JP3175640B2 - Microwave induction plasma igniter - Google Patents

Microwave induction plasma igniter

Info

Publication number
JP3175640B2
JP3175640B2 JP15981597A JP15981597A JP3175640B2 JP 3175640 B2 JP3175640 B2 JP 3175640B2 JP 15981597 A JP15981597 A JP 15981597A JP 15981597 A JP15981597 A JP 15981597A JP 3175640 B2 JP3175640 B2 JP 3175640B2
Authority
JP
Japan
Prior art keywords
tube
plasma
cavity
microwave
microwave induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15981597A
Other languages
Japanese (ja)
Other versions
JPH118093A (en
Inventor
俊之 鈴木
幸彦 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP15981597A priority Critical patent/JP3175640B2/en
Publication of JPH118093A publication Critical patent/JPH118093A/en
Application granted granted Critical
Publication of JP3175640B2 publication Critical patent/JP3175640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はプラズマガスを流すディ
スチャージ管を2重構造としたマイクロ波誘導プラズマ
の点火装置に関し、擬信号を減少させたり、検出感度の
向上を図ることが可能なマイクロ波誘導プラズマの点火
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave induction plasma igniter having a double discharge tube through which a plasma gas flows, and which is capable of reducing false signals and improving detection sensitivity. The present invention relates to an induction plasma ignition device.

【0002】[0002]

【従来の技術】図6はマイクロ波誘導プラズマ点火装置
の従来例を示す要部構成図である。図において、1は2
重管構造のディスチャージ管であり、このディスチャー
ジ管を構成する外管1aとしては石英やアルミナ等の高
温に耐える非導電性部材が用いられ、内管1bとしては
例えばステンレス管等の導電性部材が用いられている。
2. Description of the Related Art FIG. 6 is a configuration diagram showing a main part of a conventional example of a microwave induction plasma ignition device. In the figure, 1 is 2
It is a discharge tube having a double tube structure, and a non-conductive member that can withstand high temperature such as quartz or alumina is used as the outer tube 1a constituting the discharge tube, and a conductive member such as a stainless steel tube is used as the inner tube 1b. Used.

【0003】2はブロックで端部には管継手3が固定さ
れており、この管継手により外管1aおよび内菅1bが
支持されている。4はキャビティで、側面から注入され
るμ波が2.45GHzであるとき、マイクロ波の空洞
共鳴器となっている。5はスライド機構であり、スライ
ドテーブル5aと固定テーブル5bにより構成されてい
る。
[0003] Reference numeral 2 denotes a block to which a pipe joint 3 is fixed at an end, and the outer pipe 1a and the inner pipe 1b are supported by the pipe joint. Reference numeral 4 denotes a cavity, which serves as a microwave cavity resonator when the microwave injected from the side surface is 2.45 GHz. Reference numeral 5 denotes a slide mechanism, which includes a slide table 5a and a fixed table 5b.

【0004】キャビティ4の中央にはディスチャージ管
1を通す孔が開けられており、μ波注入によりキャビテ
ィ内で共鳴しエネルギーが中央部に集められるようにな
っている。このキャビティ4はブロック6を介してベー
ス7に支持されている。10は測定すべき微粒子を内菅
1b中に送出するアスピレータであり、微粒子はヘリウ
ムやアルゴンガス等のプラズマガス(以下、PLGとい
う))と共に搬送される。
A hole for passing the discharge tube 1 is formed in the center of the cavity 4 so that resonance occurs in the cavity by microwave injection and energy is collected in the center. The cavity 4 is supported by a base 7 via a block 6. Reference numeral 10 denotes an aspirator for sending out fine particles to be measured into the inner tube 1b, and the fine particles are carried together with a plasma gas (hereinafter, referred to as PLG) such as helium or argon gas.

【0005】上記の構成において、ディスチャージ管1
にPLGを流すと、キャビティ内部で中央に集められた
μ波エネルギーによりディスチャージ管1内にプラズマ
が立つ。このプラズマ中に微粒子が入るとガス化→イオ
ン化→発光という現象が生じる。この発光のスペクトル
を分析手段8で検出して微粒子を構成する成分について
分析する。
In the above configuration, the discharge tube 1
When the PLG flows through the cavity, plasma is generated in the discharge tube 1 by the microwave energy collected at the center inside the cavity. When fine particles enter this plasma, a phenomenon of gasification → ionization → emission occurs. The spectrum of the emission is detected by the analyzing means 8 to analyze the components constituting the fine particles.

【0006】なお、内菅1bの先端部分は1b1は定位
置(実線の位置)ではキャビテイの内面Hより数mm下
がった(図では左側にτだけ寄った)位置にあり、点火
時においては内菅1bを矢印の方向に動かしてキャビテ
イの中央付近まで突出させる。このことにより、微粒子
の発光を容易に行うことができる(点火後は内菅の先端
は元の位置に戻される)。
[0006] Incidentally, the tip portion of the inner Kan. 1b 1b 1 is located in position (solid line position) the drops several mm from the inner surface H of the cavity (closer only τ on the left side in the figure) position, at the time of ignition The inner tube 1b is moved in the direction of the arrow to protrude near the center of the cavity. This makes it possible to easily emit the fine particles (after the ignition, the tip of the inner tube is returned to the original position).

【0007】[0007]

【発明が解決しようとする課題】ところで、外管の材質
を石英、内管の材質をステンレス鋼として構成したプラ
ズマ点火装置において、測定対象をポリスチレン(高分
子からなるカーボン樹脂)とした場合、Cの信号の他に
Si等の信号(擬似信号)が混入し正確な測定が出来な
いという問題があった。この擬似信号の原因としては、
図7に示すように内管1bから出射するプラズマガス及
びポリスチレンの微粒子が高温のプラズマとなり、プラ
ズマの外径が外管である石英管Aで示す部分に接触し、
外管1aを構成する石英が脱離して発光しSiが検出さ
れると推定される。
In a plasma igniter in which the outer tube is made of quartz and the inner tube is made of stainless steel, if the object to be measured is polystyrene (carbon resin made of a polymer), C There is a problem that a signal (pseudo signal) such as Si is mixed in addition to the above signal, and accurate measurement cannot be performed. The cause of this pseudo signal is
As shown in FIG. 7, the plasma gas and polystyrene fine particles emitted from the inner tube 1b become high-temperature plasma, and the outer diameter of the plasma comes into contact with the portion indicated by the outer tube, that is, the quartz tube A,
It is presumed that quartz constituting the outer tube 1a desorbs and emits light to detect Si.

【0008】その脱離の対策として外管の内径をプラズ
マが接触しない程度に大きくすることが考えられるが、
そのような構造においてはプラズマがディスチャージ管
の中央からずれることがあり、プラズマの密度が低下し
て感度低下となる。という問題があった。本発明はこの
ような問題点を解決するものであり、その目的は、ポリ
スチレンの測定に際して擬似信号が少なく正確な測定が
可能なマイクロ波誘導プラズマ点火装置を実現すること
にある。
As a countermeasure against the desorption, it is conceivable to increase the inner diameter of the outer tube so that the plasma does not come into contact with the inner tube.
In such a structure, the plasma may deviate from the center of the discharge tube, and the density of the plasma decreases, resulting in a decrease in sensitivity. There was a problem. An object of the present invention is to solve such a problem, and an object of the present invention is to realize a microwave induction plasma igniter capable of performing accurate measurement with a small number of false signals when measuring polystyrene.

【0009】[0009]

【課題を解決するための手段】このような問題点を解決
するために本発明は、内管と外管からなる2重構造のデ
イスチャージ管にキャビティを介してマイクロ波を供給
し、プラズマガスが供給されるディスチャージ管内にプ
ラズマを発生させるマイクロ波誘導プラズマ点火装置に
おいて、前記内管の先端に前記プラズマの外径の広がり
を抑制する絶縁部材を配置したものであり、絶縁部材は
ボロン・ナイトライドであることを特徴とするものであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a dual structure discharge tube comprising an inner tube and an outer tube, which supplies a microwave through a cavity to a plasma gas. In the microwave induction plasma igniter for generating plasma in a discharge tube supplied with an insulating member, an insulating member for suppressing the expansion of the outer diameter of the plasma is disposed at a tip of the inner tube, and the insulating member is made of boron nitride. It is a ride.

【0010】[0010]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態の一例を説明する。図1は本発明のマイクロ波誘
導プラズマ点火装置の要部を示す断面図であり、図6に
示す従来例とは内管1bの先端に管状の絶縁部材(実施
例はボロンナイトライド、以下、単にBN管という)を
取付けた点のみが異なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a main part of a microwave induction plasma igniter of the present invention, and is different from the conventional example shown in FIG. 6 in that a tubular insulating member (example is boron nitride; The only difference is that a BN tube is attached.

【0011】図において、1bは外径3mm,内径1.
0mm程度の内管で、この内管の先端に内径3.1m
m,外径4.3mm,長さ20mm程度のBN管20が
取付けられ、外管1bの先端からは10mm程度突出し
た位置で固定されている。
In the drawing, reference numeral 1b denotes an outer diameter of 3 mm, and an inner diameter of 1.b.
With an inner tube of about 0 mm, the inner diameter is 3.1 m at the tip of this inner tube.
A BN tube 20 having a length of about m, an outer diameter of 4.3 mm, and a length of about 20 mm is attached, and is fixed at a position protruding about 10 mm from the tip of the outer pipe 1b.

【0012】はじめにBN管を取付けた本発明のマイク
ロ波誘導プラズマ点火装置のBN管のキャビティ内の位
置と出力の関係について実験を行った。ここでは、キャ
ビティの内面の厚さを10mmとし、図6におけるキャ
ビティの内壁Hからどれだけ内部に突出させた場合に最
良の感度が得られるか(どの位置で発光させたときに出
力が最大になるか)について実験を行った。
First, an experiment was conducted on the relationship between the position in the cavity of the BN tube and the output of the microwave induction plasma ignition device of the present invention having the BN tube attached. Here, the thickness of the inner surface of the cavity is set to 10 mm, and the best sensitivity is obtained when the cavity protrudes from the inner wall H of the cavity in FIG. ).

【0013】なお、測定サンプルとしてはポリスチレン
7μm,SiO26μmの微粒子を使用した。図2はそ
の結果を示すもので、実験では検出器を4台用いて出力
値を同時に測定し、その平均を測定値とした。図に示す
ようにSiO2においては、BN管の先端が4.3mm
の位置で出力が最大となっており、また、ポリスチレン
においてはBN管を更に伸ばしても顕著な効果はない。
従って、以降の実験はBN管をこの位置に固定して行っ
た。
As a measurement sample, fine particles of polystyrene 7 μm and SiO 2 6 μm were used. FIG. 2 shows the results. In the experiment, the output values were measured simultaneously using four detectors, and the average was used as the measured value. As shown in the figure, in SiO 2 , the tip of the BN tube is 4.3 mm.
The maximum output is obtained at the position (1). Further, in the case of polystyrene, further extending the BN tube has no significant effect.
Therefore, the subsequent experiments were performed with the BN tube fixed at this position.

【0014】図3はポリスチレン7μmの微粒子をBN
管のない従来の場合とBN管を付けた場合におけるCに
対する擬似信号(主としてSiO2)の割合を示すもの
である。実験によれば、従来のBN管無しの場合の擬似
信号の割合が6.08%であるのに対し、BN管有りの
ものは平均1.9%となっており、擬似信号が凡そ1/
3に減少していることが分かる。
FIG. 3 shows a fine particle of polystyrene 7 μm in BN.
It shows the ratio of the pseudo signal (mainly SiO 2 ) to C in the conventional case without a tube and in the case with a BN tube. According to the experiment, the ratio of the pseudo signal without the conventional BN tube is 6.08%, whereas the ratio of the pseudo signal with the BN tube is 1.9% on average.
It can be seen that it has decreased to 3.

【0015】図4は7μmのポリスチレンのサンプルを
使用して感度の測定をしたもので、検出器4台(Ch1
〜Ch4)の感度アップの割合は夫々0.82.1.0
7,1.2,0.91となっている。これらの感度アッ
プの平均は1.0となる。従ってポリスチレンに関して
は感度の改善になっていないことがわかる。
FIG. 4 shows the result of measuring the sensitivity using a 7 μm polystyrene sample, and shows four detectors (Ch1).
To Ch4) are 0.82.1.0, respectively.
7, 1.2, and 0.91. The average of these sensitivity increases is 1.0. Therefore, it is understood that the sensitivity of polystyrene is not improved.

【0016】図6は6.0μmのSiO2のサンプルを
使用して感度の測定をしたもので、検出器4台の感度ア
ップの割合が夫々1.06,1.33,1.40,1.
06であり、これらの平均は1.21となる。従ってS
iO2に関しては感度が2割程度改善されていることが
わかる。
FIG. 6 shows the results of measuring the sensitivity using a 6.0 μm sample of SiO 2 , and the rate of increase in the sensitivity of the four detectors was 1.06, 1.33, 1.40, and 1 respectively. .
06, and their average is 1.21. Therefore S
It can be seen that the sensitivity of iO 2 is improved by about 20%.

【0017】なお、本実施例においては、内管1bにB
N管を取付けてポリスチレンやSiO2を測定した場合
を説明したが、ポリスチレン以外の測定に関しては他の
絶縁部材を用いることが考えられる。要は測定対象に対
する擬似信号の減少や感度向上が図れる絶縁部材を用い
ればよい。
In this embodiment, the inner tube 1b is provided with B
Although the case where polystyrene or SiO 2 is measured with an N tube attached has been described, other insulating members may be used for measurement other than polystyrene. In short, an insulating member that can reduce the pseudo signal and improve the sensitivity with respect to the measurement target may be used.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
内管と外管からなる2重構造のデイスチャージ管にキャ
ビティを介してマイクロ波を供給し、プラズマガスが供
給されるディスチャージ管内にプラズマを発生させるマ
イクロ波誘導プラズマ点火装置において、内管の先端に
プラズマの外径の広がりを抑制する絶縁部材を配置し、
その絶縁部材の材質をボロン・ナイトライドとした。そ
の結果、ポリスチレンの測定に関しては、擬似信号を減
少させることができ、SiO2の測定に際しては感度の
向上が可能なマイクロ波誘導プラズマ点火装置を実現で
きる。
As described above, according to the present invention,
In a microwave induction plasma igniter for supplying a microwave to a discharge tube having a double structure including an inner tube and an outer tube via a cavity to generate plasma in a discharge tube to which a plasma gas is supplied, a tip of the inner tube is provided. An insulating member that suppresses the expansion of the outer diameter of the plasma is placed in
The material of the insulating member was boron nitride. As a result, in the measurement of polystyrene, a pseudo signal can be reduced, and a microwave induction plasma ignition device capable of improving the sensitivity in measuring SiO 2 can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマイクロ波誘導プラズマ点火装置の要
部を示す断面図である。
FIG. 1 is a sectional view showing a main part of a microwave induction plasma ignition device of the present invention.

【図2】キャビティの内側からのBN管の突出距離と出
力の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a projecting distance of a BN tube from the inside of a cavity and an output.

【図3】ポリスチレン測定に際してのBN管の有無によ
る擬似信号の割合を示す図である。
FIG. 3 is a diagram showing a ratio of a pseudo signal depending on the presence or absence of a BN tube when measuring polystyrene.

【図4】ポリスチレン測定に際してのBN管の有無に対
する感度の関係を示す図である。
FIG. 4 is a diagram showing a relationship between sensitivity and presence or absence of a BN tube when measuring polystyrene.

【図5】SiO2測定に際してのBN管の有無に対する
感度の関係を示す図である。
FIG. 5 is a diagram showing a relationship between sensitivity and presence or absence of a BN tube when measuring SiO 2 .

【図6】従来のマイクロ波誘導プラズマ点火装置の要部
を示す構成図である。
FIG. 6 is a configuration diagram showing a main part of a conventional microwave induction plasma ignition device.

【図7】ブラズマが外管に接触した状態を示す断面図で
ある。
FIG. 7 is a cross-sectional view showing a state where the plasma contacts the outer tube.

【符号の説明】[Explanation of symbols]

1 ディスチャージ管 2,6 ブロック 3 管継手 4 キャビティ 5 スライド機構 7 ベース 8 分析手段 10 アスピレータ 20 BN(ボロンナイトライド)管 DESCRIPTION OF SYMBOLS 1 Discharge tube 2, 6 block 3 Fitting 4 Cavity 5 Slide mechanism 7 Base 8 Analysis means 10 Aspirator 20 BN (boron nitride) tube

フロントページの続き (56)参考文献 特開 平1−176700(JP,A) 特開 平2−309599(JP,A) 特開 平9−218156(JP,A) 特開 平4−26099(JP,A) 特開 平6−5384(JP,A) 特開 平4−351899(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/62 - 21/74 H05H 1/28 - 1/34 G01N 27/62 JICSTファイル(JOIS)Continuation of front page (56) References JP-A-1-176700 (JP, A) JP-A-2-309599 (JP, A) JP-A-9-218156 (JP, A) JP-A-4-26099 (JP) JP-A-6-5384 (JP, A) JP-A-4-351899 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/62-21/74 H05H 1/28-1/34 G01N 27/62 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内管と外管からなる2重構造のデイスチャ
ージ管にキャビティを介してマイクロ波を供給し、プラ
ズマガスが供給されるディスチャージ管内にプラズマを
発生させるマイクロ波誘導プラズマ点火装置において、
前記内管の先端に前記プラズマの外径の広がりを抑制す
る絶縁部材を配置したことを特徴とするマイクロ波誘導
プラズマ点火装置。
1. A microwave induction plasma igniter for supplying a microwave to a discharge tube having a double structure comprising an inner tube and an outer tube via a cavity to generate plasma in a discharge tube to which a plasma gas is supplied. ,
A microwave induction plasma igniter, wherein an insulating member for suppressing the spread of the outer diameter of the plasma is disposed at a tip of the inner tube.
【請求項2】前記絶縁部材はボロン・ナイトライドであ
ることを特徴とする請求項1記載のマイクロ波誘導プラ
ズマ点火装置。
2. The microwave induction plasma igniter according to claim 1, wherein said insulating member is boron nitride.
JP15981597A 1997-06-17 1997-06-17 Microwave induction plasma igniter Expired - Fee Related JP3175640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15981597A JP3175640B2 (en) 1997-06-17 1997-06-17 Microwave induction plasma igniter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15981597A JP3175640B2 (en) 1997-06-17 1997-06-17 Microwave induction plasma igniter

Publications (2)

Publication Number Publication Date
JPH118093A JPH118093A (en) 1999-01-12
JP3175640B2 true JP3175640B2 (en) 2001-06-11

Family

ID=15701860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15981597A Expired - Fee Related JP3175640B2 (en) 1997-06-17 1997-06-17 Microwave induction plasma igniter

Country Status (1)

Country Link
JP (1) JP3175640B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7806077B2 (en) 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation
US7271363B2 (en) 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves
US7189939B2 (en) 2004-09-01 2007-03-13 Noritsu Koki Co., Ltd. Portable microwave plasma discharge unit
CN106793439A (en) * 2017-02-16 2017-05-31 浙江全世科技有限公司 A kind of microwave plasma torch device of automatic ignition
CN112377341A (en) * 2020-09-03 2021-02-19 盐城工学院 Microwave plasma combustion-supporting device based on surface wave mode

Also Published As

Publication number Publication date
JPH118093A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
Foner et al. The detection of atoms and free radicals in flames by mass spectrometric techniques
Rousseau et al. Microwave discharge in H2: influence of H-atom density on the power balance
Nakles et al. Background pressure effects on ion velocity distribution within a medium-power Hall thruster
JP4408810B2 (en) Gas analysis method and ionization detector
JP3175640B2 (en) Microwave induction plasma igniter
US5394091A (en) System for detecting compounds in a gaseous sample by measuring photoionization and electron capture induced by spark excitation of helium
US20090001889A1 (en) Method and apparatus for remotely monitoring properties of gases and plasmas
Birkhofer et al. Penning, photo and electron impact ionization of argon clusters
EP0724720A1 (en) Continuous, real time microwave plasma element sensor
EP0698205B1 (en) A method for measuring temperature, molecular composition or molecular densities in gases
Shaw et al. Direct observation of electrons in microwave vacuum components
Blois et al. The microwave source's influence on the vibrational energy carried by in a nitrogen afterglow
Bilgic et al. Design and modelling of a modified 2.45 GHz coaxial plasma torch for atomic spectrometry
Pack et al. An improved microwave plasma torch for atomic spectrometry
Ishii et al. Behavior of detonation waves at low pressures
Boisse-Laporte et al. A microwave plasma source of neutral nitrogen atoms
US6037179A (en) Method and apparatus for suppression of analyte diffusion in an ionization detector
Goode et al. Some fundamental measurements of the atmospheric-pressure, microwave-induced discharge
Way et al. Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser
CN111948193A (en) Emission spectrometer for plasma solid sample analysis
Case Jr et al. Background gas pressure dependence and spatial variation of spontaneously generated magnetic fields in laser− produced plasmas
CN1232175A (en) Photoelectric vacuum leakage detecting technique and apparatus
JP2001512617A (en) Element-selective detection method, microplasma mass spectrometer using the method, microplasma ion source, and their applications
EP0819315A1 (en) A method and device for the analysis of the chemical composition of particles
Oliveri et al. Numerical study of single‐vapor‐bubble dynamics in insulating liquids initiated by electrical current pulses

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees