光活性層4,11及び15からレーザ発振が
生じ、赤色の波長域630nm付近,緑色の波長域53
0nm付近及び青色の波長域460nm付近の発振波長
が発光活性層4,11及び15にそれぞれ対応して得ら
れ、基板とは反対側の高反射膜20から3原色の混合し
た白色レーザ光を取り出すことができた。本実施例で
は、発光活性層4,11及び15を同時に駆動している
ので、同一空間上に常に3原色の混合した白色レーザ光
源として動作した。
In this embodiment, when a current is injected from the lateral direction, laser oscillation is generated from the light emitting active layers 4, 11 and 15, and a red wavelength region around 630 nm and a green wavelength region 53 are emitted.
Oscillation wavelengths in the vicinity of 0 nm and in the vicinity of the blue wavelength range of 460 nm are obtained for the light emitting active layers 4, 11 and 15, respectively, and white laser light of three primary colors is extracted from the high reflection film 20 on the side opposite to the substrate. I was able to. In this embodiment, since the light-emitting active layers 4, 11, and 15 are simultaneously driven, the light-emitting layers always operate as a white laser light source in which three primary colors are mixed in the same space.

【0016】(実施例2)本発明の他実施例を図2によ
り説明する。高反射膜20を形成するまで実施例1と同
様に素子を作製する。この後、ホトリソグラフィーとエ
ッチング及びリフトオフにより、p側電極21及びn側
電極22を分離独立して蒸着し、劈開スクライブして図
2の断面図に示す素子の形状に切り出す。
(Embodiment 2) Another embodiment of the present invention will be described with reference to FIG. An element is manufactured in the same manner as in Example 1 until the high reflection film 20 is formed. Thereafter, the p-side electrode 21 and the n-side electrode 22 are separately and independently vapor-deposited by photolithography, etching and lift-off, cleaved and scribed, and cut into the element shape shown in the sectional view of FIG.

【0017】本実施例では、横方向から各電極に同時に
電流を注入すると、発光活性層4,11及び15からレ
ーザ発振が生じ、実施例1と同様に赤色の波長域630
nm付近,緑色の波長域530nm付近及び青色の波長
域460nm付近の発振波長が発光活性層4,11及び
15にそれぞれ対応して得られ、高反射膜20から3原
色の混合した白色レーザ光を取り出すことができた。ま
た、各電極に独立に電流を注入すると、個々の電極に対
する電流注入に対応して赤色の波長域630nm付近,
緑色の波長域530nm付近及び青色の波長域460n
m付近の発振波長が得られ、かつ独立に駆動して各発振
波長のレーザ光を高速変調することが可能であった。本
実施例では、発光活性層4,11及び15を同時に駆動
したとき、同一空間上に3原色の混合した白色レーザ光
源として動作し、また各電極に対する独立した電流注入
により赤色,緑色或いは青色の発振波長を有するレーザ
光を分離して動作させ、外部に取り出すことができた。
In this embodiment, when a current is simultaneously injected into each electrode from the lateral direction, laser oscillation occurs from the light emitting active layers 4, 11 and 15, and the red wavelength region 630 as in the first embodiment.
Oscillation wavelengths in the vicinity of 300 nm, in the vicinity of the green wavelength range of 530 nm, and in the vicinity of the blue wavelength range of 460 nm are obtained for the light emitting active layers 4, 11, and 15, respectively. I was able to take it out. In addition, when a current is independently injected into each electrode, the red wavelength region around 630 nm corresponds to the current injection into each electrode.
Green wavelength range around 530nm and blue wavelength range 460n
An oscillation wavelength near m was obtained, and it was possible to drive independently to modulate the laser light of each oscillation wavelength at high speed. In this embodiment, when the light-emitting active layers 4, 11, and 15 are simultaneously driven, they operate as a white laser light source in which three primary colors are mixed in the same space, and red, green, or blue light is supplied by independent current injection to each electrode. The laser light having the oscillation wavelength was operated by being separated and extracted outside.

【0018】(実施例3)本発明の他実施例を図3によ
り説明する。まず、(100)面から15。8°オフした(511)
傾角基板1を用いて、その上にアンドープAlAs層(d=84n
m)とアンドープGaAs層(d=68nm)を20周期設けた多周期
DBR構造高反射膜23,アンドープAl0.5Ga0.5As光導波
層(d=0.6〜1.2μm)24,アンドープGaAs量子障壁(d=5
〜10nm)2層とアンドープGay1In1-y1As歪量子井戸(d=3
〜8nm,y2=0.2〜0.3)3層とその両側にアンドープGaAs光
分離閉じ込め層(d=10〜60nm)を設けた多重量子井戸構造
活性層25,アンドープAl0.5Ga0.5As光導波層(d=0.6〜
1.2μm)26,p型ドープGaAs層(d=10〜100nm,NA=5×10
18〜1×1019cm-3)27をまず有機金属気相成長(MOC
VD)法により成長温度750℃においてエピタキシャ
ル成長する。この後、SiO2を蒸着してホトリソグラフィ
ーによりマスクを作製し、斜線部7の領域にZn拡散を行
ってp型領域を形成し、さらに斜線部8の領域にSi拡散
を行ってn型領域を形成する。次に、MOCVD法によ
り成長温度600℃において、アンドープInP層(d=2〜3
μm)とその間にGaInP層薄膜層(d=5〜10nm)を3層導入し
たバッファ層28,アンドープIn0.83Ga0.17As0.4P0.6
層(d=10nm)とアンドープInP層(d=94nm)を20周期設け
た多周期DBR構造高反射膜29,アンドープInP光導波層
(d=0.6〜1.2μm)30,アンドープIn0.83Ga0.17As0.
4P0.6量子障壁(d=7〜10nm)4層とアンドープInGaAsP歪
量子井戸(d=5〜15nm)5層とその両側にアンドープIn0.
83Ga0.17As0.4P0.6光分離閉じ込め層(d=10〜60nm)を設
けた多重量子井戸構造活性層31,アンドープInP光導
波層(d=0.6〜1.2μm)32,p型ドープGaAs層(d=5〜10n
m,NA=5×1018〜1×1019cm-3)27をエピタキシャル成長
する。この後、SiO2を蒸着してホトリソグラフィーによ
りマスクを作製し、斜線部7の領域にZn拡散を行ってp
型領域を形成し、さらに斜線部8の領域にSi拡散を行っ
てn型領域を形成する。さらに、次にMOCVD法によ
り成長温度600℃において、アンドープIn0.83Ga0.17
As0.4P0.6層(d=119nm)とアンドープInP層(d=112nm)を2
0周期設けた多周期DBR構造高反射膜33,アンドープI
nP光導波層(d=0.6〜1.2μm)34,アンドープIn0.83G
a0.17As0.4P0.6量子障壁(d=7〜10nm)4層とアンドープG
ay2In1-y2As歪量子井戸(d=5〜15nm,y2=0.6〜0.7)5層と
その両側にアンドーウIn0.83Ga0.17As0.4P0.6光分離閉
じ込め層を設けた多重量子井戸構造活性層35,アンド
ープInP光導波層(d=0.6〜1.2μm)36,p型ドープGaAs
層(d=5〜10nm,NA=5×1018〜1×1019cm-3)27を順次エ
ピタキシャル成長する。この後、SiO2を蒸着してホトリ
ソグラフィーによりマスクを作製し、斜線部7の領域に
Zn拡散を行ってp型領域を形成し、さらに斜線部8の領
域にSi拡散を行ってn型領域を形成する。さらに、基板
1の底部に対して誘電体膜を組み合わせることにより、
反射率が70〜90%の範囲である高反射膜19を形成
する。この反射膜は、少なくとも900〜1600nm
の範囲において上記反射率を一様に有する構造とする。
次に、ホトリソグラフィーによりマスクを形成した後、
図3に示すようにメサ状にエッチングし、誘電体膜と金
属膜の組合せにより高反射膜20を形成する。このと
き、少なくとも900〜1600nmの範囲において、
約99%以上の反射率になるように各誘電体膜或いは金
属膜の膜厚を設定する。例えば、SiO2とAuの組合せを少
なくとも2周期以上設けることにより、上記波長範囲に
おいて99%以上の反射率を容易に得ることができる。
これに対して、発光活性層25,31及び35のそれぞ
れの下部に設けられた多周期DBR構造高反射膜23,29
及び33の反射率は、それぞれ発振波長980nm付
近,1300nm付近及び1550nm付近において、
70〜90%の範囲であるものとする。これにより、発
光活性層25,31及び35から出射されるレーザ光
は、光吸収の問題のない半導体基板側にすべて指向する
ことになる。その後は実施例2と同様にして、ホトリソ
グラフィーウエッチング及びリフトオフにより、p側電
極21及びn側電極22を分離独立して蒸着し、劈開ス
クライブして図3の断面図に示す素子の形状に切り出
す。
(Embodiment 3) Another embodiment of the present invention will be described with reference to FIG. First off from the (100) plane 15.8 ° off (511)
Using the tilted substrate 1, an undoped AlAs layer (d = 84n
m) and 20 cycles of undoped GaAs layer (d = 68nm)
DBR structure high reflection film 23, an undoped Al 0. 5 Ga 0. 5 As optical waveguide layer (d = 0.6~1.2μm) 24, an undoped GaAs quantum barrier (d = 5
~ 10 nm) 2 layers and undoped Ga y1 In 1-y1 As strained quantum well (d = 3
~8nm, y 2 = 0.2~0.3) 3-layer multiple quantum well structure active layer 25 thereof undoped GaAs optical separate confinement layers on both sides of (d = 10 to 60 nm) provided, an undoped Al 0. 5 Ga 0. 5 As Optical waveguide layer (d = 0.6 ~
1.2 μm) 26, p-type doped GaAs layer (d = 100 to 100 nm, N A = 5 × 10
18 ~1 × 10 19 cm -3) 27 the first metal organic chemical vapor deposition (MOC
The epitaxial growth is performed at a growth temperature of 750 ° C. by the VD) method. Thereafter, SiO 2 is vapor-deposited and a mask is prepared by photolithography, Zn diffusion is performed in the shaded area 7 to form a p-type area, and Si diffusion is further performed in the shaded area 8 to form an n-type area. To form Next, an undoped InP layer (d = 2-3
[mu] m) and GaInP layer thin film layer therebetween (d = 5 to 10 nm) three layers introduced buffer layer 28, an undoped In 0. 83 Ga 0. 17 As 0. 4 P 0. 6
Multi-period DBR structure high reflection film 29 with 20 layers (d = 10 nm) and undoped InP layer (d = 94 nm), undoped InP optical waveguide layer
(d = 0.6~1.2μm) 30, an undoped In 0. 83 Ga 0. 17 As 0.
4 P 0. 6 quantum barrier (d = 7~10nm) 4 layers and undoped InGaAsP strained quantum well (d = 5 to 15 nm) undoped an In 0 5 layer and on both sides thereof.
83 Ga 0. 17 As 0. 4 P 0. 6 Light separate confinement layer (d = 10 to 60 nm) multi-quantum well structure active layer 31 was provided, undoped InP optical waveguide layer (d = 0.6~1.2μm) 32, p-type doped GaAs layer (d = 5-10n
m, N A = 5 × 10 18 to 1 × 10 19 cm −3 ) 27 is epitaxially grown. Thereafter, SiO 2 is vapor-deposited and a mask is prepared by photolithography.
The n-type region is formed by forming a mold region and further diffusing Si into the hatched portion 8. Further, in the next growth temperature 600 ° C. by MOCVD, an undoped In 0. 83 Ga 0. 17
As 0. 4 P 0. 6 Layers (d = 119 nm) and undoped InP layer (d = 112nm) 2
Multi-period DBR structure high reflection film 33 with zero period, undoped I
nP optical waveguide layer (d = 0.6~1.2μm) 34, an undoped In 0. 83 G
a 0. 17 As 0. 4 P 0. 6 quantum barrier (d = 7~10nm) 4 layers and undoped G
a y2 In 1-y2 As strained quantum well (d = 5~15nm, y 2 = 0.6~0.7) 5 -layer and Andou In 0 on both sides. 83 Ga 0. 17 As 0 . 4 P 0. confinement 6 light separation Multiple quantum well structure active layer 35 provided with layers, undoped InP optical waveguide layer (d = 0.6 to 1.2 μm) 36, p-type doped GaAs
Layers (d = 5 to 10 nm, N A = 5 × 10 18 to 1 × 10 19 cm −3 ) 27 are sequentially epitaxially grown. After that, SiO 2 is vapor-deposited and a mask is prepared by photolithography,
A p-type region is formed by performing Zn diffusion, and an n-type region is formed by performing Si diffusion in the hatched portion 8. Further, by combining a dielectric film with the bottom of the substrate 1,
The high reflection film 19 having a reflectance in the range of 70 to 90% is formed. The reflective film has a thickness of at least 900 to 1600 nm.
In this range, a structure having the above-mentioned reflectance uniformly is adopted.
Next, after forming a mask by photolithography,
As shown in FIG. 3, etching is performed in a mesa shape, and a high reflection film 20 is formed by a combination of a dielectric film and a metal film. At this time, at least in the range of 900 to 1600 nm,
The thickness of each dielectric film or metal film is set so that the reflectance is about 99% or more. For example, by providing a combination of SiO 2 and Au for at least two periods, a reflectance of 99% or more can be easily obtained in the above wavelength range.
On the other hand, the multi-period DBR structure high-reflection films 23, 29 provided under the light-emitting active layers 25, 31, and 35, respectively.
And 33 have an oscillation wavelength of around 980 nm, around 1300 nm, and around 1550 nm, respectively.
It is assumed to be in the range of 70 to 90%. As a result, all the laser beams emitted from the light emitting active layers 25, 31 and 35 are directed to the semiconductor substrate side where there is no problem of light absorption. Thereafter, in the same manner as in Example 2, the p-side electrode 21 and the n-side electrode 22 are separately and independently vapor-deposited by photolithography and etching and lift-off, and cleaved and scribed to form the element shown in the sectional view of FIG. cut.

【0019】本実施例では、横方向から各電極に同時に
電流を注入すると、実施例2と同様に発光活性層25,
31及び35から同時にレーザ発振が生じ、波長域98
0nm付近,波長域1300nm付近及び波長域155
0nm付近の発振波長がそれぞれ対応して得られ、基板
側からレーザ光を取り出すことができた。また、各電極
に独立に電流を注入すると、個々の電極に対する電流注
入に対応して、波長域980nm付近,波長域1300
nm付近及び波長域1550nm付近の発振波長が得ら
れ、かつ独立に駆動して各発振波長のレーザ光を高速変
調することが可能であった。本実施例では、発光活性層
25,31及び35を同時に駆動したとき、同一空間上
に光ファイバの低損失伝送波長域である高速長距離光通
信用適する発振波長1550nmと短中距離光通信用に
適する発振波長1300nmを有するレーザ光を同時に
高速に変調して或いは位相をシフトさせて伝送すること
ができ、かつそれらの信号をより長距離まで伝送させる
ために、Erドープ光ファイバ増幅器に励起光源である発
振波長980nmを有するレーザ光を入力して増幅しな
がら波長多重のシグナルを送信することができた。
In this embodiment, when a current is simultaneously injected into each electrode from the lateral direction, the light emitting active layer 25,
Laser oscillation occurs simultaneously from 31 and 35, and the wavelength range 98
Around 0 nm, around 1300 nm wavelength range and 155 wavelength range
Oscillation wavelengths around 0 nm were obtained correspondingly, and laser light could be extracted from the substrate side. Further, when a current is independently injected into each electrode, the wavelength region around 980 nm and the wavelength region 1300 correspond to the current injection into each electrode.
Oscillation wavelengths in the vicinity of 1 nm and in the wavelength range of 1550 nm were obtained, and it was possible to drive independently to modulate the laser light of each oscillation wavelength at high speed. In this embodiment, when the light-emitting active layers 25, 31 and 35 are simultaneously driven, an oscillation wavelength of 1550 nm suitable for high-speed long-distance optical communication, which is a low-loss transmission wavelength region of an optical fiber, in the same space, In order to transmit a laser beam having an oscillation wavelength of 1300 nm suitable for a high-speed modulation or a phase shift at the same time, and to transmit those signals over a longer distance, an excitation light source is provided to an Er-doped optical fiber amplifier. A wavelength-multiplexed signal could be transmitted while amplifying and amplifying a laser beam having an oscillation wavelength of 980 nm.

【0020】[0020]

【発明の効果】本発明により、同一半導体基板上に発振
波長が異なる活性層構造を少なくとも2組以上縦に積層
して集積化することにより、同一空間に多波長レーザ光
源を取り出すことができ、光吸収が非常に小さい垂直共
振器構造を作製した多波長面発光型半導体レーザ素子を
実現した。例えば、横方向から独立に駆動できるように
分離した各電極に同時に電流を注入すると、赤色の波長
域630nm付近,緑色の波長域530nm付近及び青
色の波長域460nm付近の発振波長が得られ、3原色
の混合した白色レーザ光を取り出すことができた。ま
た、上記各電極に独立に電流を注入すると、個々の電極
に対する電流注入に対応して赤色の波長域630nm付
近,緑色の波長域530nm付近及び青色の波長域46
0nm付近の発振波長を有するレーザ光を分離して動作
させ、かつ独立に駆動して各発振波長のレーザ光を高速
変調することが可能であった。
According to the present invention, it is possible to take out a multi-wavelength laser light source in the same space by vertically stacking and integrating at least two or more sets of active layer structures having different oscillation wavelengths on the same semiconductor substrate. A multi-wavelength surface emitting semiconductor laser device with a vertical cavity structure with very low light absorption has been realized. For example, when current is simultaneously injected into each of the electrodes separated so that they can be driven independently from the lateral direction, oscillation wavelengths in the vicinity of a red wavelength range of 630 nm, a green wavelength range of 530 nm, and a blue wavelength range of 460 nm are obtained. It was possible to extract a white laser light in which primary colors were mixed. When a current is independently injected into each of the above electrodes, the red wavelength region around 630 nm, the green wavelength region around 530 nm, and the blue wavelength region 46 correspond to the current injection into each electrode.
It was possible to separate laser light having an oscillation wavelength near 0 nm, operate the laser light independently, and drive independently to modulate the laser light of each oscillation wavelength at high speed.

【0021】さらに、高速長距離光通信用に用いられる
発振波長1550nmと短中距離光通信用に用いられる
発振波長1300nmを有するInGaAsP/InP半導体レー
ザを面発光型に集積化して、同一空間に発振波長の異な
る波長多重光通信を可能とし、かつ同時に集積化した発
振波長980nmを有するInGaAs/GaAs半導体レーザに
よりErドープ光ファイバ増幅器を励起し、送信したシグ
ナルを増幅することにより、伝送距離を伸ばすとともに
長距離及び短中距離光通信の高速性を向上できた。
Furthermore, an InGaAsP / InP semiconductor laser having an oscillation wavelength of 1550 nm used for high-speed long-distance optical communication and an oscillation wavelength of 1300 nm used for short-medium-distance optical communication is integrated in a surface-emitting type, and oscillated in the same space. The wavelength-division multiplexing optical communication with different wavelengths is enabled, and simultaneously the Er-doped optical fiber amplifier is excited by an integrated InGaAs / GaAs semiconductor laser having an oscillation wavelength of 980 nm, and the transmitted signal is amplified to extend the transmission distance. The speed of long-distance and short-medium-distance optical communication was improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す素子構造断面図。FIG. 1 is a sectional view of an element structure showing one embodiment of the present invention.

【図2】本発明の他実施例を示す素子構造断面図。FIG. 2 is a sectional view of an element structure showing another embodiment of the present invention.

【図3】本発明の他実施例を示す素子構造断面図。FIG. 3 is a sectional view of an element structure showing another embodiment of the present invention.

【図4】ZnSSe層とZnMgSSe層によるDBR構造反射膜にお
ける反射率の波長依存を示す図。
FIG. 4 is a diagram showing the wavelength dependence of the reflectance of a DBR structure reflective film made of a ZnSSe layer and a ZnMgSSe layer.

【図5】ZnSSe層とZnMgSSe層によるDBR構造反射膜にお
ける反射率の波長依存を示す図。
FIG. 5 is a diagram showing the wavelength dependence of the reflectance of a DBR structure reflective film made of a ZnSSe layer and a ZnMgSSe layer.

【図6】AlGaInP層とAlInP層によるDBR構造反射膜にお
ける反射率の波長依存を示す図。
FIG. 6 is a diagram showing the wavelength dependence of the reflectance of a DBR-structured reflective film composed of an AlGaInP layer and an AlInP layer.

【図7】AlGaInP層とAlInP層によるDBR構造反射膜にお
ける反射率の波長依存を示す図。
FIG. 7 is a diagram showing the wavelength dependence of the reflectance of a DBR-structured reflective film composed of an AlGaInP layer and an AlInP layer.

【符号の説明】[Explanation of symbols]

1…(100)面から15。8°オフした(511)GaAs傾角基板、
2…AlInP層とAlGaInP層によるDBR構造高反射膜、3…A
lGaInP光導波層、4…GaInP/AlGaInP歪多重量子井戸構
造活性層、5…AlGaInP光導波層、6…GaPコンタクト
層、7…Zn拡散或いはイオン打ち込みp型領域、8…Si
拡散或いはイオン打ち込みn型領域、9…ZnMgSSe層とZ
nSSe層によるDBR構造高反射膜、10…ZnMgSSe光導波
層、11…ZnCdSe/ZnSSe歪多重量子井戸構造活性層、1
2…ZnMgSSe光導波層、13…ZnMgSSe層とZnSSe層によ
るDBR構造高反射膜、14…ZnMgSSe光導波層、15…Zn
Se/ZnSSe歪多重量子井戸構造活性層、16…ZnMgSSe光
導波層、17…Zn拡散或いはイオン打ち込みp型領域、
18…Si拡散或いはイオン打ち込みn型領域、19…誘
電体膜による高反射膜、20…誘電体膜と金属膜による
高反射膜、21…p側電極、22…n側電極、23…Al
As層とGaAs層によるDBR構造高反射膜、24…AlGaAs光
導波層、25…GaInAs/GaAs歪多重量子井戸構造活性
層、26…AlGaAs光導波層、27…GaAsコンタクト層、
28…GaInP/InPバッファ層、29…InGaAsP層とInP層
によるDBR構造高反射膜、30…InP光導波層、31…In
GaAsP/InGaAsP歪多重量子井戸構造活性層、32…InP光
導波層、33…InGaAsP層とInP層によるDBR構造高反射
膜、34…InP光導波層、35…InGaAs/InGaAsP歪多重
量子井戸構造活性層、36…InP光導波層。
1 ... (511) GaAs tilted substrate 15.8 ° off from (100) plane
2 ... High reflection film with DBR structure by AlInP layer and AlGaInP layer, 3 ... A
lGaInP optical waveguide layer, 4 ... GaInP / AlGaInP strained multiple quantum well structure active layer, 5 ... AlGaInP optical waveguide layer, 6 ... GaP contact layer, 7 ... Zn diffusion or ion implanted p-type region, 8 ... Si
Diffusion or ion implantation n-type region, 9 ... ZnMgSSe layer and Z
DBR structure high reflection film by nSSe layer, 10 ... ZnMgSSe optical waveguide layer, 11 ... ZnCdSe / ZnSSe strained multiple quantum well structure active layer, 1
2 ... ZnMgSSe optical waveguide layer, 13 ... DBR structure high reflection film by ZnMgSSe layer and ZnSSe layer, 14 ... ZnMgSSe optical waveguide layer, 15 ... Zn
Se / ZnSSe strained multiple quantum well structure active layer, 16 ... ZnMgSSe optical waveguide layer, 17 ... Zn diffusion or ion implantation p-type region,
18 n-type diffusion or ion-implanted region, 19 high reflection film made of dielectric film, 20 high reflection film made of dielectric film and metal film, 21 p-side electrode, 22 n-side electrode, 23 Al
DBR structure high reflection film composed of As layer and GaAs layer, 24 ... AlGaAs optical waveguide layer, 25 ... GaInAs / GaAs strained multiple quantum well structure active layer, 26 ... AlGaAs optical waveguide layer, 27 ... GaAs contact layer,
28: GaInP / InP buffer layer, 29: DBR structure high reflection film composed of InGaAsP layer and InP layer, 30: InP optical waveguide layer, 31: In
GaAsP / InGaAsP strained multiple quantum well structure active layer, 32 ... InP optical waveguide layer, 33 ... DBR structure high reflection film by InGaAsP layer and InP layer, 34 ... InP optical waveguide layer, 35 ... InGaAs / InGaAsP strained multiple quantum well structure active layer Layer, 36 ... InP optical waveguide layer.

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に、禁制帯幅の小さい発光活
性層とそれを挾む禁制帯幅の大きい光導波層との組合せ
を縦に少なくとも2組以上積層した、発振波長の異なる
多波長レーザ光源であり、かつ該発光活性層の禁制帯幅
が該半導体基板より小さいときには、該半導体基板から
上に積層するほど該発光活性層の禁制帯幅を小さくし上
側ほど発振波長の長いレーザ光を出射するように設定
し、該半導体基板側からレーザ光を取り出す高反射膜を
積層した垂直共振器構造とし、或いは該半導体基板上に
積層する該発光活性層の禁制帯幅が該半導体基板より大
きいときには、該半導体基板から上に積層するほど該発
光活性層の禁制帯幅を大きくし、上側ほど発振波長のよ
り短いレーザ光を出射するように設定し、該半導体基板
とは反対側からレーザ光を取り出す高反射膜を積層した
垂直共振器構造とする面発光型多波長レーザ光源を同一
基板上に有することを特徴とする半導体レーザ素子。
1. A multi-wavelength having different oscillation wavelengths, wherein at least two or more combinations of a light-emitting active layer having a small bandgap and an optical waveguide layer having a large bandgap sandwiching the active layer are stacked vertically on a semiconductor substrate. When the light source is a laser light source and the bandgap of the light emitting active layer is smaller than the semiconductor substrate, a laser beam having a smaller forbidden band width of the light emitting active layer as it is stacked above the semiconductor substrate and having a longer oscillation wavelength as it goes upward. And a vertical cavity structure in which a high-reflection film for extracting laser light from the semiconductor substrate is laminated, or the forbidden band width of the light-emitting active layer laminated on the semiconductor substrate is larger than that of the semiconductor substrate. When it is larger, the bandgap of the light emitting active layer is set to be larger as the layer is stacked above the semiconductor substrate, and set so that a laser beam having a shorter oscillation wavelength is emitted upward, and the laser beam is emitted from the side opposite to the semiconductor substrate. The semiconductor laser element characterized by having a surface emission type multiple wavelength laser light source for a vertical resonator structure formed by laminating a high-reflection film to extract light on the same substrate.
【請求項2】請求項1記載の半導体レーザ素子におい
て、同一基板上に積層された各発光活性層は垂直共振器
構造により同一方向に全く同一空間を通して発振波長の
異なるレーザ光を出射し、さらには各発光活性層は全く
同一の電極により同時に駆動され電流注入されてもよ
く、或いは各発光活性層は独立の分離された電極により
独立に駆動され、各発光活性層に対して横方向に電流注
入がなされることを特徴とする半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein each of the light emitting active layers stacked on the same substrate emits laser beams having different oscillation wavelengths through the same space in the same direction by a vertical resonator structure. Each luminescent active layer may be driven simultaneously by exactly the same electrode and injected with current, or each luminescent active layer may be independently driven by an independent separated electrode, and a current may be applied to each luminescent active layer in the lateral direction. A semiconductor laser device wherein injection is performed.
【請求項3】請求項1又は2のいずれかに記載の半導体
レーザ素子において、該発光活性層の禁制帯幅が該半導
体基板より小さいときには、多波長のレーザ光源は該半
導体基板を通して出射してもよく、或いは該半導体基板
とは反対側から出射する高反射膜を積層した垂直共振器
構造を有することを特徴とする半導体レーザ素子。
3. The semiconductor laser device according to claim 1, wherein when the bandgap of said light emitting active layer is smaller than said semiconductor substrate, a multi-wavelength laser light source emits light through said semiconductor substrate. Or a vertical cavity structure in which a highly reflective film emitting from the side opposite to the semiconductor substrate is laminated.
【請求項4】請求項1乃至3のいずれかに記載の半導体
レーザ素子において、発振波長の異なる多波長レーザ光
源が互いにエネルギーとして50meV以上離れており、か
つ該発光活性層の禁制帯幅が該半導体基板より60meV以
であるときには、該半導体基板側からレーザ光を取り
出すこととし、該半導体基板から上側ほど発振波長の長
いレーザ光を出射する垂直共振器構造とし、或いは該発
光活性層の禁制帯幅が該半導体基板より60meV以上であ
ときには、該半導体基板とは反対側からレーザ光を取
り出すこととし、該半導体基板から上側ほど発振波長の
短いレーザ光を出射する垂直共振器構造とすることを特
徴とする半導体レーザ素子。
4. The semiconductor laser device according to claim 1 , wherein the multi-wavelength laser light sources having different oscillation wavelengths are separated from each other by an energy of 50 meV or more , and the forbidden band width of the light emitting active layer is set to be less than 50 meV. 60 meV or less from semiconductor substrate
When it is below , the laser light is taken out from the semiconductor substrate side, and a vertical resonator structure that emits laser light having a longer oscillation wavelength from the semiconductor substrate to the upper side is used, or the forbidden band width of the light emitting active layer is the same as that of the semiconductor substrate. 60 meV or more from the substrate
That sometimes, the and to take out the laser light from the side opposite to the semiconductor substrate, a semiconductor laser device characterized by a vertical cavity structure for emitting short laser beam oscillation wavelengths as upward from the semiconductor substrate.
【請求項5】請求項1乃至4のいずれかに記載の半導体
レーザ素子において、該半導体基板側からレーザ光を取
り出すときには、該発光活性層に対して圧縮又は引張歪
を生ずる格子歪を導入することにより、該発光活性層の
禁制帯幅が該半導体基板より60meV以下であることを特
徴とする半導体レーザ素子。
5. A semiconductor laser device according to claim 1 , wherein, when extracting laser light from the semiconductor substrate side, lattice strain that causes a compressive or tensile strain is introduced into the light emitting active layer. A semiconductor laser device, wherein the forbidden band width of the light emitting active layer is 60 meV or less than that of the semiconductor substrate.
【請求項6】請求項1乃至5のいずれかに記載の半導体
レーザ素子において、該半導体基板上に積層成長される
該高反射膜は、屈折率の異なる少なくとも2種以上の半
導体材料からなり、望ましくは該半導体基板と格子定数
が同じ半導体材料により形成され、発振波長λに対して
半導体材料の屈折率がnで表されるとき、各半導体材料
の膜厚dはλ/4nで示され、該高反射膜はこれらの周
期構造によりなることを特徴とする半導体レーザ素子。
6. The semiconductor laser device according to claim 1 , wherein said highly reflective film grown on said semiconductor substrate is made of at least two kinds of semiconductor materials having different refractive indexes. Desirably, when the semiconductor substrate and the lattice constant are formed of the same semiconductor material, and the refractive index of the semiconductor material with respect to the oscillation wavelength λ is represented by n, the thickness d of each semiconductor material is represented by λ / 4n, The semiconductor laser device according to claim 1, wherein the high reflection film has a periodic structure.
【請求項7】請求項1乃至6のいずれかに記載の半導体
レーザ素子において、該高反射膜は屈折率の異なる少な
くとも2種以上の半導体材料の周期構造からなり、その
周期が少なくとも10周期あり、10〜40周期の範囲
にあることを特徴とする半導体レーザ素子。
7. The semiconductor laser device according to claim 1, wherein said high-reflection film has a periodic structure of at least two types of semiconductor materials having different refractive indexes, and has a period of at least 10 periods. Semiconductor laser device characterized by being in the range of 10 to 40 periods.
【請求項8】請求項1乃至7のいずれかに記載の半導体
レーザ素子において、該半導体基板上に積層された成長
層の最上部或いは該半導体基板の最下部に設けられる高
反射膜は、誘電体膜,金属膜或いはその組合せの周期構
造により形成されることを特徴とする半導体レーザ素
子。
8. The semiconductor laser device according to claim 1 , wherein the high-reflection film provided at the uppermost portion of the growth layer laminated on the semiconductor substrate or at the lowermost portion of the semiconductor substrate is a dielectric film. A semiconductor laser device comprising a periodic structure of a body film, a metal film, or a combination thereof.
【請求項9】請求項1乃至8のいずれかに記載の半導体
レーザ素子において、電極に対するコンタクト層は該半
導体基板と同じ半導体材料か又は該半導体基板より禁制
帯幅の大きい半導体材料により形成され、p型キャリア
濃度は5×10 18 cm -3 以上に設定され、n型キャリア
濃度は1×10 18 以上に設定されていることを特徴とす
る半導体レーザ素子。
9. The semiconductor laser device according to claim 1 , wherein the contact layer for the electrode is formed of the same semiconductor material as the semiconductor substrate or a semiconductor material having a larger band gap than the semiconductor substrate. A semiconductor laser device wherein the p-type carrier concentration is set to 5 × 10 18 cm −3 or more, and the n-type carrier concentration is set to 1 × 10 18 or more .
【請求項10】請求項9記載の半導体レーザ素子におい
て、前記電極に対するコンタクト層はGaAs 1-x P x (0≦x
≦1)により形成されていることを特徴とする半導体レ
ーザ素子。
10. The semiconductor laser device according to claim 9, wherein
The contact layer for the electrode is GaAs 1-x P x (0 ≦ x
≦ 1)
User element.
【請求項11】請求項1乃至10のいずれかに記載の半
導体レーザ素子において、p型及びn型の半導体層は不
純物の拡散或いはイオン打ち込みにより作製され、それ
ぞれ上記キャリア濃度以上に設定されていることを特徴
とする半導体レーザ素子。
11. The semiconductor laser device according to claim 1, wherein the p-type and n-type semiconductor layers are formed by impurity diffusion or ion implantation, and are each set to have a carrier concentration equal to or higher than said carrier concentration . A semiconductor laser device characterized by the above-mentioned.
【請求項12】請求項1乃至11のいずれかに記載の半
導体レーザ素子において、該半導体基板は基板面方位が
(001)面から〔110〕〔1-1-0〕方向又は〔11-0〕〔1-1
0〕方向に0°乃至54.7°傾いた基板面を有すること
を特徴とする半導体レーザ素子。
12. The semiconductor laser device according to claim 1 , wherein said semiconductor substrate has a substrate plane orientation.
(001) direction from (110) [1-1-0] direction or (11-0) [1-1
A semiconductor laser device having a substrate surface inclined at 0 ° to 54.7 ° in the [0] direction.
【請求項13】請求項12記載の半導体レーザ素子にお
いて、前記基板面の(001)面から〔110〕〔1-1-0〕方向
又は〔11-0〕〔1-10〕方向への傾斜角は5°以上30°
以下であることを特徴とする半導体レーザ素子。
13. The semiconductor laser device according to claim 12,
And (110) [1-1-0] direction from the (001) plane of the substrate surface
Or, the inclination angle in the [11-0] [1-10] direction is 5 ° or more and 30 °
A semiconductor laser device characterized by the following.
【請求項14】請求項1乃至13のいずれかに記載の半
導体レーザ素子において、該半導体基板上の結晶層は有
機金属気相成長(MOCVD)法又は分子線エピタキシ
ー(MBE)法或いはガスソース分子線エピタキシー
(GSMBE)法により成長されることを特徴とする半
導体レーザ素子。
14. The semiconductor laser device according to claim 1 , wherein the crystal layer on the semiconductor substrate is formed by a metal organic chemical vapor deposition (MOCVD) method, a molecular beam epitaxy (MBE) method, or a gas source molecule. A semiconductor laser device grown by a line epitaxy (GSMBE) method.
JP07151893A 1993-03-30 1993-03-30 Semiconductor laser device Expired - Lifetime JP3242192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07151893A JP3242192B2 (en) 1993-03-30 1993-03-30 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07151893A JP3242192B2 (en) 1993-03-30 1993-03-30 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH06283812A JPH06283812A (en) 1994-10-07
JP3242192B2 true JP3242192B2 (en) 2001-12-25

Family

ID=13463023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07151893A Expired - Lifetime JP3242192B2 (en) 1993-03-30 1993-03-30 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3242192B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217499A (en) 2001-01-19 2002-08-02 Sharp Corp Semiconductor laser element and its manufacturing method, and optical pickup using the same
KR100459495B1 (en) * 2002-11-08 2004-12-03 엘지전자 주식회사 Compound semiconductor light emitting diode
US20040179566A1 (en) * 2003-03-11 2004-09-16 Aharon El-Bahar Multi-color stacked semiconductor lasers
JP4642527B2 (en) 2004-04-12 2011-03-02 キヤノン株式会社 LAMINATED 3D PHOTONIC CRYSTAL, LIGHT EMITTING ELEMENT AND IMAGE DISPLAY DEVICE
JP5429242B2 (en) * 2004-06-11 2014-02-26 株式会社リコー Surface emitting semiconductor laser, surface emitting semiconductor laser array, image forming apparatus, optical pickup, optical transmission module, optical transmission / reception module, and optical communication system
WO2005122350A1 (en) 2004-06-11 2005-12-22 Ricoh Company, Ltd. Surface emitting laser diode and its manufacturing method
US7502401B2 (en) 2005-07-22 2009-03-10 Avago Technologies General Ip (Singapore) Pte. Ltd. VCSEL system with transverse P/N junction
JP4873153B2 (en) * 2006-12-22 2012-02-08 セイコーエプソン株式会社 Optical module and optical communication system
US20090001389A1 (en) * 2007-06-28 2009-01-01 Motorola, Inc. Hybrid vertical cavity of multiple wavelength leds
JP5777722B2 (en) * 2010-10-29 2015-09-09 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Small-mode volume vertical cavity surface emitting laser
JP6192086B2 (en) * 2012-03-27 2017-09-06 国立研究開発法人情報通信研究機構 Multi-wavelength measuring device
CN102709813A (en) * 2012-05-25 2012-10-03 中国科学院长春光学精密机械与物理研究所 Single chip vertical integrated multi-wavelength semiconductor laser and manufacturing method thereof
KR102518369B1 (en) 2017-12-19 2023-04-05 삼성전자주식회사 Light emitting device

Also Published As

Publication number Publication date
JPH06283812A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
US6002700A (en) Optical semiconductor device having a multilayer reflection structure
US6049556A (en) Vertical cavity surface emitting laser diode operable in 1.3 μm or 1.5 μm wavelength band with improved efficiency
US5438584A (en) Dual polarization laser diode with quaternary material system
US5466950A (en) Semiconductor light emitting device with short wavelength light selecting means
US5883912A (en) Long wavelength VCSEL
EP0874428A2 (en) Long wavelength VCSEL
KR910003465B1 (en) Opto-electronic device
JP3242192B2 (en) Semiconductor laser device
EP1145395A2 (en) Compound semiconductor structures for optoelectronic devices
US5815524A (en) VCSEL including GaTlP active region
US20030157739A1 (en) Electrically pumped long-wavelength vcsel and methods of fabrication
US6472691B2 (en) Distributed feedback semiconductor laser device
WO2001022545A1 (en) Luminous element and luminous element module
JP4045639B2 (en) Semiconductor laser and semiconductor light emitting device
US6697404B1 (en) Laser diode operable in 1.3μm or 1.5μm wavelength band with improved efficiency
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
KR100545113B1 (en) Vertical Common Surface Emission Laser with Visible Wavelength
JP5381692B2 (en) Semiconductor light emitting device
JPH08242037A (en) Planar semiconductor light emitting element
EP0528439B1 (en) Semiconductor laser
JP2002261400A (en) Laser, laser apparatus, and optical communication system
JPWO2004027950A1 (en) Semiconductor laser
JP2662792B2 (en) Semiconductor light emitting device
CN112582877B (en) 650nm vertical cavity surface laser and preparation method thereof
JP4957355B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12