JP3181369B2 - Boiler damping support structure - Google Patents

Boiler damping support structure

Info

Publication number
JP3181369B2
JP3181369B2 JP12904892A JP12904892A JP3181369B2 JP 3181369 B2 JP3181369 B2 JP 3181369B2 JP 12904892 A JP12904892 A JP 12904892A JP 12904892 A JP12904892 A JP 12904892A JP 3181369 B2 JP3181369 B2 JP 3181369B2
Authority
JP
Japan
Prior art keywords
boiler
supporting
steel frame
main body
relative displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12904892A
Other languages
Japanese (ja)
Other versions
JPH05322103A (en
Inventor
隆 安田
春男 荒川
英一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12904892A priority Critical patent/JP3181369B2/en
Publication of JPH05322103A publication Critical patent/JPH05322103A/en
Application granted granted Critical
Publication of JP3181369B2 publication Critical patent/JP3181369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はボイラの制震支持構造体
に係り、特に地震時の応答荷重の低減を可能としたボイ
ラの制震支持構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration control structure for a boiler, and more particularly to a vibration control structure for a boiler capable of reducing a response load during an earthquake.

【0002】[0002]

【従来の技術】従来のボイラ装置の支持構造を図9に示
す。図において、ボイラ本体2は運転中の熱膨張を拘束
しないようにするため、支持鉄骨1より吊りロッド3に
て吊り下げられている。したがって、地震発生時にはボ
イラ本体2は吊鐘のように振れようとするが、その際に
生ずる支持鉄骨1とボイラ本体2との間の相対変位を限
度内に制限する目的でサイスミックタイ4が設けられて
いる。支持鉄骨1とボイラ本体2との間の相対変位の限
度は、ボイラ本体2に接続される配管やダクトの保護の
観点から設定される。
2. Description of the Related Art FIG. 9 shows a conventional boiler apparatus supporting structure. In the figure, a boiler body 2 is suspended from a supporting steel frame 1 by a suspension rod 3 so as not to restrain thermal expansion during operation. Therefore, when an earthquake occurs, the boiler body 2 tends to swing like a hanging bell, but the seismic tie 4 is used to limit the relative displacement between the supporting steel frame 1 and the boiler body 2 that occurs at that time. Is provided. The limit of the relative displacement between the supporting steel frame 1 and the boiler main body 2 is set from the viewpoint of protection of pipes and ducts connected to the boiler main body 2.

【0003】ボイラ本体2は大別して、火炉部2aとケ
ージ部2bに区分される。火炉部2aは内部をボイラ水
が通過する伝熱管と伝熱管の間を板材で溶接接続してな
る水壁で構成される中空の箱型構造物であるのに対し
て、ケージ部2bは上記箱型構造の中に対流伝熱を行な
うための伝熱管群が設置されている。そのため、単位容
積当たりの質量(質量密度)には大差があり、火炉部2
aの質量密度は小さく、ケージ部2bの質量密度は大き
くなっている。火炉部とケージ部の質量比は1:2、容
積比は2:1、よって質量密度比は1:3である。ボイ
ラ装置の前部と後部または右側と左側を比較した場合、
支持鉄骨1の積載物を含む質量分布および剛性分布は異
なる場合が多い。
[0003] The boiler main body 2 is roughly divided into a furnace part 2a and a cage part 2b. The furnace part 2a is a hollow box-shaped structure composed of a water wall formed by welding and connecting a heat transfer pipe between the heat transfer pipes through which boiler water passes by a plate material, whereas the cage part 2b has the above-described structure. A heat transfer tube group for performing convection heat transfer is installed in a box-shaped structure. Therefore, there is a great difference in the mass per unit volume (mass density).
The mass density of a is small, and the mass density of the cage part 2b is large. The mass ratio between the furnace part and the cage part is 1: 2, the volume ratio is 2: 1, and the mass density ratio is 1: 3. When comparing the front and rear or right and left sides of the boiler device,
In many cases, the mass distribution and rigidity distribution of the supporting steel frame 1 including the load are different.

【0004】以上の通り、ボイラ装置は、支持鉄骨1お
よびボイラ本体2とも前後左右で非対称の剛性分布また
は質量分布を有するのが通常である。ボイラ装置の前後
左右の各部は各々の剛性および質量に応じた固有周期で
振動しようとするが、これを同位相での振動に近づけよ
うとするのが、ボイラの各床レベルに配置された水平ブ
レースの剛性である。上記振動周期について述べると、
最も基本的な自由度系の固有周期Tは、 T=2π√(m/k) mは質量、kは剛性(バネ定数)。鉄骨の質点にFの力
を加えた時に生ずる変位δよりバネ定数kは求まる。
[0004] As described above, the boiler apparatus usually has an asymmetric rigidity distribution or mass distribution in the front and rear, right and left directions of the supporting steel frame 1 and the boiler main body 2. The front, rear, left and right parts of the boiler device tend to vibrate at a natural period according to the rigidity and mass of each unit. Brace rigidity. Talking about the oscillation cycle,
The natural period T of the most basic degree of freedom system is: T = 2π√ (m / k), where m is mass and k is rigidity (spring constant). The spring constant k is obtained from the displacement δ generated when a force of F is applied to the mass point of the steel frame.

【0005】k=F/δ しかるに、ボイラ支持鉄骨1においては、ボイラ本体2
を収納するために吹抜け(中空)構造とせざるを得な
い。吹抜け部内にはボイラ本体が収納されているので、
吹抜け部内に水平ブレースを設けることができない。し
たがって、吹抜け部では水平ブレースは周辺にしか配置
することができず、そのために支持鉄骨1の各部を完全
な同位相とするだけの水平ブレースの剛性(床剛性)を
確保することは困難である。
K = F / δ However, in the boiler supporting steel frame 1, the boiler body 2
It is inevitable to have a stairwell (hollow) structure to accommodate Since the boiler body is stored in the atrium,
A horizontal brace cannot be provided in the atrium. Therefore, the horizontal brace can be arranged only in the periphery of the atrium, and therefore, it is difficult to secure the rigidity (floor rigidity) of the horizontal brace so that each part of the supporting steel frame 1 is completely in phase. .

【0006】このような、非対称の質量および剛性の分
布を有し、しかも十分な床剛性が確保されない構造物に
おいては、地震発生時に2次の振動モード以上の高次の
振動モードの影響が生じやすい。高次の振動モードの影
響が1次の振動モードに加算される方向で作用する瞬間
は避けられないので、高次の振動モードの影響は地震応
答量を増大させる形で現れる。高次の振動モードの生じ
やすいボイラ装置は、同程度の1次の固有周期を有し、
しかも均質な質量および剛性を有する他の構造物に比較
して、地震応答量が大きく生ずることになる。
In such a structure having an asymmetric mass and rigidity distribution and not securing sufficient floor rigidity, the influence of a higher-order vibration mode higher than the second-order vibration mode occurs when an earthquake occurs. Cheap. Since it is inevitable that the moment when the influence of the higher-order vibration mode acts in a direction in which it is added to the first-order vibration mode, the influence of the higher-order vibration mode appears in a form that increases the seismic response. A boiler device in which higher-order vibration modes are likely to occur has a first-order natural period of the same level,
Moreover, compared to other structures having a uniform mass and rigidity, a large seismic response is generated.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術では、ボ
イラ装置は高次の振動モードの影響を低減するための構
造上の配慮がされておらず、高次の振動モードの影響に
よる地震応答量の増大を生じやすいという問題があっ
た。本発明の目的は、ボイラ装置における高次の振動モ
ードの影響を低減し、地震発生時の応答荷重の低減を図
ったボイラの制震支持構造体を提供することにある。
In the above prior art, no consideration is given to the structure of the boiler device in order to reduce the influence of the higher-order vibration mode, and the amount of seismic response due to the influence of the higher-order vibration mode is not considered. There is a problem that the increase is easily caused. An object of the present invention is to provide a boiler vibration control support structure that reduces the effects of higher-order vibration modes in a boiler device and reduces the response load when an earthquake occurs.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本願の第1の発明は、ボイラ本体を支持する支持鉄骨
と、支持鉄骨に懸架されボイラ本体を熱による膨張収縮
を許容するように吊り下げ支持する吊り下げ部材と、吊
り下げられたボイラ本体と支持鉄骨との間に設けられ地
震発生時の両者の相対変位を限度内に制限支持するサイ
スミックタイとを設けたボイラの制震支持構造体におい
て、前記ボイラ本体の火炉部とケージ部とを、該火炉部
とケージ部との熱によるゆっくりした相対変位に対して
は弱い抵抗力を発生するか、または抵抗力を発生せず、
地震発生時の急激な相対変位に対しては大きな抵抗力を
発生するように構成した連結装置で連結したことを特徴
とするボイラの制震支持構造体に関する。
Means for Solving the Problems To achieve the above object, a first invention of the present application is a support steel frame for supporting a boiler body, and a boiler suspended from the support steel frame so as to allow expansion and contraction due to heat. Seismic damping support for a boiler provided with a suspending member for suspending and supporting, and a seismic tie provided between the suspended boiler body and the supporting steel frame to limit the relative displacement between the suspended boiler and the supporting steel frame within the limit in structure, the furnace portion and the cage portion of the boiler body,該火furnace section
And relative displacement due to heat between cage and cage
Produces weak or no resistance,
Great resistance to sudden relative displacement during an earthquake
Characterized by being connected by a connecting device configured to generate
The boiler's seismic control structure.

【0009】第2の発明は、ボイラ本体を支持する支持
鉄骨と、支持鉄骨に懸架されボイラ本体を熱による膨張
収縮を許容するように吊り下げ支持する吊り下げ部材
と、吊り下げられたボイラ本体と支持鉄骨との間に設け
られ地震発生時の両者の相対変位を限度内に制限支持す
るサイスミックタイとを設けたボイラの制震支持構造体
において、前記ボイラ本体のケージ部(または火炉部)
の一部を底辺とし、この底辺両端よりボイラ本体の火炉
部(またはケージ部)に設けた頂点に接続して三角形の
二辺を構成する連結装置を設け、該連結装置を前記火炉
部とケージ部との熱によるゆっくりした相対変位に対し
ては弱い抵抗力を発生するか、または抵抗力を発生せ
ず、地震発生時の急激な相対変位に対しては大きな抵抗
力を発生するように構成したことを特徴とするボイラの
制震支持構造体に関する。
A second aspect of the present invention, a supporting steel for supporting the boiler body, a member hanging down supporting hanging to the boiler body is suspended to the supporting steel frame to permit expansion and contraction due to heat, hung boiler in seismic damping support structure of the boiler provided with a seismic tie to limit supporting the relative displacement of both the event of an earthquake within the limits provided between the main body and the supporting steel frame, cage portion of the boiler body (or furnace Part)
Is provided as a base, and a connecting device that forms two sides of a triangle by connecting both ends of the base to a vertex provided in a furnace part (or a cage part) of the boiler body is provided.
Slow relative displacement due to heat between the part and the cage part
Generate weak resistance or generate resistance
Large resistance to sudden relative displacement during an earthquake
The present invention relates to a vibration control structure for a boiler, which is configured to generate a force .

【0010】第の発明は、上記第1の発明または第
の発明において、前記連結装置が地震エネルギーを吸収
する減衰機構式連結装置であることを特徴とするボイラ
の制震支持構造体に関する。
[0010] The third invention is the first invention or the second invention.
The present invention relates to a vibration damping support structure for a boiler, wherein the connecting device is a damping mechanism type connecting device that absorbs seismic energy.

【0011】[0011]

【作用】ボイラ本体の火炉部とケージ部を連結する連結
装置は、ボイラ本体の火炉部とケージ部の振動の位相差
を生じた場合に抵抗力を発生して、ボイラ本体の火炉部
とケージ部を互いに拘束する。支持鉄骨の前後、または
左右で位相差を生じる場合も、ボイラ本体を介して前記
と同様にお互いが拘束される。
The connecting device for connecting the furnace part and the cage part of the boiler main body generates resistance when a phase difference of the vibration of the furnace part and the cage part of the boiler main body is generated. Parts to each other. Also in the case where a phase difference occurs between the front and the back or the left and right of the supporting steel frame, each other is restrained through the boiler main body in the same manner as described above.

【0012】以上のように、地震発生時の位相差に対し
連結装置は拘束力を生じることにより、ボイラ装置全体
が一体となった挙動に近くなり、高次の振動モードの影
響が低減される。
As described above, the coupling device generates a restraining force against the phase difference at the time of the occurrence of the earthquake, whereby the behavior of the entire boiler device approaches that of an integral unit, and the influence of higher-order vibration modes is reduced. .

【0013】[0013]

【実施例】本発明になるボイラ制震構造の実施例を図1
に示す。本発明の特徴はボイラ本体2の火炉部2aとケ
ージ部2bを連結装置5で連結していることにある。特
に図2に示すように、連結装置5で三角形の二辺を構成
するように配置すると、連結装置5はボイラ装置の前後
左右の両方向の振動に対して効果的となる。
FIG. 1 shows an embodiment of a boiler vibration control structure according to the present invention.
Shown in The feature of the present invention resides in that the furnace part 2a and the cage part 2b of the boiler main body 2 are connected by the connecting device 5. In particular, as shown in FIG. 2, when the connecting device 5 is arranged so as to form two sides of a triangle, the connecting device 5 is effective against vibration of the boiler device in both front and rear, right and left directions.

【0014】連結装置5は、熱膨張による極めてゆっく
りした動きに対してはほとんど抵抗力を生じず、地震発
生時の急激な動きに対しては十分な抵抗力を発生する特
性を有していることが必要である。このような特性を有
するものとしてオイルスナッバがある。オイルスナッバ
は図3のようになっており、ピストン6が作動する際、
油を弁7を介してリザーブタンク8へ出し入れする。弁
7は静止時はバネ9により流路開となっており、ピスト
ンが極めてゆっくり動く、つまりボイラ本体熱膨張吸収
時には、開いた流路より油は出てゆく。ピストン速度が
速くなるとシリンダ内圧力が高くなり、圧力がバネ9の
力に打ち勝つと弁7は閉じる。これにより、熱膨張は吸
収しつつ、地震時の急な動きを拘束することができる。
オイルスナッバの特性を図4に示す。オイルスナッバは
図4(a)に示すように、ピストン速度vが小さい(熱
膨張)時は抵抗力も小さいが、ピストン速度が大きい
(地震)発生時は抵抗力は大きくなる。これをボイラ装
置の地震発生時の振動に近い単振動で繰り返し振幅を与
えた場合は図4(b)のように、バネに多少の減衰効果
を持たせた挙動を行なうものである。
The connecting device 5 has a characteristic that it hardly generates resistance to a very slow movement due to thermal expansion, and generates a sufficient resistance to a sudden movement when an earthquake occurs. It is necessary. An oil snubber has such characteristics. The oil snubber is as shown in FIG. 3, and when the piston 6 operates,
Oil is taken in and out of the reserve tank 8 via the valve 7. When the valve 7 is at rest, the flow path is opened by the spring 9, and the piston moves very slowly, that is, when the thermal expansion of the boiler body is absorbed, the oil flows out from the open flow path. As the piston speed increases, the pressure in the cylinder increases, and when the pressure overcomes the force of the spring 9, the valve 7 closes. As a result, it is possible to restrain rapid movement during an earthquake while absorbing thermal expansion.
FIG. 4 shows the characteristics of the oil snubber. As shown in FIG. 4A, the oil snubber has a low resistance when the piston speed v is low (thermal expansion), but has a high resistance when the piston speed is high (earthquake). When this is repeated with a simple vibration close to the vibration of the boiler device at the time of the occurrence of the earthquake, a behavior is obtained in which the spring has a slight damping effect as shown in FIG.

【0015】地震時に、ボイラ本体2の火炉部2aとケ
ージ部2bに振動の位相差による相対変位が生ずると、
接続装置5であるオイルスナッバにはほぼ相対変位に比
例した抵抗力が生ずる。抵抗力は相対変位が拡大してい
くのを拘束する。したがって、地震時の火炉部2aとケ
ージ部2bの相対変位は、従来技術の連結装置のない構
造に比較して小さなものとなる。そのため、地震時には
ボイラ装置が一体となった振動に近づき、高次モードの
影響は低減する。
When a relative displacement occurs between the furnace part 2a and the cage part 2b of the boiler body 2 due to the phase difference of the vibration during the earthquake,
A resistance force substantially proportional to the relative displacement is generated in the oil snubber as the connection device 5. The resistance restrains the relative displacement from expanding. Therefore, the relative displacement between the furnace part 2a and the cage part 2b at the time of the earthquake becomes smaller as compared with the conventional structure without the coupling device. Therefore, at the time of an earthquake, the boiler device approaches the integrated vibration, and the influence of the higher-order mode is reduced.

【0016】高次モードの影響の低減効果はボイラ装置
によって異なり、一概にいうことはできないが、代表的
なボイラ装置で試算した結果を図5に示す。図5はボイ
ラ本体に生ずる曲げモーメントの分布を、従来技術と本
実施例を比較して示したものである。図5に示す通り、
従来技術と比較して本発明の実施例では、火炉部とケー
ジ部が地震により近づいたり離れたりして振れる際の火
炉部の上部に生ずる最大曲げモーメントは約3/4に低
減されている。最大曲げモーメント減少による効果とし
て、ボイラ本体の補強部材の軽量化に伴なう省資源効
果、またはボイラ強度の信頼性の向上効果がある。
The effect of reducing the influence of the higher-order mode differs depending on the boiler apparatus, and cannot be specified unconditionally. FIG. 5 shows the result of a trial calculation using a typical boiler apparatus. FIG. 5 shows the distribution of the bending moment generated in the boiler body by comparing the prior art with the present embodiment. As shown in FIG.
Compared with the prior art, in the embodiment of the present invention, the maximum bending moment generated at the upper part of the furnace part when the furnace part and the cage part swing closer to and away from each other due to the earthquake is reduced to about 3/4. The effect of the reduction of the maximum bending moment includes a resource saving effect accompanying a reduction in the weight of the reinforcing member of the boiler main body and an effect of improving the reliability of the boiler strength.

【0017】本発明の他の実施例として、図1の連結装
置5に減衰機構を用いたボイラ制震構造がある。減衰機
構として、図6に特性を示す速度比例型のオイルダンパ
がある。図6(a)に示すように、オイルダンパのピス
トン速度に比例して抵抗力が生じ、単振動の場合は図6
(b)に示すように円形に近いループを示す。図6
(b)のループに囲まれた面積は地震エネルギーの吸収
量に相当する。したがって、速度比例型のオイルダンパ
を連結装置に用いると、抵抗力発生の他に地震エネルギ
ーの吸収による振動の減衰効果が生じる。速度比例型の
オイルダンパとして、流路の一部を絞って、油を流す際
の圧力損失をもって抵抗力を発生させるオリフィスタイ
プのものを用いる。
As another embodiment of the present invention, there is a boiler vibration control structure using a damping mechanism in the connecting device 5 of FIG. As a damping mechanism, there is a speed proportional type oil damper whose characteristics are shown in FIG. As shown in FIG. 6A, a resistance force is generated in proportion to the piston speed of the oil damper.
(B) shows a loop close to a circle. FIG.
The area surrounded by the loop in (b) corresponds to the amount of seismic energy absorbed. Therefore, when a speed proportional type oil damper is used for the coupling device, a vibration damping effect is generated by absorbing seismic energy in addition to generating a resistance force. As a speed proportional oil damper, an orifice type oil damper is used in which a part of a flow path is narrowed and a resistance force is generated by pressure loss when flowing oil.

【0018】オリフィスタイプは絞り部の面積が一定の
固定オリフィスと、流量に応じて面積の変わる可変オリ
フィスタイプが使用できる。固定オリフィスでは流路の
面積が一定であり、抵抗力は流量の2乗、つまりピスト
ン速度の2乗に比例して発生する。一方、可変オリフィ
スは図8に示すように、オリフィス部に流量が増すと流
路面積を広げて流れやすく補正する弁を備えているもの
を用いる。これは流量が増すと圧力Pが大きくなり、バ
ネを押し上げて流路が広がる。
As the orifice type, there can be used a fixed orifice having a fixed throttle area and a variable orifice type whose area changes according to the flow rate. In the fixed orifice, the area of the flow path is constant, and the resistance force is generated in proportion to the square of the flow rate, that is, the square of the piston speed. On the other hand, as shown in FIG. 8, the variable orifice is provided with a valve provided in the orifice portion to increase the flow area when the flow rate is increased and to make the flow easier. This is because, as the flow rate increases, the pressure P increases, and the spring is pushed up to widen the flow path.

【0019】本実施例の効果を代表的なボイラ装置を用
いて試算した例を図7に示す。図7に示す通り、実施例
では支持鉄骨の特に下半分において、地震応答量(応答
層せん断力)が低減される。応答層せん断力の低減効果
として、支持鉄骨およびコンクリート基礎の軽量化が図
れ、省資源効果がある。
FIG. 7 shows an example in which the effect of the present embodiment is calculated by using a typical boiler apparatus. As shown in FIG. 7, in the embodiment, the seismic response amount (response layer shearing force) is reduced particularly in the lower half of the supporting steel frame. As the effect of reducing the shearing force of the response layer, the weight of the supporting steel frame and the concrete foundation can be reduced, and there is a resource saving effect.

【0020】[0020]

【発明の効果】本発明を実施した場合の地震応答量低減
効果は、ボイラ容量、地盤条件、予測される地震力のレ
ベル等により画一的とはならないが、前記実施例に示す
ように、ボイラ本体の地震応答量(最大曲げモーメン
ト)または支持鉄骨の地震応答量(応答層せん断力)の
低減は明らかに認められる。
The effect of reducing the amount of seismic response when the present invention is implemented is not uniform due to boiler capacity, ground conditions, predicted seismic force level, etc., but as shown in the above embodiment, The reduction in the seismic response of the boiler body (maximum bending moment) or the seismic response of the supporting steel frame (response layer shear force) is clearly observed.

【0021】本発明によれば、ボイラ装置の地震応答量
を低減することができ、ボイラ本体の補強部材、支持鉄
骨部材および基礎コンクリートの軽量化を図ることがで
き、省資源の効果がある。
According to the present invention, the amount of seismic response of the boiler device can be reduced, the reinforcing members of the boiler main body, the supporting steel frame members and the foundation concrete can be reduced in weight, and there is an effect of saving resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ボイラの支持構造および本発明になるボイラの
制震支持構造体を示す図。
FIG. 1 is a view showing a boiler support structure and a boiler vibration control support structure according to the present invention.

【図2】本発明における連結装置の配置例図。FIG. 2 is an example of an arrangement of a connecting device according to the present invention.

【図3】、FIG.

【図4】本発明で連結装置として用いるオイルスナッバ
の構造および特性を示す図。
FIG. 4 is a diagram showing the structure and characteristics of an oil snubber used as a connecting device in the present invention.

【図5】本発明の効果を示すボイラ本体の地震応答で生
ずる曲げモーメント分布図。
FIG. 5 is a distribution diagram of a bending moment generated by the seismic response of the boiler body showing the effect of the present invention.

【図6】本発明で連結装置として用いるオイルダンパの
特性図。
FIG. 6 is a characteristic diagram of an oil damper used as a connecting device in the present invention.

【図7】本発明の効果を示す支持鉄骨に地震応答で生ず
る層せん断力分布図。
FIG. 7 is a distribution diagram of layer shear force generated by a seismic response on a supporting steel frame showing the effect of the present invention.

【図8】本発明で連結装置として用いるオイルダンパの
概要図。
FIG. 8 is a schematic diagram of an oil damper used as a connecting device in the present invention.

【図9】従来技術の説明図。FIG. 9 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1…支持鉄骨、2…ボイラ本体、2a…火炉部、2b…
ケージ部、3…吊りロッド、4…サイスミックタイ、5
…連結装置、6…ピストン、7…弁。
DESCRIPTION OF SYMBOLS 1 ... Support steel frame, 2 ... Boiler main body, 2a ... Fire furnace part, 2b ...
Cage, 3 ... hanging rod, 4 ... seismic tie, 5
... connecting device, 6 ... piston, 7 ... valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 平2−62205(JP,U) (58)調査した分野(Int.Cl.7,DB名) F22B 37/24 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-U 2-62205 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F22B 37/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ボイラ本体を支持する支持鉄骨と、支持
鉄骨に懸架されボイラ本体を熱による膨張収縮を許容す
るように吊り下げ支持する吊り下げ部材と、吊り下げら
れたボイラ本体と支持鉄骨との間に設けられ地震発生時
の両者の相対変位を限度内に制限支持するサイスミック
タイとを設けたボイラの制震支持構造体において、前記
ボイラ本体の火炉部とケージ部とを、該火炉部とケージ
部との熱によるゆっくりした相対変位に対しては弱い抵
抗力を発生するか、または抵抗力を発生せず、地震発生
時の急激な相対変位に対しては大きな抵抗力を発生する
ように構成した連結装置で連結したことを特徴とするボ
イラの制震支持構造体。
1. A supporting steel frame for supporting a boiler main body, a suspending member suspended from the supporting steel frame for suspending and supporting the boiler main body so as to allow expansion and contraction by heat, a suspended boiler main body and a supporting steel frame. And a seismic tie for limiting the relative displacement between the two when the earthquake occurs within a limit, wherein the furnace part and the cage part of the boiler body are provided. The furnace part and cage
Resistance to slow relative displacement due to heat with the
Generates drag or generates no resistance, and an earthquake occurs
Generates large resistance against sudden relative displacement
Characterized in that they are connected by a connecting device configured as described above.
Ira's seismic control structure.
【請求項2】 ボイラ本体を支持する支持鉄骨と、支持
鉄骨に懸架されボイラ本体を熱による膨張収縮を許容す
るように吊り下げ支持する吊り下げ部材と、吊り下げら
れたボイラ本体と支持鉄骨との間に設けられ地震発生時
の両者の相対変位を限度内に制限支持するサイスミック
タイとを設けたボイラの制震支持構造体において、前記
ボイラ本体のケージ部(または火炉部)の一部を底辺と
し、この底辺両端よりボイラ本体の火炉部(またはケー
ジ部)に設けた頂点に接続して三角形の二辺を構成する
連結装置を設け、該連結装置を前記火炉部とケージ部と
の熱によるゆっくりした相対変位に対しては弱い抵抗力
を発生するか、または抵抗力を発生せず、地震発生時の
急激な相対変位に対しては大きな抵抗力を発生するよう
に構成したことを特徴とするボイラの制震支持構造体。
2. A supporting steel frame for supporting a boiler main body, a suspending member suspended from the supporting steel frame for suspending and supporting the boiler main body so as to allow expansion and contraction by heat, a suspended boiler main body and a supporting steel frame. in seismic damping support structure of the boiler provided with a seismic ties are limits supporting the relative displacement of both the event of an earthquake within the limits provided between the cage portion of the <br/> boiler body (or furnace section ) Is provided as a base, and a connecting device is provided which is connected to vertices provided in the furnace part (or cage part) of the boiler body from both ends of the base to form two sides of a triangle , and the connecting device is connected to the furnace part. Cage and
Resistance to slow relative displacement due to heat
Or generate no resistance,
Generates a large resistance force against sudden relative displacement
Damping support structure of the boiler, characterized by being configured to.
【請求項3】 請求項1またはにおいて、前記連結装
置が地震エネルギーを吸収する減衰機構式連結装置であ
ることを特徴とするボイラの制震支持構造体。
3. An apparatus according to claim 1 or 2, vibration control supporting structure of the boiler to the coupling device is characterized in that a damping mechanism type coupling device which absorbs the seismic energy.
JP12904892A 1992-05-21 1992-05-21 Boiler damping support structure Expired - Fee Related JP3181369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12904892A JP3181369B2 (en) 1992-05-21 1992-05-21 Boiler damping support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12904892A JP3181369B2 (en) 1992-05-21 1992-05-21 Boiler damping support structure

Publications (2)

Publication Number Publication Date
JPH05322103A JPH05322103A (en) 1993-12-07
JP3181369B2 true JP3181369B2 (en) 2001-07-03

Family

ID=14999800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12904892A Expired - Fee Related JP3181369B2 (en) 1992-05-21 1992-05-21 Boiler damping support structure

Country Status (1)

Country Link
JP (1) JP3181369B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579768B2 (en) * 2015-03-24 2019-09-25 三菱日立パワーシステムズ株式会社 boiler
JP6766202B2 (en) * 2019-03-13 2020-10-07 三菱パワー株式会社 Boiler device
WO2021124827A1 (en) * 2019-12-20 2021-06-24 三菱パワー株式会社 Earthquake monitoring system for boiler, and earthquake monitoring device for boiler
JP7050194B1 (en) * 2021-02-26 2022-04-07 三菱重工業株式会社 Boiler damage estimation system and boiler damage estimation device

Also Published As

Publication number Publication date
JPH05322103A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
Al-Saif et al. Modified liquid column damper for vibration control of structures
Koo Using magneto-rheological dampers in semiactive tuned vibration absorbers to control structural vibrations
JP2017517659A (en) Energy absorber
KR101297416B1 (en) Damping system and construction method of that
JP3181369B2 (en) Boiler damping support structure
Madhekar et al. Use of pseudo-negative stiffness dampers for reducing the seismic response of bridges: a benchmark study
Abdel-Rohman et al. Control of wind-induced nonlinear oscillations in suspended cables
JP3589553B2 (en) Damping unit and damper
Baz et al. Active modal control of vortex-induced vibrations of a flexible cylinder
JP4391335B2 (en) Intermediate seismic isolation structure of existing buildings
JPS5997342A (en) Pendulum-type dynamic vibration absorber
JP2000304202A (en) Method and structure damping vibration of boiler body
Datta Control of dynamic response of structures
JP2011012427A (en) Initial displacement-imparted tmd vibration control system for building
JP3456711B2 (en) Boiler equipment
JPH07150810A (en) Damping device
JP2000002017A (en) Controller for additional mass type damping device and damping controller including the same and the damping structure
JPH05157206A (en) Boiler structure
JP3045042B2 (en) Damping method and device for cable stayed cable
JPH03152301A (en) Aseismatic supporting for coal-burning boiler
TWI606222B (en) Steam boiler
JPS6225678A (en) Earthquake-proof structure of building
JP7465702B2 (en) Seismic isolation device and design method
Nikpour et al. Development of a divergent fluid wall damper for framed structures subjected to dynamic loads
JPH0734722A (en) Active damping structure using variable damping device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees