JP3208319B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3208319B2
JP3208319B2 JP5770496A JP5770496A JP3208319B2 JP 3208319 B2 JP3208319 B2 JP 3208319B2 JP 5770496 A JP5770496 A JP 5770496A JP 5770496 A JP5770496 A JP 5770496A JP 3208319 B2 JP3208319 B2 JP 3208319B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
substrate
electrode
titanium
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5770496A
Other languages
Japanese (ja)
Other versions
JPH09251965A (en
Inventor
尚文 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5770496A priority Critical patent/JP3208319B2/en
Publication of JPH09251965A publication Critical patent/JPH09251965A/en
Application granted granted Critical
Publication of JP3208319B2 publication Critical patent/JP3208319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Abstract

PROBLEM TO BE SOLVED: To prevent accidental separation of a rear side electrode by performing back-etching which cleans the rear surface of a substrate and after that, plasma-processing a silicon surface. SOLUTION: A silicon substrate 11 is provided, and a base area 14 is formed on the surface of an epitaxial layer 12. Then, the rear surface of the substrate 11 is back-ground for reducing a board thickness, then, at the same time emitter diffusion is performed and high concentration defuse layer 19 is formed on the rear surface side of the substrate 11 as well. After formation of a contact hole and electrode 20, in order to clean the rear surface of the substrate 11 polluted in the process, wet etching is performed. On the silicon surface which is mirror-finished by wet etching, irregularities are formed again by plasma treatment, so that a back surface electrode 21 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板裏面側をケミ
カルエッチングする工程を具備する半導体装置の製造方
法において、その裏面電極の剥離防止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having a step of chemically etching the back surface of a substrate, and to the prevention of peeling of the back electrode.

【0002】[0002]

【従来の技術】一例として、パワートランジスタの構造
を図3(A)に示す。パワートランジスタは、N+型基
板1の上に形成したN型エピタキシャル層2の表面にP
型のベース領域3を形成し、P型ベース領域3の表面に
N+型のエミッタ領域4を形成し、P型ベース領域3と
N+型エミッタ領域4に各々コンタクトする電極5を形
成したものである。その上に絶縁膜とボンディングパッ
ドを形成して素子形成が終了し、その後、ウェハの裏面
側をバックグラインドして板厚を薄くし、裏面電極の形
成、ダイシング、ダイボンドと工程を進めることにな
る。なお、6はP+ガードリング、7はN+チャンネル
ストッパである。
2. Description of the Related Art As an example, a structure of a power transistor is shown in FIG. The power transistor has a P-type substrate on the surface of an N-type epitaxial layer 2 formed on an N + type substrate 1.
A P-type base region 3 is formed, an N + -type emitter region 4 is formed on the surface of the P-type base region 3, and an electrode 5 is formed to contact the P-type base region 3 and the N + -type emitter region 4, respectively. . An insulating film and a bonding pad are formed thereon to complete the element formation. After that, the back side of the wafer is back-ground to reduce the thickness, and the steps of back electrode formation, dicing, and die bonding are performed. . 6 is a P + guard ring, and 7 is an N + channel stopper.

【0003】通常は、素子形成が終了した後にバックグ
ラインド工程を行うが、ウェハ厚みが300ミクロン以
上ある時など、裏面側のN+型基板1の表面濃度を更に
向上して接触抵抗を減じるために、バックグラインド工
程の後にエミッタ拡散などを行うことがある。即ち、ベ
ース拡散を終了した基板1の裏面側をバックグラインド
工程により削り、図3(B)に示すように表面側へのエ
ミッタ拡散と同時にN+基板1表面にも高濃度拡散層8
を形成し、その後コンタクトホールの形成、アルミ電極
5の形成、ジャケット絶縁膜の形成を行い、ここまでの
工程で汚染された基板1表面を清浄化するためにケミカ
ルエッチングを行い、図3(C)に示すように裏面電極
9を形成するものである。
Normally, a back grinding process is performed after the completion of element formation. However, in order to further improve the surface concentration of the N + type substrate 1 on the back side and reduce the contact resistance, for example, when the thickness of the wafer is 300 μm or more. After the back grinding step, the emitter may be diffused. That is, the back side of the substrate 1 after the base diffusion has been finished is removed by a back grinding process, and as shown in FIG.
After that, a contact hole is formed, an aluminum electrode 5 is formed, a jacket insulating film is formed, and chemical etching is performed to clean the surface of the substrate 1 contaminated in the steps up to this point. The back electrode 9 is formed as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、沸酸+
硝酸+酢酸の混合液によるケミカルエッチングを行う
と、基板1の裏面表面が鏡面加工されたように滑らかな
表面となり、裏面電極9との接着力が弱くなるという欠
点が生じた。接着力が弱いと、ウェハをダイシングシー
トに接着、ダイシングを行った後、分割されたチップを
ピックアップするときに、裏面電極9がシリコン表面か
ら剥がれて前記ダイシングシートに残り、組立工程に支
障をきたすという欠点があった。
However, hydrofluoric acid +
When chemical etching is performed using a mixed solution of nitric acid and acetic acid, the back surface of the substrate 1 has a smooth surface as if it has been mirror-finished, and the adhesive strength with the back electrode 9 is weakened. If the adhesive strength is weak, the back electrode 9 is peeled off from the silicon surface and remains on the dicing sheet when the divided chips are picked up after bonding and dicing the wafer to the dicing sheet, which hinders the assembling process. There was a disadvantage.

【0005】[0005]

【課題を解決するための手段】本発明は上記従来の課題
に鑑みなされたもので、シリコン基板裏面をケミカルエ
ッチングした後、裏面をプラズマ処理して表面を粗面化
する事により、裏面電極の接着強度を増大した半導体装
置の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems. The present invention has been made in consideration of the above-mentioned problems. An object of the present invention is to provide a method of manufacturing a semiconductor device having an increased bonding strength.

【0006】[0006]

【発明の実施の形態】以下に本発明の一実施の形態を図
面を参照しながら詳細に説明する。図1(A)を参照し
て、N+基板11の上にコレクタ層としてN型エピタキ
シャル層12を形成したシリコン基板を準備する。エピ
タキシャル層12の表面にP+型のガードリング領域1
3を形成し、続いてP型のベース領域14を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. Referring to FIG. 1A, a silicon substrate having an N-type epitaxial layer 12 formed as a collector layer on an N + substrate 11 is prepared. P + type guard ring region 1 on the surface of epitaxial layer 12
3 and then a P-type base region 14 is formed.

【0007】図1(B)を参照して、表面の酸化膜15
の上に厚くホトレジスト膜等の絶縁膜を塗布して保護膜
16とし、該保護膜16を作業台上に貼り付けて、基板
11の裏面をバックグラインドする。この工程は研削粒
による研削であるので、表面は凹凸の荒い粗面となる。
また、エピタキシャル層12と基板11とを合わせたウ
ェハ厚みを250ミクロン程度まで研削する。
Referring to FIG. 1B, oxide film 15 on the surface is formed.
A thick insulating film such as a photoresist film is applied thereon to form a protective film 16. The protective film 16 is attached on a workbench, and the back surface of the substrate 11 is back-ground. Since this step is grinding using abrasive grains, the surface becomes a rough surface with rough irregularities.
Further, the thickness of the wafer including the epitaxial layer 12 and the substrate 11 is ground to about 250 microns.

【0008】図1(C)を参照して、保護膜16除去
後、エピタキシャル層12側の酸化膜15をホトエッチ
ングにより開口してリンを選択拡散し、エミッタ領域1
7とチャンネルストッパ18とを形成する。これで素子
形成が完成する。と同時に、拡散炉内でエミッタ拡散時
の不純物が回り込んで基板11裏面側にも拡散され、高
濃度拡散層19を形成する。この高濃度拡散層19は、
エミッタ領域17とほぼ同等に10×10の20乗程度
の不純物濃度で、約5ミクロン程度の拡散深さで形成さ
れる。
Referring to FIG. 1C, after removing the protective film 16, the oxide film 15 on the side of the epitaxial layer 12 is opened by photoetching to selectively diffuse phosphorus, and the emitter region 1 is removed.
7 and a channel stopper 18 are formed. This completes the device formation. At the same time, the impurities during the emitter diffusion in the diffusion furnace are spilled and diffused to the back side of the substrate 11 to form the high concentration diffusion layer 19. This high concentration diffusion layer 19
The impurity concentration is about 10 × 10, which is about the same as that of the emitter region 17, and has a diffusion depth of about 5 μm.

【0009】図2(A)を参照して、エピタキシャル層
12上の酸化膜15にベース・エミッタ電極用のコンタ
クトホールを形成し、アルミニウム層のスパッタ堆積と
パターニングによりアルミ電極20を形成する。アルミ
電極20の形成と同時にエミッタ・ベースボンディング
パッドの形成も行う。電極20の上にパッシベーション
皮膜としてシリコン窒化膜をCVD堆積し、前記ボンデ
ィングパッド上を開口する(図示せず)。
Referring to FIG. 2A, a contact hole for a base / emitter electrode is formed in oxide film 15 on epitaxial layer 12, and an aluminum electrode 20 is formed by sputtering deposition and patterning of an aluminum layer. At the same time as the formation of the aluminum electrode 20, the formation of the emitter / base bonding pad is also performed. A silicon nitride film is deposited as a passivation film on the electrode 20 by CVD, and an opening is formed on the bonding pad (not shown).

【0010】図2(B)を参照して、ウェハを沸酸+硝
酸の混合液で20秒ほどウェットエッチングする。これ
は基板11裏面表面にバックグラインド工程の後の工程
で付着した不純物(ホトレジスト残査、シリコン窒化
膜、自然酸化膜など)を除去するものである。このと
き、バックグラインド工程で形成されていた細かい凹凸
が、ウェットエッチングにより消滅して、表面の状態が
より鏡面に近い状態になることがSEM解析により確認
されている。なお、エミッタ拡散により形成された高濃
度拡散層19を消滅させてはならない。その後、ウェハ
の裏面側を、CF4ガスまたはCF4+O2の雰囲気中
でプラズマ処理を行い、基板11裏面のシリコン表面
を、前記バックグラインド工程後の状態以上に粗い状態
まで凹凸を形成する。この処理はシリコン表面に形成さ
れた自然酸化膜を除去して直ちに裏面電極21をスパッ
タ又は蒸着堆積する工程と共用しており、バレル式のプ
ラズマ装置で約5分程度、枚葉式のプラズマ装置で約3
0秒の処理を行うことで、シリコン表面に相当の凹凸を
形成できた。
Referring to FIG. 2B, the wafer is wet-etched with a mixed solution of hydrofluoric acid and nitric acid for about 20 seconds. This is to remove impurities (resist of photoresist, silicon nitride film, natural oxide film, etc.) attached to the back surface of the substrate 11 in a step after the back grinding step. At this time, it has been confirmed by SEM analysis that the fine irregularities formed in the back grinding process disappear by wet etching and the surface state becomes closer to a mirror surface. Note that the high concentration diffusion layer 19 formed by the emitter diffusion must not be extinguished. Thereafter, the back surface of the wafer is subjected to plasma processing in an atmosphere of CF4 gas or CF4 + O2 to form irregularities on the silicon surface on the back surface of the substrate 11 to a state rougher than the state after the back grinding step. This process is used in common with the process of removing the natural oxide film formed on the silicon surface and immediately sputtering or vapor-depositing the back electrode 21 by using a barrel-type plasma device for about 5 minutes and a single-wafer-type plasma device. About 3
By performing the treatment for 0 seconds, considerable irregularities could be formed on the silicon surface.

【0011】図2(C)を参照して、プラズマ処理によ
り凹凸を形成した後、直ちに裏面電極21の形成を行
う。裏面電極21は、シリコン側から順に、膜厚500
オングストロームのチタン(Ti)、膜厚1000オン
グストロームのチタン・ニッケル(Ti・Ni)、膜厚
5000オングストロームのニッケル(Ni)、および
膜厚1000オングストロームの金又は銀からなる。チ
タンはシリコン(Si)との密着性のため、金または銀
はダイボンド時の半田接合のため、そしてニッケルはチ
タンと金又は銀との接着性のため。チタン・ニッケルは
半田がチタン層と接触するのを防止する障壁層としての
役割を果たす。裏面電極21は、シリコン表面に凹凸を
形成したので、チタンとシリコンとの接触面積が増大
し、両者の密着力を更に強化できる。
Referring to FIG. 2C, the back electrode 21 is formed immediately after forming the irregularities by the plasma processing. The back electrode 21 has a thickness of 500 in order from the silicon side.
It is composed of Angstrom titanium (Ti), 1000 Angstrom thick titanium nickel (Ti · Ni), 5000 Angstrom thick nickel (Ni), and 1000 Angstrom thick gold or silver. Titanium is for adhesion with silicon (Si), gold or silver is for solder bonding during die bonding, and nickel is for adhesion between titanium and gold or silver. Titanium / nickel acts as a barrier layer that prevents solder from contacting the titanium layer. Since the back electrode 21 has irregularities formed on the silicon surface, the contact area between titanium and silicon increases, and the adhesion between the two can be further enhanced.

【0012】その後、ウェハの裏面に粘着性のダイシン
グシートを張り付け、ダイシングラインに沿ってダイシ
ングおよびブレイキングすることによりウェハを個々の
チップに分割し、ダイシングシートを伸張することで個
々のチップを距離的に離間する。そしてダイボンド工程
に移行し、チップを吸着コレットで吸引してダイシング
シートから剥離し、別に用意されたリードフレームのタ
ブ部分に半田で固着する。
Thereafter, an adhesive dicing sheet is attached to the back surface of the wafer, the wafer is divided into individual chips by dicing and breaking along a dicing line, and the individual chips are distanced by stretching the dicing sheet. Separate from Then, the process proceeds to a die bonding step, in which the chip is sucked by a suction collet, peeled off from the dicing sheet, and fixed to a tab portion of a separately prepared lead frame by soldering.

【0013】本発明では、裏面電極21の密着力が強化
されているので上記ダイシングシートからの剥離で裏面
電極21がダイシングシートに残るというような不具合
を回避できる。また、凹凸を形成するためのプラズマ処
理は自然酸化膜の除去と同時に行うので、工程を簡素化
できる。
In the present invention, since the adhesion of the back electrode 21 is enhanced, it is possible to avoid a problem that the back electrode 21 remains on the dicing sheet due to peeling from the dicing sheet. In addition, since the plasma treatment for forming the irregularities is performed simultaneously with the removal of the natural oxide film, the process can be simplified.

【0014】[0014]

【発明の効果】以上に説明した通り、本発明によれば、
基板11をウェットエチングにより清浄化した後にプラ
ズマ処理によって表面に凹凸を形成するので、裏面電極
20との密着強度を増大し、後の組立工程において裏面
電極の21の剥離事故という不具合を回避できる。ま
た、凹凸を形成するためのプラズマ処理は自然酸化膜の
除去と同時に行うので、工程を簡素化できる。そして、
基板11裏面側に高濃度拡散層を形成することによっ
て、接触抵抗を低減できるものである。
As described above, according to the present invention,
After the substrate 11 is cleaned by wet etching, irregularities are formed on the surface by plasma processing, so that the adhesion strength with the back electrode 20 is increased, and the problem of peeling off of the back electrode 21 in the subsequent assembly process can be avoided. . In addition, since the plasma treatment for forming the irregularities is performed simultaneously with the removal of the natural oxide film, the process can be simplified. And
By forming a high concentration diffusion layer on the back side of the substrate 11, the contact resistance can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining the present invention.

【図2】本発明の製造方法を説明するための断面図であ
る。
FIG. 2 is a cross-sectional view for explaining the manufacturing method of the present invention.

【図3】従来例を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining a conventional example.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/28 - 21/288 H01L 21/44 - 21/445 H01L 29/40 - 29/43 H01L 29/47 H01L 29/872 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/28-21/288 H01L 21/44-21/445 H01L 29/40-29/43 H01L 29 / 47 H01L 29/872

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体ウェハを所望の厚みまでバックグラ
インドを行う工程と、 半導体ウェハの裏面側を少なくとも沸酸と硝酸とを含む
エッチャントでエッチングして、前記バックグラインド
によって形成された凹凸を鏡面に近い状態にする工程
と、 前記半導体ウェハの裏面をプラズマエッチングして表面
に再度凹凸を形成する工程と、 前記半導体ウェハの裏面に裏面電極を形成する工程と、 前記半導体ウェハを分割して個々の半導体チップを形成
する工程と、 前記半導体チップをダイボンドする工程とを具備するこ
とを特徴とする半導体装置の製造方法。
A step of back-grinding the semiconductor wafer to a desired thickness; and etching the back side of the semiconductor wafer with an etchant containing at least hydrofluoric acid and nitric acid so that the irregularities formed by the back-grind are mirror-finished. A step of bringing the back side of the semiconductor wafer to plasma etching to form irregularities again on the front side; a step of forming a back side electrode on the back side of the semiconductor wafer; and dividing the semiconductor wafer into individual parts. A method for manufacturing a semiconductor device, comprising: a step of forming a semiconductor chip; and a step of die-bonding the semiconductor chip.
【請求項2】半導体ウェハを所望の厚みまでバックグラ
インドを行う工程と、 前記半導体ウェハの表面側に拡散領域を形成し、同時に
前記半導体ウェハの裏面側にも高濃度拡散を行う工程
と、 前記半導体ウェハの裏面側を少なくとも沸酸と硝酸とを
含むエッチャントでエッチングして、前記バックグライ
ンドを行う工程の後の工程で前記半導体ウェハの裏面に
付着した不純物を除去し且つ前記バックグラインドによ
って形成された凹凸を鏡面に近い状態にする工程と、 前記半導体ウェハの裏面をプラズマエッチングして表面
に再度凹凸を形成する工程と、 前記半導体ウェハの裏面に裏面電極を形成する工程と、 前記半導体ウェハを分割して個々の半導体チップを形成
する工程と、 前記半導体チップをダイボンドする工程とを具備するこ
とを特徴とする半導体装置の製造方法。
A step of back grinding the semiconductor wafer to a desired thickness; a step of forming a diffusion region on the front side of the semiconductor wafer and simultaneously performing a high concentration diffusion on the back side of the semiconductor wafer; the back side of the semiconductor wafer is etched with an etchant containing at least the boiling acid and nitric acid, the back gley
In the step after the step of performing
A step of the unevenness formed by the removal of the adhered impurities and the back-grinding a state close to the mirror surface, forming a re uneven surface to the back surface of the semiconductor wafer by plasma etching, the back surface of the semiconductor wafer A step of forming a back electrode on the substrate, a step of dividing the semiconductor wafer to form individual semiconductor chips, and a step of die-bonding the semiconductor chips.
【請求項3】前記裏面電極が、シリコン側から順に、チ
タン/チタン・ニッケル/ニッケル/金、又はチタン/
チタン・ニッケル/ニッケル/銀であることを特徴とす
る請求項1又は請求項2に記載の半導体装置の製造方
法。
3. The method according to claim 1, wherein the back electrode is titanium / titanium / nickel / nickel / gold or titanium / titanium in order from the silicon side.
3. The method for manufacturing a semiconductor device according to claim 1, wherein the method is titanium / nickel / nickel / silver.
JP5770496A 1996-03-14 1996-03-14 Method for manufacturing semiconductor device Expired - Fee Related JP3208319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5770496A JP3208319B2 (en) 1996-03-14 1996-03-14 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5770496A JP3208319B2 (en) 1996-03-14 1996-03-14 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH09251965A JPH09251965A (en) 1997-09-22
JP3208319B2 true JP3208319B2 (en) 2001-09-10

Family

ID=13063336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5770496A Expired - Fee Related JP3208319B2 (en) 1996-03-14 1996-03-14 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3208319B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
JP4766214B2 (en) * 2001-02-16 2011-09-07 大日本印刷株式会社 Wireless suspension for insulators, laminates and hard disk drives
JP2003086787A (en) * 2001-09-13 2003-03-20 Hitachi Ltd Semiconductor device and its manufacturing method
JP4534491B2 (en) * 2004-01-09 2010-09-01 ソニー株式会社 Manufacturing method of electronic application apparatus and assembly method of microrod transistor
JP4815905B2 (en) * 2005-07-11 2011-11-16 株式会社デンソー Semiconductor device and manufacturing method thereof
JP2008311428A (en) * 2007-06-14 2008-12-25 Mitsumi Electric Co Ltd Substrate sucking support member and substrate supporting method
JP2009094287A (en) * 2007-10-09 2009-04-30 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH09251965A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
US5731243A (en) Method of cleaning residue on a semiconductor wafer bonding pad
US5654226A (en) Wafer bonding for power devices
JP3208319B2 (en) Method for manufacturing semiconductor device
JP4022113B2 (en) Semiconductor device manufacturing method and semiconductor device
KR0147510B1 (en) A semiconductor device and mehtod of mnufacturing the same
US4740482A (en) Method of manufacturing bipolar transistor
JPH08195483A (en) Soi substrate, and its manufacture
JPH05259274A (en) Semiconductor device and its manufacture
JPH05291186A (en) Formation of metal contact on surface of semiconductor chip
JPH01304725A (en) Method of forming boarderless contact window
JP3466543B2 (en) Schottky barrier type semiconductor device and manufacturing method thereof
JP2782737B2 (en) Method for manufacturing semiconductor device
JPH0620984A (en) Formation of rear plane electrode for semiconductor device
JP3342134B2 (en) Manufacturing method of high voltage semiconductor integrated circuit
JPS60257182A (en) Manufacture of semiconductor device
JP2011054624A (en) Semiconductor device and method of manufacturing the same
JPH07321290A (en) Manufacture of bipolar integrated circuit device
JP2000058481A (en) Formation of electrode for compound semiconductor
JP2005217012A (en) Semiconductor device and manufacturing method therefor
JPH01155641A (en) Semiconductor integrated circuit device
JPH03201541A (en) Manufacture of field effect transistor
JPH08213578A (en) Soi substrate and manufacturing method thereof
JPS59100563A (en) Manufacture of mesa type semiconductor device
JPS61240679A (en) Schottky-barrier-type semiconductor device and manufacture thereof
JP2004134455A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees