JP3239547U - Lithium-ion battery soundness and remaining useful life measurement system - Google Patents

Lithium-ion battery soundness and remaining useful life measurement system Download PDF

Info

Publication number
JP3239547U
JP3239547U JP2022002796U JP2022002796U JP3239547U JP 3239547 U JP3239547 U JP 3239547U JP 2022002796 U JP2022002796 U JP 2022002796U JP 2022002796 U JP2022002796 U JP 2022002796U JP 3239547 U JP3239547 U JP 3239547U
Authority
JP
Japan
Prior art keywords
lithium
ion battery
parameter
discharging
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022002796U
Other languages
Japanese (ja)
Inventor
陳始明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grace Connection Microelectronics Ltd
Original Assignee
Grace Connection Microelectronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grace Connection Microelectronics Ltd filed Critical Grace Connection Microelectronics Ltd
Application granted granted Critical
Publication of JP3239547U publication Critical patent/JP3239547U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】異なる環境温度及び異なる放電レートといったさまざまな作動条件下に適用するリチウムイオン電池の健全度と残存耐用年数を正確かつ迅速に予測できる測定システムを提供する。【解決手段】リチウムイオン電池の充電電流と放電電流を記録し、各放電サイクルの放電温度及び当該放電電流を記録し、充電/放電サイクルの回数を記録する記録部101、102と、少なくとも2つの確認済みの当該リチウムイオン電池の当該充電/放電サイクルを選定した後、当該リチウムイオン電池の健全度の数値に関する電気化学の電気モデルを算出し、取得した当該健全度の数値に関する電気化学の電気モデルを用いて、半経験的容量フェージングモデルのパラメータを計算する計算部103、104と、クラウドに当該リチウムイオン電池を接続して、計算により得た数値を確認した後、アプリケーションに送信し、当該結果を画面に表示する表示部105と、を有する。【選択図】図1A measurement system capable of accurately and quickly predicting the state of health and remaining useful life of a lithium-ion battery applied under various operating conditions such as different environmental temperatures and different discharge rates is provided. A recording unit (101, 102) for recording the charging current and discharging current of a lithium ion battery, recording the discharging temperature and the corresponding discharging current of each discharging cycle, and recording the number of charging/discharging cycles; After selecting said charge/discharge cycle of said verified lithium ion battery, computing an electrochemical electrical model for said health value of said lithium ion battery, and electrochemical electrical model for said obtained health value. is used to connect the calculation units 103 and 104 that calculate the parameters of the semi-empirical capacity fading model, and the lithium ion battery is connected to the cloud, and after confirming the numerical value obtained by the calculation, it is transmitted to the application, and the result and a display unit 105 for displaying on the screen. [Selection drawing] Fig. 1

Description

本考案は、リチウムイオン電池の健全度と残存耐用年数の測定方法であり、特に正確かつ即時にリチウムイオン電池の健全度と残存耐用年数を予測できる方法に関するものである。 The present invention relates to a method for measuring the health level and remaining useful life of a lithium ion battery, and more particularly to a method for accurately and immediately predicting the health level and remaining useful life of a lithium ion battery.

電気自動車(electric vehicle, EV)は、現代の自動車業界の発展において、最も注目が集まっており、特に充電可能なリチウムイオン電池(lithium-ion battery, LiB)をエネルギー源とする電気自動車については、常にその充電可能なリチウムイオン電池の効率が高さや耐用年数の長さに期待が寄せられている。しかし、リチウムイオン電池の健全度(State-of-Health, SoH)を見極め、その残存耐用年数(remaining useful life, RUL)を予測することは、関連領域で把握するのに困難を極めているのが現状である。実際、正確かつ迅速に当該リチウムイオン電池の健全度を測定するのは、関連業界において今もなお克服できない課題となっている。 Electric vehicles (EV) have received the most attention in the development of the modern automobile industry, especially for electric vehicles powered by rechargeable lithium-ion batteries (LiB). Expectations have always been high for the high efficiency and long service life of rechargeable lithium-ion batteries. However, it is extremely difficult to ascertain the state-of-health (SoH) of lithium-ion batteries and predict their remaining useful life (RUL) in related fields. This is the current situation. In fact, it is still an insurmountable problem in related industries to accurately and quickly measure the health of the lithium ion battery.

さらに各方面でリチウムイオン電池の健全度(State-of-Health、SoH)、充電状態(State of Charge、 SoC)、エネルギー状態(state of energy、SoE) 及び安全状態(state of safety、SoS)等のリチウムイオン電池の重要な健全度指標(Health index)について広く議論されている。その理由として、リチウムイオン電池の健全度を正確に測定できないと、実際のリチウムイオン電池の残存電荷、すなわち一般的にいう電荷量が、予測をはるかに下回り、そのために予期せぬ過放電(over discharge)を引き起こしてしまう恐れがあるからだ。 In addition, the state-of-health (SoH), state-of-charge (SoC), state-of-energy (SoE), and state-of-safety (SoS) of lithium-ion batteries An important health index for lithium-ion batteries has been widely discussed. The reason for this is that if the state of health of the lithium-ion battery cannot be measured accurately, the actual residual charge of the lithium-ion battery, that is, the amount of charge in general, will be much lower than expected, which can lead to unexpected over-discharge (over discharge). This is because there is a risk of causing a discharge).

また、残存耐用年数がわからないリチウムイオン電池だと、使用者が交換予定時期を待たずにリチウムイオン電池を交換してしまい、リチウムイオン電池の使用コスト増加をもたらす可能性もある。一方、リチウムイオン電池の健全度が実際は80%以下であるにもかかわらず、無理にその耐用期限を延ばそうとすると、もっと大きな問題を招くことにつながりかねない。 In addition, if the remaining service life of the lithium ion battery is unknown, the user may replace the lithium ion battery without waiting for the scheduled replacement time, resulting in an increase in the usage cost of the lithium ion battery. On the other hand, trying to extend the service life of lithium-ion batteries, which are actually less than 80% healthy, may lead to more serious problems.

このため、リチウムイオン電池の健全度を正確に評価し、残存耐用年数を予測することが、リチウムイオン電池を使用する際の最重要事項となり、特に電気自動車分野では最重要視されている。現在、健全度の評価方法は多数あり、一部の評価方法は正確性が高いと言えないわけではないが、複雑な演算法を使った計算を行うため、即時に電気自動車に使えるというわけでもなく、実用面から見ても、迅速さと正確性に欠けることには大きな疑問の余地が残る。 Accurately evaluating the health of lithium-ion batteries and predicting their remaining service life are therefore of the utmost importance when using lithium-ion batteries, especially in the field of electric vehicles. Currently, there are many soundness evaluation methods, and some evaluation methods can be said to be highly accurate. And from a practical point of view, the lack of speed and accuracy is highly questionable.

これを受け、現在、電気自動車業界の関連分野では、効果的にリチウムイオン電池の健全度の評価が行え、リチウムイオン電池の残存耐用年数を明確に把握できて予測が可能な最適なプランの策定が急務となっている。そこで、正確かつ迅速にリチウムイオン電池の健全度と残存耐用年数を予測できる方法が提供できれば、それこそ電気自動車関連業界において、これまで期待かつ注目されてきた画期的なこととなる。 In response to this, the related fields of the electric vehicle industry are now able to effectively evaluate the health of lithium-ion batteries, and formulate optimal plans that can clearly grasp and predict the remaining service life of lithium-ion batteries. is urgent. Therefore, if we can provide a method that can accurately and quickly predict the state of health and remaining useful life of lithium-ion batteries, it will be an epoch-making achievement that has been expected and attracting attention in the electric vehicle-related industry.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の予測方法は、異なる環境温度及び異なる放電レートなどさまざまな作動条件下のリチウムイオン電池に適用できるものであり、正確かつ即時にリチウムイオン電池の健全度と残存耐用年数を予測できる方法である。 The lithium-ion battery health and remaining service life prediction method disclosed in the present invention can be applied to lithium-ion batteries under various operating conditions, such as different environmental temperatures and different discharge rates, to accurately and immediately It is a method that can predict the state of health and the remaining service life of the battery.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、まずリチウムイオン電池の充電電流と放電電流を記録し、次に各放電サイクルの放電温度及び放電電流、さらに充電/放電サイクルの回数を記録する。続いて、少なくとも予め3つの確定済みリチウムイオン電池の充電/放電サイクルを選定し、リチウムイオン電池の健全度の数値を算出する。それから、取得した健全度の数値を用いて「半経験的容量フェージングモデルのパラメータ値」を算出する。最後に、クラウドにリチウムイオン電池を接続し、計算により取得した数値の確認を行った後、アプリケーションに送信し、その結果を画面に表示する。 The method for measuring the health degree and remaining service life of the lithium ion battery disclosed in the present invention is to first record the charge current and discharge current of the lithium ion battery, then the discharge temperature and discharge current of each discharge cycle, and then charge/discharge. Record the number of cycles. Subsequently, at least three determined lithium-ion battery charge/discharge cycles are selected in advance, and the numerical value of the health of the lithium-ion battery is calculated. Then, the "parameter values of the semi-empirical capacity fading model" are calculated using the acquired soundness values. Finally, after connecting the lithium-ion battery to the cloud and confirming the numerical values obtained by calculation, the data is sent to the application and the results are displayed on the screen.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、「電気化学の電気モデル」及び「半経験的容量フェージングモデル」を相互に組み合わせ、それらをリチウムイオン電池の放電曲線に利用して、すべての作動条件下におけるリチウムイオン電池の最大充電容量、健全度と耐用年数を評価することで推定正確度99%以上とすることを目的とする。 The lithium-ion battery health and remaining service life measurement method disclosed in the present invention combines the "electrochemical electrical model" and the "semi-empirical capacity fading model" with each other, and applies them to the discharge curve of the lithium-ion battery. The aim is to achieve an estimation accuracy of 99% or higher by evaluating the maximum charge capacity, soundness and service life of lithium-ion batteries under all operating conditions.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、リチウムイオン電池の加速寿命測定方法として使用することができ、工場で同一ロットにより製造されたリチウムイオン電池の耐用年数を予測し、当該ロットにより製造されたリチウムイオン電池の品質と信頼性の検査に適用できることを目的とする。さらに本考案は閉鎖モデルで、使用する「推定時間」は5秒以内であるため、即時にオンラインに接続する分野に適用する。 The method for measuring the soundness and remaining service life of lithium-ion batteries disclosed in the present invention can be used as an accelerated life measurement method for lithium-ion batteries, and can be used to measure the service life of lithium-ion batteries manufactured in the same lot at the factory. The purpose is to be able to predict the quality and reliability of lithium-ion batteries manufactured from the relevant lot. Furthermore, the present invention is a closed model and the "estimated time" to use is less than 5 seconds, so it applies to the field of instant online connection.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、リチウムイオン電池の電池容量及び当該残存耐用年数に対して正確にオンラインに接続して予測を行うという要求が非常に重要であり、本考案では、半経験的容量フェージングモデルを用いて健全度を評価し、リチウムイオン電池が作動している時の異なる放電サイクル後の残存耐用年数を予測することに優位性がある。 The method for measuring the state of health and the remaining service life of the lithium-ion battery disclosed in the present invention is very important in the requirement of accurately connecting to the online and predicting the battery capacity and the remaining service life of the lithium-ion battery. , the present invention has the advantage of using a semi-empirical capacity fading model to assess the health and predict the remaining useful life after different discharge cycles when the lithium-ion battery is in operation.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、放電電流と環境温度にかかわらず、本考案の正確度が99%以上であることに優位性がある。 The method disclosed in the present invention for measuring the state of health and the remaining service life of the lithium ion battery has the advantage that the accuracy of the present invention is more than 99% regardless of the discharge current and the ambient temperature.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、本考案はタイトな閉形式であり、リチウムイオン電池のライフサイクル推定に用いることができるため、本考案は接続して即時にリチウムイオン電池の健全度を評価するのにも適用できることに優位性がある。 The method of measuring the soundness and remaining useful life of the lithium-ion battery disclosed in the present invention is a tight closed form, and can be used to estimate the life cycle of the lithium-ion battery. It has the advantage that it can be applied to immediately evaluate the health of a lithium-ion battery.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、リチウムイオン電池の健全度について、複数回の充電/放電サイクルを経た後のリチウムイオン電池の最大残留蓄電売容量の測定値がリチウムイオン電池の最大蓄電容量の減り具合により、リチウムイオン電池の健全度は、放電サイクル数、放電電流と温度の回数と関係があると合理的に仮設できることに優位性がある。 The method for measuring the health and remaining service life of lithium-ion batteries disclosed in the present invention is to measure the maximum residual storage capacity of lithium-ion batteries after multiple charge/discharge cycles for the health of lithium-ion batteries. Based on the degree of decrease in the maximum storage capacity of the lithium-ion battery, the state of health of the lithium-ion battery can reasonably be assumed to be related to the number of discharge cycles, the number of discharge currents, and the temperature.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、異なる温度と放電レートのリチウムイオン電池の健全度評価により予測することができ、容易かつ即時に実現できるほか、リチウムイオン電池の健全度を確定する場合、80%の充電/放電サイクルまで引き下げ、リチウムイオン電池の耐用年数を予測できることに優位性がある。 The method for measuring the health and remaining useful life of lithium-ion batteries disclosed in this invention can be predicted by evaluating the health of lithium-ion batteries at different temperatures and discharge rates, and can be easily and quickly realized. When determining battery health, there is an advantage in being able to predict the service life of lithium-ion batteries down to 80% charge/discharge cycles.

本考案で開示する前述の利点及びその他多数の利点について、次の図面を参照しながら、実施形態について詳細に説明する。 The foregoing and many other advantages disclosed by the present invention are described in detail with reference to the following drawings, in which: FIG.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法のフロー図である。1 is a flowchart of a method for measuring health and remaining service life of a lithium ion battery disclosed in the present invention; FIG.

以下に、添付した図面を参照しながら、本考案で開示する実施形態について説明する。図面において同じ部品の符号は同じ部品を示し、より明確に説明を行うために、部品の大きさまたは厚さは誇張表示してある可能性がある。 Embodiments disclosed in the present invention will be described below with reference to the accompanying drawings. In the drawings, like reference numerals refer to like parts, and the size or thickness of the parts may be exaggerated for clarity of explanation.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、パナソニック(panasonic)社のカタログ番号SANYO UR18650Eのリチウムイオン電池、及びBio-Logic社のマルチチャンネル出力充放電測定システム(製品番号BCS-815)を用いて測定を行った。当該マルチチャンネル出力充放電測定システムは、8チャンネルで利用でき、各チャンネル15アンペア(A)対応、当該マルチ室温(約25C)の下、リチウムイオン電池を通して発生した測定データを収集し、データ収集のサンプル周波数は1Hzである。 The method of measuring the soundness and remaining useful life of the lithium-ion battery disclosed in the present invention is based on the lithium-ion battery of catalog number SANYO UR18650E from Panasonic and the multi-channel output charge/discharge measurement system from Bio-Logic (product No. BCS-815) was used for measurements. The multi-channel output charging/discharging measurement system can be used with 8 channels, each channel supports 15 amperes (A), and the multi-room temperature (about 25 o C), collects the measurement data generated through the lithium ion battery, and The sample frequency of acquisition is 1 Hz.

図1は、本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法のフロー図である。図1に示すステップ101は、リチウムイオン電池の充電電流と放電電流を記録する。通常出荷直後の電池の充電電流と放電電流を記録するが、電池は異なる測定条件の下で測定を行うため、この場合、電池の充電電流と放電電流を1回以上記録する。また、本考案では電池を充電して使用し、また定電流により電池を放電終止電圧まで充電した後、定電圧により電流が100mAに下がるまで充電する。 FIG. 1 is a flow chart of the method for measuring the state of health and the remaining useful life of a lithium ion battery disclosed in the present invention. Step 101 shown in FIG. 1 records the charging and discharging currents of a lithium-ion battery. Normally, the charging current and discharging current of the battery immediately after shipment are recorded, but since the battery is measured under different measurement conditions, in this case, the charging current and discharging current of the battery are recorded one or more times. In addition, in the present invention, the battery is charged before use, and after the battery is charged to the final discharge voltage with a constant current, the battery is charged with a constant voltage until the current drops to 100mA.

図1に示すステップ102は、各放電サイクルの放電温度及び放電電流を記録すると同時に、充電/放電サイクルの回数も記録する。ここでいう充電/放電サイクルとは、充電プロセスと放電プロセスを含む各サイクルをいう。 Step 102 shown in FIG. 1 records the discharge temperature and discharge current for each discharge cycle, as well as the number of charge/discharge cycles. A charge/discharge cycle as used herein refers to each cycle including a charge process and a discharge process.

図1に示すステップ103では、少なくとも予め2つの確認済みのリチウムイオン電池の充電/放電サイクルを選定後、リチウムイオン電池の健全度の数値「電気化学の電気モデル(SoH)」を算出する。つまり、健全度の数値は、第1のサイクル(Qmax(fresh)パラメータのリチウムイオン電池を測定後とリチウムイオン電池の経年劣化(Qmax(aged)パラメータのプロセス後、第1のサイクル(Qmax(fresh)パラメータで(Qmax(aged)パラメータを除して得た健全度の数値が次のリチウムイオン電池の最大電池容量値となる。 In step 103 shown in FIG. 1, after selecting at least two pre-confirmed charge/discharge cycles of the lithium-ion battery, a numerical value of the state of health of the lithium-ion battery, the "electrical model of electrochemistry (SoH)" is calculated. In other words, the numerical value of the degree of health is obtained after measuring the lithium-ion battery of the first cycle (Qmax (fresh) parameter and after the process of the aging deterioration (Qmax (aged) parameter of the lithium-ion battery), the first cycle (Qmax (fresh ) parameter divided by the (Qmax(aged) parameter, the value of the soundness obtained is the maximum battery capacity value of the next lithium-ion battery.

下記の数式1は、前記の「電気化学の電気モデル」の式である。 Equation 1 below is the equation of the "Electrical Model of Electrochemistry" mentioned above.

Figure 0003239547000002
Figure 0003239547000002

さらに、図1に示すステップ104は、取得した健全度の数値である「電気化学の電気モデル」を用いて、次のような「半経験的容量フェージングモデル(SECF)」のパラメータ値(the values of the parameters)を計算した。 Further, step 104 shown in FIG. 1 uses the acquired health degree values, the "electrochemical electrical model," to determine the values of the following "semi-empirical capacitive fading model (SECF)": of the parameters) were calculated.

下記の数式2は、前記の「半経験的容量フェージングモデル」の式である。 Equation 2 below is the formula for the "semi-empirical capacity fading model" mentioned above.

Figure 0003239547000003
Figure 0003239547000003

前記の図1に示すステップ104では、次の「半経験的容量フェージングモデル」の各パラメータを表示する。 At step 104 shown in FIG. 1, each parameter of the following "semi-empirical capacity fading model" is displayed.

図1に示すステップ104では、パラメータkで高温循環という条件下において急速に増加するリチウムイオン電池の容量損失を示す。 In step 104 shown in FIG. 1 , parameter k1 represents the rapidly increasing capacity loss of the lithium-ion battery under conditions of high temperature cycling.

また図1に示すステップ104では、パラメータkで正常な循環条件下で考えられるリチウムイオン電池の容量損失の一因を示す。 Also shown in FIG. 1, at step 104, parameter k2 indicates a possible contributor to the capacity loss of a lithium - ion battery under normal cycling conditions.

さらに図1に示すステップ104では、パラメータkでリチウムイオン電池の使用速度によって引き起こされる容量損失を示す。 Further, in step 104 shown in FIG. 1, the capacity loss caused by the usage rate of the lithium - ion battery is indicated at parameter k3.

続いて、図1に示すステップ104では、パラメータNでリチウムイオン電池が健全な段階にある場合の経年充電/放電サイクル数を示し、パラメータiで放電中の電流を示す。 Subsequently, in step 104 shown in FIG. 1, parameter N indicates the number of charge/discharge cycles over time when the lithium-ion battery is in a healthy stage, and parameter i indicates the current during discharge.

図1に示すステップ104では、前記のパラメータにはパラメータk、パラメータk、パラメータkを含み、3つの異なる充電/放電サイクルを通して取得することで、3つのサイクルから選択した最大サイクルによりリチウムイオン電池の健全度を約80%のサイクルの半分とすることを確実にする。 In step 104 shown in FIG. 1, said parameters, including parameter k 1 , parameter k 2 and parameter k 3 , are obtained through three different charge/discharge cycles to obtain lithium by the maximum cycle selected from the three cycles. Ensure that the ion battery health is half of the cycle at about 80%.

最後に、図1に示すステップ105では、クラウド(cloud)にリチウムイオン電池を接続して、前記の計算で取得した数値に相違ないことを確認した後、最終的に計算して取得した数値をアプリケーション(App)に送信し、その結果を画面(screen display)に表示する。 Finally, in step 105 shown in FIG. 1, after connecting the lithium ion battery to the cloud and confirming that the numerical value obtained in the above calculation is correct, the finally calculated numerical value obtained is Send to the application (App) and display the result on the screen (screen display).

このほか、前記の図1に示すステップ104「半経験的容量フェージングモデル」を用いて、電気自動車のリチウムイオン電池に関して、下記に示す実際の推定方法の数式3を取得した。 In addition, using step 104 "Semi-empirical capacity fading model" shown in FIG.

Figure 0003239547000004
Figure 0003239547000004

前記の80という数字は、残存耐用年数を示す。つまり、これはリチウムイオン電池の使用可能な総蓄電容量(Q)は80%以上必要であり、これは演算によって取得することができる。 The number 80 above indicates the remaining useful life. In other words, the usable total storage capacity (Q m ) of the lithium ion battery must be 80% or more, which can be obtained by calculation.

本考案で開示するリチウムイオン電池の健全度と残存耐用年数の測定方法は、図1に示すステップ103の「電気化学の電気モデル」及び図1に示すステップ104の「半経験的容量フェージングモデル」の組み合わせにからなっており、これらをリチウムイオン電池の放電曲線に利用することで、すべての作動条件下におけるリチウムイオン電池の最大充電容量、健全度と耐用年数を評価し、正確度99%以上と推定する。さらに、本考案はリチウムイオン電池の加速劣化測定方法として使用することができるほか、工場で製造された同一ロットのリチウムイオン電池の耐用年数の測定のほか、当該ロットのリチウムイオン電池の品質と信頼性の検査にも適用することができる。さらに本考案は、閉鎖モデルであり、使用する「推定時間」は5秒以下となるため、即時に接続する応用分野に適用する。 The method for measuring the state of health and the remaining useful life of the lithium ion battery disclosed in the present invention is the "electrochemical electrical model" in step 103 shown in FIG. 1 and the "semi-empirical capacity fading model" in step 104 shown in FIG. By using these for the discharge curve of the lithium-ion battery, we can evaluate the maximum charge capacity, soundness and service life of the lithium-ion battery under all operating conditions, with an accuracy of 99% or more. We estimate that In addition, the present invention can be used as a method for measuring the accelerated deterioration of lithium-ion batteries, and in addition to measuring the service life of the same lot of lithium-ion batteries produced in the factory, it can also be used to measure the quality and reliability of the same lot of lithium-ion batteries. It can also be applied to sex testing. Furthermore, the present invention applies to instant connection applications, as it is a closed model and uses an "estimated time" of 5 seconds or less.

本考案は、リチウムイオン電池の電池容量及び当該残存耐用年数に対して、正確にオンラインに接続して予測を行うことの要求が非常に重要であり、本考案では半経験的容量フェージング(SECF)モデルを用いて健全度及びそれがリチウムイオン電池が作動中に、異なる放電サイクル後の残存耐用年数を推定するものである。また放電電流と環境温度にかかわらず、本考案の正確度は99%以上を確保することができる。本考案はタイトな閉形式であり、リチウムイオン電池のライフサイクル予測に用いることができる。そのため、本考案はリチウムイオン電池をオンラインに接続して即時に健全度を推定することにも適用することができる。 The present invention is based on the fact that it is very important to have an accurate online prediction for the battery capacity and its remaining service life of the lithium-ion battery, and the semi-empirical capacity fading (SECF) is used in the present invention. A model is used to estimate the health and it's remaining useful life after different discharge cycles while the lithium-ion battery is in operation. In addition, regardless of the discharge current and ambient temperature, the accuracy of the present invention can be ensured above 99%. The present invention is a tight closed form and can be used for life cycle prediction of lithium-ion batteries. Therefore, the present invention can also be applied to connecting a lithium ion battery online and estimating the state of health immediately.

以上、本考案の具体例を詳細に説明したが、これらは例示に過ぎず、実用新案登録請求の範囲を限定するものではない。また本考案の範囲及び趣旨を逸脱することなく、様々な変更または修飾を行うことができる。 Although specific examples of the present invention have been described in detail above, these are merely examples, and do not limit the scope of claims for utility model registration. Also, various changes or modifications may be made without departing from the scope and spirit of the invention.

101 リチウムイオン電池の充電電流と放電電流を記録する
102 放電サイクルの放電温度と放電電流を記録する
103 「電気化学の電気モデル」の計算
104 「半経験的容量フェージングモデル」の計算
105 数値を確認した後、アプリケーションに送信し、画面に表示する
101 Record the charge and discharge currents of the lithium-ion battery 102 Record the discharge temperature and discharge current for the discharge cycle 103 Calculate the “Electrical Model of Electrochemistry” 104 Calculate the “Semi-Empirical Capacitance Fading Model” 105 Check the numbers then send it to the application and display it on the screen

Claims (4)

リチウムイオン電池の充電電流と放電電流を記録し、各放電サイクルの放電温度及び当該放電電流を記録し、充電/放電サイクルの回数を記録する記録部と、
少なくとも2つの確認済みの当該リチウムイオン電池の当該充電/放電サイクルを選定した後、当該リチウムイオン電池の健全度の数値に関する電気化学の電気モデルを算出し、取得した当該健全度の数値に関する電気化学の電気モデルを用いて、半経験的容量フェージングモデルのパラメータを計算する計算部と、
クラウドに当該リチウムイオン電池を接続して、計算により得た数値を確認した後、アプリケーションに送信し、当該結果を画面に表示する表示部と、
を有することを特徴とするリチウムイオン電池の健全度と残存耐用年数の測定システム。
a recording unit for recording the charging current and discharging current of the lithium ion battery, recording the discharging temperature and the discharging current of each discharging cycle, and recording the number of charging/discharging cycles;
After selecting said charge/discharge cycles for said at least two verified said lithium ion batteries, calculating an electrochemical electrical model for said health values of said lithium ion batteries, and electrochemistry for said obtained health values. a calculator that calculates the parameters of the semi-empirical capacitive fading model using the electrical model of
a display unit that connects the lithium ion battery to the cloud, checks the numerical value obtained by calculation, transmits the result to the application, and displays the result on the screen;
A system for measuring the soundness and remaining service life of a lithium-ion battery, comprising:
下記の数式1によって得られる当該健全度の数値を含み、
Figure 0003239547000005
当該Qmax(fresh)を第1のサイクルパラメータとし、Qmax(aged)を経年劣化パラメータとすることを特徴とする請求項1に記載するシステム。
Including the numerical value of the soundness obtained by the following formula 1,
Figure 0003239547000005
2. The system of claim 1, wherein Qmax(fresh) is the first cycle parameter and Qmax(aged) is the aging parameter.
下記の数式2によって得られる当該半経験的容量フェージングモデルを含み、
Figure 0003239547000006
そのうち、パラメータkはリチウムイオン電池が高温循環という条件下において、急速に増加する容量損失を示し、
パラメータkはリチウムイオン電池が正常循環という条件下において考えられる容量損失の1つの要因を示し、
パラメータkはリチウムイオン電池の使用率による容量損失を示し、
パラメータNはリチウムイオン電池が健全な状態にある場合に、経年充電/放電サイクル数を示し、
パラメータiは放電中の電流であることを特徴とする請求項1に記載するシステム。
including the semi-empirical capacity fading model obtained by Equation 2 below,
Figure 0003239547000006
Among them, the parameter k1 indicates the rapidly increasing capacity loss under the condition of high - temperature cycling of lithium-ion batteries,
The parameter k2 represents one factor of possible capacity loss under conditions of normal cycling of lithium - ion batteries,
The parameter k3 indicates the capacity loss due to the usage rate of the lithium-ion battery,
the parameter N indicates the number of charge/discharge cycles over time when the lithium ion battery is in good condition;
2. The system of claim 1, wherein the parameter i is the current during discharge.
残存耐用年数が80%であることを含む当該半経験的容量フェージングモデルであることを特徴とする請求項3に記載するシステム。 4. The system of claim 3, wherein said semi-empirical capacity fading model includes a remaining useful life of 80%.
JP2022002796U 2020-10-30 2022-08-24 Lithium-ion battery soundness and remaining useful life measurement system Active JP3239547U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109137756A TWI763106B (en) 2020-10-30 2020-10-30 A method for measuring the health and remaining service life of lithium-ion batteries
TW109137756 2020-10-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021053684A Continuation JP2022073889A (en) 2020-10-30 2021-03-26 Measurement method of soundness and remaining service life of lithium ion battery

Publications (1)

Publication Number Publication Date
JP3239547U true JP3239547U (en) 2022-10-21

Family

ID=81362728

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021053684A Pending JP2022073889A (en) 2020-10-30 2021-03-26 Measurement method of soundness and remaining service life of lithium ion battery
JP2022002796U Active JP3239547U (en) 2020-10-30 2022-08-24 Lithium-ion battery soundness and remaining useful life measurement system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021053684A Pending JP2022073889A (en) 2020-10-30 2021-03-26 Measurement method of soundness and remaining service life of lithium ion battery

Country Status (3)

Country Link
JP (2) JP2022073889A (en)
CN (1) CN114441980A (en)
TW (1) TWI763106B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291112A (en) * 2022-08-12 2022-11-04 中国电信股份有限公司 Battery detection method, device, equipment and storage medium
CN116430233B (en) * 2023-03-02 2024-01-23 北京理工大学重庆创新中心 Power battery life evaluation method and device based on big data method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670506B (en) * 2018-07-27 2019-09-01 連恩微電子有限公司 Battery management system

Also Published As

Publication number Publication date
TW202217353A (en) 2022-05-01
CN114441980A (en) 2022-05-06
JP2022073889A (en) 2022-05-17
TWI763106B (en) 2022-05-01

Similar Documents

Publication Publication Date Title
JP3239547U (en) Lithium-ion battery soundness and remaining useful life measurement system
CN102565710B (en) Method and apparatus for assessing battery state of health
CN109298348B (en) Method for estimating battery life
US9255971B2 (en) Device and method for detecting state of health of batteries
CN107015155B (en) A kind of measuring method and device of battery of electric vehicle SOH
CN109031133B (en) SOC correction method of power battery
EP2980595A1 (en) Battery life estimation method and battery life estimation device
CN113219351B (en) Monitoring method and device for power battery
CN116298979A (en) Estimation method and system for health state of lithium ion battery
US20210173012A1 (en) Method and system for estimation of open circuit voltage of a battery cell
JP2013519893A (en) In-situ battery diagnostic method by electrochemical impedance spectroscopy
EP3594705B1 (en) Method and device for estimating service capacity and state of health of minimum battery cell and battery system
TWI723694B (en) A method to quickly evaluate the remaining available capacity of the battery
TWI597510B (en) Battery Life Cycle Prediction System and Method
CN110045291B (en) Lithium battery capacity estimation method
CN109490790B (en) Method and device for testing power characteristics of lithium power battery by adopting compensation pulse method
CN114444370A (en) Method and device for predicting accumulated loss life of rechargeable battery by considering operation conditions, electronic equipment and readable storage medium
CN115480180A (en) New energy battery health diagnosis and analysis method
CN108693473B (en) Method and device for detecting SOH (state of health) of battery
CN106599333B (en) Power supply SOH estimation method
CN116872791B (en) Estimation method of SOH of power battery
CN102393509A (en) Nondestructive evaluation method for performance of lithium ion battery
CN114152890A (en) Method for predicting battery life
CN114236395A (en) Online comprehensive detection method for power battery of electric vehicle
CN113156314A (en) Method for measuring and calculating service life attenuation of whole-vehicle-level power battery

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3239547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150