JP3224443B2 - Helicon wave plasma processing equipment - Google Patents

Helicon wave plasma processing equipment

Info

Publication number
JP3224443B2
JP3224443B2 JP2006393A JP2006393A JP3224443B2 JP 3224443 B2 JP3224443 B2 JP 3224443B2 JP 2006393 A JP2006393 A JP 2006393A JP 2006393 A JP2006393 A JP 2006393A JP 3224443 B2 JP3224443 B2 JP 3224443B2
Authority
JP
Japan
Prior art keywords
plasma
antenna
plasma processing
reaction chamber
helicon wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006393A
Other languages
Japanese (ja)
Other versions
JPH06232055A (en
Inventor
靖浩 堀池
多津男 庄司
哲 奈良井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006393A priority Critical patent/JP3224443B2/en
Publication of JPH06232055A publication Critical patent/JPH06232055A/en
Application granted granted Critical
Publication of JP3224443B2 publication Critical patent/JP3224443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,半導体プロセス等にお
ける成膜,あるいはエッチング等の用に供されるプラズ
マ処理装置に係り,特に,ヘリコン波プラズマを発生さ
せて該プラズマによるプラズマ粒子によりプラズマ処理
を行うヘリコン波プラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used for film formation or etching in a semiconductor process or the like, and more particularly to a plasma processing apparatus for generating helicon wave plasma and performing plasma processing using plasma particles by the plasma. The present invention relates to a helicon wave plasma processing apparatus for performing the following.

【0002】[0002]

【従来の技術】例えば,半導体基板上に集積回路を形成
する場合に,プラズマ処理によって成膜,エッチング,
スパッタリング等の基板加工がなされる。このプラズマ
処理装置として,従来からRIEプラズマ処理装置,E
CRプラズマ処理装置等が知られているが,本願の対象
とするヘリコン波プラズマ処理装置は,より高い密度の
プラズマを発生させることを目的とするプラズマ処理装
置で,半導体プロセスに有効な装置として注目されてい
る。ヘリコン波プラズマ装置は,電磁誘導作用による電
界励起により初期プラズマを発生させ,印加される磁場
によってプラズマ中に発生する波動(ヘリコン波)が励
起され,波動のランダウ減衰により電界のエネルギーを
プラズマ中の電子に有効に与えることができ,低磁場下
でも高密度のプラズマが生成できる特徴を有している。
このヘリコン波プラズマを用いたプラズマ処理装置は,
前記のように低磁場下で高密度プラズマを得ることがで
きるので,制御が容易で,且つプラズマ処理の口径を大
きくすることができる利点を有している。以下,上記ヘ
リコン波プラズマ処理装置の従来構成について説明す
る。図3は,プラズマエッチング装置として構成された
従来例ヘリコン波プラズマ処理装置30の基本構成を示
す模式図である。図3において,石英ガラス等の誘電体
材料により円筒形に形成された反応室31の外周位置
に,該反応室31内に高周波電源36からの高周波電力
を印加するRFアンテナ32が配置されると共に,同じ
く反応室31内の軸方向に磁場を印加する磁気コイル3
3,34が配置されている。前記反応室31の上部には
ガス導入ポート35が設けられ,下部はプロセス室37
内に連通している。この反応室31とプロセス室37と
は,排気ポート40から排気がなされる真空容器を形成
している。前記プロセス室37内に配置された載置台3
8上に,被処理物である基板39が載置される。上記構
成において,反応室31に印加された高周波電力が磁場
中にヘリコン波を発生させ,波動のランダウ減衰によ
り,ガス導入ポート35から反応室31内に導入された
処理ガスをヘリコン波プラズマ化して,高密度プラズマ
を発生させる。該プラズマにより生成されたイオン等の
プラズマ粒子は,磁場方向に沿って反応室31からプロ
セス室37に輸送され,基板39に対して効率よくエッ
チングの作用が行われる。
2. Description of the Related Art For example, when an integrated circuit is formed on a semiconductor substrate, film formation, etching,
Substrate processing such as sputtering is performed. Conventionally, an RIE plasma processing apparatus, E
Although a CR plasma processing apparatus and the like are known, a helicon wave plasma processing apparatus which is the object of the present application is a plasma processing apparatus aiming to generate a higher density plasma, and is attracting attention as an effective apparatus for a semiconductor process. Have been. The helicon wave plasma device generates an initial plasma by electric field excitation by electromagnetic induction, a wave (helicon wave) generated in the plasma is excited by an applied magnetic field, and the energy of the electric field is reduced in the plasma by Landau damping of the wave. It has the characteristic that it can be effectively given to electrons and can generate high-density plasma even under a low magnetic field.
Plasma processing equipment using this helicon wave plasma
As described above, since high-density plasma can be obtained under a low magnetic field, there is an advantage that control is easy and the diameter of plasma processing can be increased. Hereinafter, a conventional configuration of the helicon wave plasma processing apparatus will be described. FIG. 3 is a schematic diagram showing a basic configuration of a conventional helicon wave plasma processing apparatus 30 configured as a plasma etching apparatus. In FIG. 3, an RF antenna 32 for applying a high-frequency power from a high-frequency power source 36 is arranged in the reaction chamber 31 at an outer peripheral position of a reaction chamber 31 formed of a dielectric material such as quartz glass in a cylindrical shape. A magnetic coil 3 for applying a magnetic field in the axial direction in the reaction chamber 31
3, 34 are arranged. A gas introduction port 35 is provided at an upper portion of the reaction chamber 31, and a process chamber 37 is provided at a lower portion thereof.
Communicates within. The reaction chamber 31 and the process chamber 37 form a vacuum container that is evacuated from the exhaust port 40. The mounting table 3 arranged in the process chamber 37
A substrate 39 to be processed is placed on the substrate 8. In the above configuration, the high-frequency power applied to the reaction chamber 31 generates a helicon wave in the magnetic field, and the processing gas introduced into the reaction chamber 31 from the gas introduction port 35 is converted into a helicon wave plasma by Landau damping of the wave. , To generate high density plasma. Plasma particles such as ions generated by the plasma are transported from the reaction chamber 31 to the process chamber 37 along the direction of the magnetic field, and the substrate 39 is efficiently etched.

【0003】[0003]

【発明が解決しようとする課題】従来のヘリコン波プラ
ズマ処理装置では,上記のように磁気コイルが配設さ
れ,磁場強度の大きい位置にRFアンテナが配設されて
おり,高周波電力を印加して磁場中にヘリコン波プラズ
マが生成される。ヘリコン波プラズマ装置では,磁場強
度の大きい位置でプラズマ密度も高くなり,その位置に
RFアンテナが配設されているとき,次のような問題点
が生じる。アンテナ回路は通常,インダクタコンデン
含むため,高周波的に高い電位がRFアンテナに生
じる。従来例構成では,RFアンテナが配設された位置
は高密度のプラズマが発生している位置であるため,応
答速度の大きい電子が加速され,アンテナ下のガラスに
帯電するために負の直流的な電圧が発生する。この直流
的な電位とプラズマとの電位差により,プラズマ中のイ
オンがRFアンテナ方向に加速される結果,該イオンに
より反応室壁がスパッタされる。反応室が石英で形成さ
れている場合,珪素(Si),酸素(O)などのプラズ
マ処理を行う上での不純物が反応室内に放出される。例
えば,上記プラズマ処理装置によってアルミニウム(A
l)のエッチングを行った場合には,前記不純物により
アルミニウム表面にアルミナ(Al2 O3 )膜が形
成され,強固なアルミナ膜によりエッチング処理が停止
してしまう。従来,このようなアルミナ膜等の形成を抑
えるため、処理ガス中にアルミナ形成を抑制するガスを
混入することで対処されていた。また,図1はこのよう
な問題点の解消を図ることの出来る改良されたプラズマ
処理装置を示すものである。この装置の詳細は後記する
が,この改良されたプラズマ処理装置においてもプラズ
マ中のイオンの反応室壁への衝突が多く,反応室内の不
純物の発生について問題があった。本発明は上記問題点
に鑑みて創案されたもので,処理ガス中に別成分のガス
を混入させることなく,RFアンテナに生じる直流的電
位の影響により反応室内に不純物を発生させないアンテ
ナ構成を備えたヘリコン波プラズマ処理装置を提供する
ことを目的とする。
In the conventional helicon wave plasma processing apparatus, the magnetic coil is disposed as described above, and the RF antenna is disposed at a position where the magnetic field intensity is large. Helicon wave plasma is generated in a magnetic field. In the helicon wave plasma device, the plasma density also increases at a position where the magnetic field intensity is high, and the following problems occur when an RF antenna is provided at that position. Antenna circuit typically to include an inductor and a capacitor <br/> Sa, high frequency high voltage is generated in the RF antenna. In the conventional configuration, the position where the RF antenna is disposed is the position where high-density plasma is generated, so that electrons with a high response speed are accelerated and negative DC current is generated because the glass under the antenna is charged. Voltage occurs. Due to the potential difference between the DC potential and the plasma, ions in the plasma are accelerated toward the RF antenna, and as a result, the reaction chamber walls are sputtered by the ions. When the reaction chamber is formed of quartz, impurities such as silicon (Si) and oxygen (O) for performing plasma processing are released into the reaction chamber. For example, aluminum (A)
When the etching of l) is performed, an alumina (Al2O3) film is formed on the aluminum surface by the impurities, and the etching process is stopped by the strong alumina film. Conventionally, in order to suppress the formation of such an alumina film or the like, a measure has been taken by mixing a gas for suppressing the formation of alumina into the processing gas. Also, FIG.
Improved plasma that can solve various problems
2 shows a processing device. Details of this device will be described later.
However, even in this improved plasma processing system,
Many ions in the reactor collide with the reaction chamber walls,
There was a problem with the generation of pure products. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has an antenna configuration that does not cause a gas to be mixed into a processing gas and that does not generate impurities in a reaction chamber due to the influence of a DC potential generated in an RF antenna. And a helicon wave plasma processing apparatus.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,前記真空容器内にRFアン
テナから高周波電力を印加すると共に磁気コイルから磁
場を印加して,該真空容器内に導入された処理ガスをプ
ラズマ化し,該プラズマにより前記真空容器内の所定位
置に配置した被処理物をプラズマ処理するヘリコン波プ
ラズマ処理装置において,前記RFアンテナが,プラズ
マ生成領域外であって実質的に上記真空容器から離れた
位置であって,該プラズマ生成領域に高周波電力を印加
できる位置に配設されてなることを特徴とするヘリコン
波プラズマ処理装置として構成される。
Means adopted by the present invention to achieve the above object is to apply a high-frequency power from an RF antenna and a magnetic field from a magnetic coil to the vacuum vessel, In a helicon wave plasma processing apparatus for converting a processing gas introduced into a plasma into a plasma and subjecting an object to be processed disposed at a predetermined position in the vacuum vessel to plasma processing by the plasma, the RF antenna comprises a plasma.
Outside the vacuum generation area and substantially away from the vacuum vessel
A position, configured as a helicon wave plasma processing apparatus characterized by comprising disposed at a position capable of applying a high-frequency power to the plasma generation region.

【0005】[0005]

【作用】本発明によれば,高密度なプラズマが生成され
る磁気コイル配設位置である真空容器からRFアンテナ
を離すことで生成領域外から電磁誘導により高周波電力
をプラズマ生成領域に印加する。従って,RFアンテナ
に高周波の電位が生じても,RFアンテナは高密度プラ
ズマが発生しているプラズマ生成領域から離れているた
め,RFアンテナ配設位置のプラズマイオンは少なく,
真空容器(反応室)を形成する石英等をスパッタして不
純物を発生させることが減少する。
According to the present invention, high-frequency power is applied to the plasma generation region by electromagnetic induction the RF antenna from outside the generated area away Succoth from the vacuum chamber is a magnetic coil arrangement position high-density plasma is generated . Therefore, even if a high-frequency potential is generated in the RF antenna, the RF antenna is far from the plasma generation region where high-density plasma is generated, so that the number of plasma ions at the position where the RF antenna is provided is small.
The generation of impurities by sputtering quartz or the like forming a vacuum vessel (reaction chamber) is reduced.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の背景となるヘリコン波プラズマ処理装置の構成
を示す模式図,図2は本発明の実施例に係るヘリコン波
プラズマ処理装置の構成を示す模式図である。図1にお
いて,本実施例に係るヘリコン波プラズマ処理装置1
は,石英ガラス管によって形成された反応室2とプロセ
ス室3とからなる真空容器と,反応室2内の軸方向に磁
場を印加する磁気コイル4と,反応室2内に高周波電力
を印加するRFアンテナ9と,プロセス室3内に配置さ
れた載置台7とを備えて構成されている。前記真空容器
内は,プロセス室3に設けられた排気ポート6から排気
を行うことにより,所定の真空状態を得ることができ,
ガス導入ポート5から処理ガスが真空容器内に導入され
る。また,磁気コイル4には図示しない直流電源から励
磁電流が供給され,RFアンテナ9には高周波電源10
からの所定周波数の高周波がマッチング回路11を介し
て供給される。上記構成により,真空容器(反応室2,
プロセス室3)内に導入された処理ガスは,RFアンテ
ナ9からの電磁誘導作用による電界励起によりプラズマ
化された後,磁気コイル4から印加される磁場が加わる
ことにより,プラズマ中にヘリコン波(ホイッスラー
波)を励起させる。プラズマ中にヘリコン波を励起させ
ることにより,ランダウ減衰の作用によってプラズマ中
の電子は電界のエネルギーを得てより高いエネルギーを
得るため,高密度のプラズマが生成される。反応室2内
でプラズマによって生成されたプラズマ粒子は,磁場方
向に沿ってプロセス室3に輸送され,載置台7上に載置
された基板(被処理物)8に対してエッチング,成膜等
のプラズマ処理を行うことができる。本構成になるヘリ
コン波プラズマ処理装置1においては,図示するように
RFアンテナ9を磁気コイル4から離れた位置に配設し
て,高密度プラズマが発生するプラズマ生成領域12外
から高周波電力を該プラズマ生成領域12に印加する。
従って,RFアンテナ9に高周波の電位が発生すること
による高密度プラズマ中のイオンの反応室2への衝突が
減少し,反応室2壁がスパッタされて該反応室2内に不
純物が放出され,不純物の混入によるプラズマ処理の不
良が防止される。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments are examples embodying the present invention and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic diagram showing a configuration of a helicon wave plasma processing apparatus according to the actual施例schematic view, FIG. 2 is the invention showing a structure of a background to become helicon wave plasma processing apparatus of the present invention. In FIG. 1, a helicon wave plasma processing apparatus 1 according to the present embodiment
Is a vacuum vessel including a reaction chamber 2 and a process chamber 3 formed by a quartz glass tube, a magnetic coil 4 for applying a magnetic field in the reaction chamber 2 in an axial direction, and applying a high-frequency power to the reaction chamber 2. It comprises an RF antenna 9 and a mounting table 7 arranged in the process chamber 3. By evacuating the inside of the vacuum vessel from an exhaust port 6 provided in the process chamber 3, a predetermined vacuum state can be obtained.
A processing gas is introduced from the gas introduction port 5 into the vacuum vessel. An exciting current is supplied from a DC power supply (not shown) to the magnetic coil 4, and a high-frequency power supply 10 is supplied to the RF antenna 9.
Is supplied via the matching circuit 11 from the predetermined frequency. With the above configuration, the vacuum vessel (reaction chamber 2,
The processing gas introduced into the process chamber 3) is turned into plasma by electric field excitation by an electromagnetic induction action from the RF antenna 9, and then is applied with a magnetic field applied from the magnetic coil 4, so that a helicon wave ( (Whistler wave). By exciting the helicon wave in the plasma, electrons in the plasma obtain electric field energy and higher energy by the action of Landau damping, so that high-density plasma is generated. Plasma particles generated by the plasma in the reaction chamber 2 are transported to the process chamber 3 along the direction of the magnetic field, and are etched, deposited, and the like on a substrate (object to be processed) 8 mounted on a mounting table 7. Can be performed. In the helicon wave plasma processing apparatus 1 having this configuration , the RF antenna 9 is disposed at a position distant from the magnetic coil 4 as shown in the figure, and high-frequency power is supplied from outside the plasma generation region 12 where high-density plasma is generated. It is applied to the plasma generation region 12.
Therefore, the collision of ions in the high-density plasma with the reaction chamber 2 due to the generation of a high-frequency potential at the RF antenna 9 is reduced, the walls of the reaction chamber 2 are sputtered, and impurities are released into the reaction chamber 2. Defects in the plasma treatment due to contamination by impurities are prevented.

【0007】このプラズマ処理不良の防止効果を,具体
的な構成により比較した測定データを以下に説明する。
反応室2を直径60mm,長さ1000mmの石英管で形成
し,磁気コイル4として空芯コイルを配して,該磁気コ
イル4の中心部分の磁場強度を100Gaussに設定し
た。また,RFアンテナ9からm=0モードの13.5
6MHz,1.2kWの高周波電力を印加した。更に,ガ
ス導入ポート5 から処理ガスとしてアルゴン(Ar)ガ
スを3mTorr 導入したときに生成されるプラズマの発
光分光を磁気コイル4の中心部分の反応室2の管壁近傍
で観測した。酸素イオンの発光強度(波長:4414
・)とアルゴンイオンの発光強度(波長:4348・)
との相対強度比(O/Ar)を,RFアンテナ9が磁気
コイル4内にあるとき(従来構成に相当する)と,磁気
コイル4の端面から200mm離したとき(実施例構成:
図1)とを比較した結果,RFアンテナ9が磁気コイル
4内にあるときは,O/Ar=0.420であった。こ
れに対して,RFアンテナ9を磁気コイル4から離した
実施例構成の場合は,O/Ar=0.120に減少し
た。これは,プラズマにより発生したアルゴンイオンが
RFアンテナ9に生じた直流電位によって吸引加速さ
れ,反応室2の石英管をスパッタして不純物(酸素原
子)を反応室2内に放出させることが減少される効果を
示している。上記発光分光の結果に基づき,ヘリコン波
プラズマ処理装置1をエッチング装置として動作させた
結果を次に示す。処理ガスとして塩素ガス100%,1
mTorr 導入して,アルミニウム板をエッチングする。
このとき,RFアンテナ9を磁気コイル4内に配置した
場合では,酸素原子の混入のためアルミニウム板表面に
アルミナ膜が形成され,エッチングが不可能となった。
一方,RFアンテナ9を磁気コイル4から離した場合に
は,エッチング速度800nm/minでエッチングを
実施することができた。上記のプラズマ処理装置におい
ては,RFアンテナ9が磁気コイル4と離され,反応室
2内のプラズマ生成領域外に設けられているので,RF
アンテナ9に高周波の電位が発生することによる高密度
プラズマ中のイオンの反応室2への衝突が減少し,反応
室2の壁がスパッタされて該反応室2内に不純物が放出
される度 合いが低下する しかし,この場合にも,RF
アンテナ9は反応室である真空容器の周りに巻かれてい
るので,プラズマ中のイオンが反応室2の壁に衝突する
ことを完全には防止できない 図2に示す本発明の実施
形態に係るプラズマ処理装置ではその点に改良が施され
ている 即ち,図2に示すプラズマ処理装置では,RF
アンテナ9が,実質的に反応室2から離れて,反応室の
外部に設けられている点を除くと図1に示した従来のプ
ラズマ処理装置と同じである。従って図2の実施形態装
置において,図1の処理装置と共通の要素には同一の符
号を使用する。図2において,RFアンテナ9は,反応
室2aから離れた位置に配設されている。反応室2aは
磁気コイル4の配設幅と近似に形成されているので,R
Fアンテナ9は反応室2aの端部から該反応室2a内に
高周波電力を印加するこの構成によれば,先の図1に
示した従来装置構成より更にプラズマ中のイオンの反応
室2a壁への衝突が減少するので,反応室2a内の不純
物の発生をより少なくすることができる。
[0007] Measured data comparing the effect of preventing the plasma processing failure with a specific configuration will be described below.
The reaction chamber 2 was formed of a quartz tube having a diameter of 60 mm and a length of 1000 mm, an air-core coil was arranged as the magnetic coil 4, and the magnetic field intensity at the center of the magnetic coil 4 was set to 100 Gauss. Further, 13.5 of the m = 0 mode is transmitted from the RF antenna 9.
A high frequency power of 6 MHz and 1.2 kW was applied. Further, the emission spectrum of plasma generated when 3 mTorr of argon (Ar) gas was introduced as a processing gas from the gas introduction port 5 was observed near the tube wall of the reaction chamber 2 at the center of the magnetic coil 4. Oxygen ion emission intensity (wavelength: 4414)
・) And emission intensity of argon ion (wavelength: 4348 ・)
The relative intensity ratio (O / Ar) with the RF antenna 9 when the RF antenna 9 is inside the magnetic coil 4 (corresponding to the conventional configuration) and when the RF antenna 9 is 200 mm away from the end face of the magnetic coil 4 (example configuration:
As a result of comparison with FIG. 1), when the RF antenna 9 was inside the magnetic coil 4, O / Ar = 0.420. On the other hand, in the case of the embodiment in which the RF antenna 9 is separated from the magnetic coil 4, O / Ar = 0.120. This is because argon ions generated by the plasma are attracted and accelerated by the DC potential generated in the RF antenna 9, and the quartz tube of the reaction chamber 2 is sputtered to release impurities (oxygen atoms) into the reaction chamber 2. Effect. The results of operating the helicon wave plasma processing apparatus 1 as an etching apparatus based on the results of the above emission spectroscopy are shown below. 100% chlorine gas as processing gas, 1
The aluminum plate is etched by introducing mTorr.
At this time, when the RF antenna 9 was disposed in the magnetic coil 4, an alumina film was formed on the surface of the aluminum plate due to mixing of oxygen atoms, and etching was impossible.
On the other hand, when the RF antenna 9 was separated from the magnetic coil 4, etching could be performed at an etching rate of 800 nm / min. In the above plasma processing equipment
When the RF antenna 9 is separated from the magnetic coil 4,
2 outside the plasma generation region, the RF
High density due to generation of high-frequency potential on antenna 9
The collision of ions in the plasma with the reaction chamber 2 is reduced,
The walls of the chamber 2 are sputtered and impurities are released into the reaction chamber 2
Is the time each other is reduced. However, also in this case, RF
The antenna 9 is wound around the vacuum chamber that is the reaction chamber.
Therefore, ions in the plasma collide with the walls of the reaction chamber 2
It cannot be completely prevented . Implementation of the present invention shown in FIG.
In the plasma processing apparatus according to the embodiment, the point is improved.
Have . That is, in the plasma processing apparatus shown in FIG.
The antenna 9 is substantially separated from the reaction chamber 2 and
Except for the point provided outside, the conventional projector shown in FIG.
It is the same as the plasma processing device. Therefore, the embodiment shown in FIG.
1, the same elements as those of the processing apparatus of FIG.
Use a number. In FIG. 2, the RF antenna 9 is disposed at a position away from the reaction chamber 2a. Since the reaction chamber 2a is formed to have a width approximately equal to the arrangement width of the magnetic coil 4, R
The F antenna 9 applies high frequency power into the reaction chamber 2a from the end of the reaction chamber 2a . According to this configuration, FIG.
Since the collision of ions in the plasma with the wall of the reaction chamber 2a is further reduced as compared with the configuration of the conventional apparatus shown , generation of impurities in the reaction chamber 2a can be further reduced.

【0008】[0008]

【発明の効果】以上の説明の通り本発明によれば,高密
度なプラズマが生成される磁気コイル配設位置からRF
アンテナを離し,このプラズマ生成領域外から高周波電
力をプラズマ生成領域に印加する。従って,RFアンテ
ナに直流的な電位が生じても,RFアンテナ配設位置の
プラズマイオンは少なく,真空容器(反応室)を形成す
る石英等をスパッタして不純物を発生させることが減少
する。従って,低磁場環境下で高密度のプラズマを生成
することができるヘリコン波プラズマ処理装置の特徴を
充分に発揮させ得る効果を奏する。
As described above, according to the present invention, the RF from the position where the magnetic coil where the high-density plasma is generated is provided.
The antenna is separated, and high-frequency power is applied to the plasma generation region from outside the plasma generation region. Therefore, even if a DC potential is generated in the RF antenna, the amount of plasma ions at the position where the RF antenna is disposed is small, and the generation of impurities by sputtering quartz or the like forming the vacuum vessel (reaction chamber) is reduced. Therefore, an advantage is obtained in that the features of the helicon wave plasma processing apparatus capable of generating high-density plasma in a low magnetic field environment can be sufficiently exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の前提となるプラズマ処理装置の構成
を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a plasma processing apparatus which is a premise of the present invention.

【図2】 本発明の一実施形態に係るヘリコン波プラズ
マ処理装置の構成を示す模式図。
FIG. 2 is a schematic diagram showing a configuration of a helicon wave plasma processing apparatus according to one embodiment of the present invention.

【図3】 従来例に係るヘリコン波プラズマ処理装置の
構成を示す模式図。
FIG. 3 is a schematic diagram showing a configuration of a helicon wave plasma processing apparatus according to a conventional example.

【符号の説明】[Explanation of symbols]

1,13…ヘリコン波プラズマ処理装置 2,2a…反応室(真空容器) 3…プロセス室(真空容器) 4…磁気コイル 5…ガス導入ポート 6…排気ポート 7…載置台 8…基板(被処理物) 9…RFアンテナ 10…高周波電源 12…プラズマ生成領域 Reference Signs List 1, 13 Helicon wave plasma processing apparatus 2, 2a Reaction chamber (vacuum vessel) 3 Process chamber (vacuum vessel) 4 Magnetic coil 5 Gas introduction port 6 Exhaust port 7 Mounting table 8 Substrate (processed 9) RF antenna 10 ... High frequency power supply 12 ... Plasma generation area

フロントページの続き (72)発明者 堀池 靖浩 広島県広島市南区松川町2−22−703 グローバル松川 (72)発明者 庄司 多津男 愛知県愛知郡長久手町大字長湫字西作田 12 (72)発明者 奈良井 哲 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 特開 昭55−91980(JP,A) 特開 平3−68773(JP,A)Continued on the front page (72) Inventor Yasuhiro Horiike 2-22-703 Matsukawa-cho, Minami-ku, Hiroshima-shi, Hiroshima Global Matsukawa (72) Inventor Tadashi Shoji Nishisakuta 12-72, 72-72 Inventor Satoshi Narai 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute (56) References JP-A-55-91980 (JP, A) JP-A-3-68773 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空容器内にRFアンテナから高周波電
力を印加すると共に磁気コイルから磁場を印加して,該
真空容器内に導入された処理ガスをプラズマ化し,該プ
ラズマにより前記真空容器内の所定位置に配置した被処
理物をプラズマ処理するヘリコン波プラズマ処理装置に
おいて, 前記RFアンテナが,プラズマ生成領域外であって実質
的に上記真空容器から離れた位置であって,該プラズマ
生成領域に高周波電力を印加できる位置に配設されてな
ることを特徴とするヘリコン波プラズマ処理装置。
1. A high-frequency power is applied from an RF antenna to a vacuum container and a magnetic field is applied from a magnetic coil to convert a processing gas introduced into the vacuum container into a plasma. In a helicon wave plasma processing apparatus for performing plasma processing on an object to be processed disposed at a position, the RF antenna is substantially outside a plasma generation region.
A helicon wave plasma processing apparatus, wherein the helicon wave plasma processing apparatus is disposed at a position distant from the vacuum vessel and capable of applying high frequency power to the plasma generation region.
JP2006393A 1993-02-08 1993-02-08 Helicon wave plasma processing equipment Expired - Fee Related JP3224443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006393A JP3224443B2 (en) 1993-02-08 1993-02-08 Helicon wave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006393A JP3224443B2 (en) 1993-02-08 1993-02-08 Helicon wave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH06232055A JPH06232055A (en) 1994-08-19
JP3224443B2 true JP3224443B2 (en) 2001-10-29

Family

ID=12016637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006393A Expired - Fee Related JP3224443B2 (en) 1993-02-08 1993-02-08 Helicon wave plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3224443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10854448B2 (en) 2017-01-31 2020-12-01 Tohoku University Plasma generating device, plasma sputtering device, and plasma sputtering method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264812B1 (en) * 1995-11-15 2001-07-24 Applied Materials, Inc. Method and apparatus for generating a plasma
KR100489918B1 (en) 1996-05-09 2005-08-04 어플라이드 머티어리얼스, 인코포레이티드 Coils for generating a plasma and for sputtering
US6368469B1 (en) 1996-05-09 2002-04-09 Applied Materials, Inc. Coils for generating a plasma and for sputtering
US6254746B1 (en) 1996-05-09 2001-07-03 Applied Materials, Inc. Recessed coil for generating a plasma
US6254737B1 (en) 1996-10-08 2001-07-03 Applied Materials, Inc. Active shield for generating a plasma for sputtering
US6190513B1 (en) 1997-05-14 2001-02-20 Applied Materials, Inc. Darkspace shield for improved RF transmission in inductively coupled plasma sources for sputter deposition
US6514390B1 (en) 1996-10-17 2003-02-04 Applied Materials, Inc. Method to eliminate coil sputtering in an ICP source
US5961793A (en) * 1996-10-31 1999-10-05 Applied Materials, Inc. Method of reducing generation of particulate matter in a sputtering chamber
US6451179B1 (en) 1997-01-30 2002-09-17 Applied Materials, Inc. Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US6599399B2 (en) 1997-03-07 2003-07-29 Applied Materials, Inc. Sputtering method to generate ionized metal plasma using electron beams and magnetic field
US6103070A (en) * 1997-05-14 2000-08-15 Applied Materials, Inc. Powered shield source for high density plasma
US6210539B1 (en) 1997-05-14 2001-04-03 Applied Materials, Inc. Method and apparatus for producing a uniform density plasma above a substrate
US6361661B2 (en) 1997-05-16 2002-03-26 Applies Materials, Inc. Hybrid coil design for ionized deposition
US6579426B1 (en) 1997-05-16 2003-06-17 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US6652717B1 (en) 1997-05-16 2003-11-25 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US6077402A (en) * 1997-05-16 2000-06-20 Applied Materials, Inc. Central coil design for ionized metal plasma deposition
US6375810B2 (en) 1997-08-07 2002-04-23 Applied Materials, Inc. Plasma vapor deposition with coil sputtering
US6235169B1 (en) 1997-08-07 2001-05-22 Applied Materials, Inc. Modulated power for ionized metal plasma deposition
US6345588B1 (en) 1997-08-07 2002-02-12 Applied Materials, Inc. Use of variable RF generator to control coil voltage distribution
US6042700A (en) * 1997-09-15 2000-03-28 Applied Materials, Inc. Adjustment of deposition uniformity in an inductively coupled plasma source
US6565717B1 (en) 1997-09-15 2003-05-20 Applied Materials, Inc. Apparatus for sputtering ionized material in a medium to high density plasma
US6280579B1 (en) 1997-12-19 2001-08-28 Applied Materials, Inc. Target misalignment detector
US6254738B1 (en) 1998-03-31 2001-07-03 Applied Materials, Inc. Use of variable impedance having rotating core to control coil sputter distribution
US6146508A (en) * 1998-04-22 2000-11-14 Applied Materials, Inc. Sputtering method and apparatus with small diameter RF coil
US6660134B1 (en) 1998-07-10 2003-12-09 Applied Materials, Inc. Feedthrough overlap coil
TW434636B (en) 1998-07-13 2001-05-16 Applied Komatsu Technology Inc RF matching network with distributed outputs
US6132566A (en) * 1998-07-30 2000-10-17 Applied Materials, Inc. Apparatus and method for sputtering ionized material in a plasma
US6231725B1 (en) 1998-08-04 2001-05-15 Applied Materials, Inc. Apparatus for sputtering material onto a workpiece with the aid of a plasma
US6238528B1 (en) 1998-10-13 2001-05-29 Applied Materials, Inc. Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source
US6217718B1 (en) 1999-02-17 2001-04-17 Applied Materials, Inc. Method and apparatus for reducing plasma nonuniformity across the surface of a substrate in apparatus for producing an ionized metal plasma
CN115110049A (en) * 2022-06-28 2022-09-27 苏州大学 Spiral wave plasma quartz glass tube inner wall coating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10854448B2 (en) 2017-01-31 2020-12-01 Tohoku University Plasma generating device, plasma sputtering device, and plasma sputtering method

Also Published As

Publication number Publication date
JPH06232055A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
JP3224443B2 (en) Helicon wave plasma processing equipment
US5279669A (en) Plasma reactor for processing substrates comprising means for inducing electron cyclotron resonance (ECR) and ion cyclotron resonance (ICR) conditions
JP3174981B2 (en) Helicon wave plasma processing equipment
KR100267959B1 (en) Plasma treatment apparatus
US5622635A (en) Method for enhanced inductive coupling to plasmas with reduced sputter contamination
US4844775A (en) Ion etching and chemical vapour deposition
JPS6393881A (en) Plasma treatment apparatus
JPH03218627A (en) Method and device for plasma etching
JPH0689880A (en) Etching equipment
JP3706027B2 (en) Plasma processing method
JPH04253328A (en) Surface treatment device
JP3199957B2 (en) Microwave plasma processing method
JP2004047695A (en) Method and apparatus for plasma doping
JPH0718433A (en) Icp sputtering device
JPS63155728A (en) Plasma processor
US4946537A (en) Plasma reactor
JPH01184921A (en) Plasma processor useful for etching, ashing, film formation and the like
JP2000243707A (en) Plasma treatment method and apparatus
JP3550466B2 (en) Plasma processing method
JP4384295B2 (en) Plasma processing equipment
JP3172757B2 (en) Plasma processing equipment
JP3471385B2 (en) Plasma processing equipment
JPS611024A (en) Manufacturing apparatus of semiconductor circuit
JP3379506B2 (en) Plasma processing method and apparatus
JP3235299B2 (en) Microwave plasma processing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees