JP3166880B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3166880B2
JP3166880B2 JP31939292A JP31939292A JP3166880B2 JP 3166880 B2 JP3166880 B2 JP 3166880B2 JP 31939292 A JP31939292 A JP 31939292A JP 31939292 A JP31939292 A JP 31939292A JP 3166880 B2 JP3166880 B2 JP 3166880B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
lithium
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31939292A
Other languages
Japanese (ja)
Other versions
JPH06150973A (en
Inventor
正泰 荒川
真一 鳶島
景一 斉藤
茂雄 杉原
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP31939292A priority Critical patent/JP3166880B2/en
Publication of JPH06150973A publication Critical patent/JPH06150973A/en
Application granted granted Critical
Publication of JP3166880B2 publication Critical patent/JP3166880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正極と、リチウムおよ
びリチウムイオンを活物質とする負極と、非水電解液よ
りなる、非水電解液二次電池に関するものであり、特に
渦巻き電極構造を持つ円筒型リチウム二次電池におい
て、熱放散の良い電池構造に改良することにより、異常
使用等における安全性を向上させるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing lithium and lithium ions as active materials, and a non-aqueous electrolyte. The present invention is to improve the safety in abnormal use and the like by improving the battery structure of the cylindrical lithium secondary battery having good heat dissipation.

【0002】[0002]

【従来の技術】電子機器の小型軽量化、携帯化が進み、
その電源として高エネルギー密度電池の開発が要請され
ている。このような要求に応える電池として、負極とし
てリチウム金属、アルミニウム等とのリチウム合金、ま
たは炭素等のリチウムイオンを放出、吸収する電極を用
いた電池の開発が進められている(本明細書では、これ
らのリチウムあるいはリチウムイオンを活物質とした負
極をリチウム負極、リチウム負極を用いた充放電可能な
電池のことを、リチウム二次電池と称する)。
2. Description of the Related Art Electronic devices have become smaller, lighter and more portable.
There is a demand for the development of a high energy density battery as the power source. As a battery that meets such demands, development of a battery using an electrode that emits and absorbs lithium metal, a lithium alloy with aluminum or the like, or a lithium ion such as carbon as a negative electrode (in this specification, The negative electrode using lithium or lithium ion as an active material is referred to as a lithium negative electrode, and a chargeable / dischargeable battery using the lithium negative electrode is referred to as a lithium secondary battery).

【0003】しかしながら、二酸化マンガンを正極活物
質に用いた電池で報告されているように、リチウム二次
電池をオーブンで加熱すると、リチウム負極と電解液と
の化学反応による自発的な発熱が起こり、熱暴走状態と
なって電池の発火が起こり得る(Extended Abstracts o
f Electrochemical Society Fall Meeting, Seattle,Wa
shington, p-85, 1990)。上記報告は、オーブン加熱で
電池温度が上昇する例であるが、電池においては、外部
ショート、内部ショート、逆充電、過充電等でも、電池
温度が上昇することが予想され、これら、異常状態にお
ける安全性の確保が、リチウム二次電池を商品化する上
で極めて重要である。
However, as reported in a battery using manganese dioxide as a positive electrode active material, when a lithium secondary battery is heated in an oven, spontaneous heat generation occurs due to a chemical reaction between a lithium anode and an electrolytic solution. Battery may ignite due to thermal runaway condition (Extended Abstracts o
f Electrochemical Society Fall Meeting, Seattle, Wa
shington, p-85, 1990). Although the above report is an example in which the battery temperature rises due to oven heating, in a battery, it is expected that the battery temperature will rise even in an external short circuit, an internal short circuit, reverse charging, overcharging, etc. Ensuring safety is extremely important in commercializing a lithium secondary battery.

【0004】リチウム二次電池内における自発的な発熱
は、主にリチウム負極と電解液との反応によって起こる
と考えられているので、電池の安全性を向上させるため
には、リチウムと反応し難い電解液を用いれば良い。こ
れらの観点から、スルフォラン等を電解液溶媒に用いた
電解液が提案されているが(電気化学協会第59回大会
予稿集p−238)、リチウム二次電池の安定性、サイ
クル性には、リチウム負極と電解液との反応生成物もま
た影響しているため(Lithium Batteri
es,Edited by J.P.Gabano,A
cademicPress,New York,p−1
95(1988))、充放電サイクル特性の劣化等、マ
イナスの効果が出てしまう。
It is considered that spontaneous heat generation in a lithium secondary battery is mainly caused by a reaction between a lithium anode and an electrolytic solution. Therefore, in order to improve the safety of the battery, it is difficult to react with lithium. An electrolyte may be used. From these viewpoints, an electrolyte using sulfolane or the like as an electrolyte solvent has been proposed (Proceedings of the 59th Annual Meeting of the Electrochemical Society of Japan, p-238). Since the reaction product between the lithium anode and the electrolyte also has an effect (Lithium Batteri)
es, Edited by J.S. P. Gabano, A
CademicPress, New York, p-1
95 (1988)), and negative effects such as deterioration of the charge / discharge cycle characteristics are obtained.

【0005】[0005]

【本発明が解決しようとする課題】一方、電池の熱暴走
は、電池内部の発熱と、電池からの熱拡散のバランスが
崩れることによって、電池内部に熱が蓄積し起こる現象
と考えられるから、できるだけ熱放散に優れた電池構造
を設計することによって、電池の安全性を向上すること
が可能と考えられる。熱放散に優れた電池構造等は、塩
化チオニルを用いたリチウム1次電池で検討がなされて
いるが(J. Power Sources, 18, 109(1986))フィンを
付ける特殊な構造のため、実用電池の構造としては適さ
ない。
On the other hand, thermal runaway of a battery is considered to be a phenomenon in which heat is accumulated inside the battery due to the imbalance between heat generation inside the battery and heat diffusion from the battery. It is thought that by designing a battery structure that excels in heat dissipation as much as possible, it is possible to improve the safety of the battery. A lithium primary battery using thionyl chloride has been studied for a battery structure with excellent heat dissipation (J. Power Sources, 18 , 109 (1986)). Is not suitable as a structure.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
め、本発明による非水電解液二次電池は、帯状の正極
と、帯状のリチウムあるいはリチウムイオンを活物質と
する負極と、帯状のセパレータと、非水電解液とを用い
る、渦巻き電極構造の円筒型のリチウム非水電解液二次
電池において、正極および負極活物質より長い金属箔を
負極基板とし、前記負極は、前記負極基板の一端よりそ
両側に前記負極活物質を配置した三層構造部分と前記
負極活物質の付いていない部分を残した構造とし、前記
負極を前記セパレータを介して前記正極に重ね合わせて
渦巻き電極として電池缶に収納し、前記渦巻き電極の最
外周には前記負極の前記負極活物質の付いていない部分
が位置して前記電池缶に直接接触する構造としたことを
特徴とする。
In order to solve the above-mentioned problems, a nonaqueous electrolyte secondary battery according to the present invention comprises a strip-shaped positive electrode, a strip-shaped negative electrode using lithium or lithium ion as an active material, and a strip-shaped negative electrode. In a cylindrical lithium nonaqueous electrolyte secondary battery having a spiral electrode structure using a separator and a nonaqueous electrolyte, a metal foil longer than the positive and negative electrode active materials is used.
A negative electrode substrate is provided, and the negative electrode is disposed at one end of the negative electrode substrate.
Wherein a three-layer structure portion on either side of arranging the anode active material
The structure without the negative electrode active material is left,
A negative electrode is placed on the positive electrode via the separator
It is housed in a battery can as a spiral electrode, and the
A portion of the negative electrode where the negative electrode active material is not attached
And a structure that directly contacts the battery can .

【0007】本発明では、電池内反応における電池の自
発的な発熱は、主にリチウム負極と電解液の反応による
ことに注目し、リチウム負極の基板に熱伝導性の高い金
属箔を用い、その基板を負極ケースに直接接触させるこ
とによって、電池内部で発生した熱を効率良く外部に拡
散させる構造を特徴としている。
In the present invention, attention is paid to the fact that the spontaneous heat generation of the battery during the reaction in the battery is mainly caused by the reaction between the lithium anode and the electrolyte, and a metal foil having high thermal conductivity is used for the substrate of the lithium anode. It is characterized by a structure in which heat generated inside the battery is efficiently diffused to the outside by directly contacting the substrate with the negative electrode case.

【0008】具体的には、図1に示すような負極基板2
の両側にリチウム(負極活物質)6を配した三層構造よ
りなる負極を用いる。ここで、リチウム負極に基板2を
用いる理由は、リチウム金属やリチウム合金は、熱伝導
性が良いとは言えないことと、充放電サイクルを繰り返
すことにより、リチウム負極が欠落した場合、熱伝導が
その部分で極めて小さくなってしまうためである。
Specifically, a negative electrode substrate 2 as shown in FIG.
A negative electrode having a three-layer structure in which lithium (negative electrode active material) 6 is disposed on both sides of the negative electrode is used. Here, the reason why the substrate 2 is used for the lithium anode is that lithium metal or lithium alloy cannot be said to have good thermal conductivity, and that when the lithium anode is missing by repeating the charge / discharge cycle, the heat conduction becomes poor. This is because the portion becomes extremely small.

【0009】そして図2および図3に示すように、負極
基板2の両側にリチウム6を配した三層構造の負極をセ
パレータ3を介して正極基板4に正極活物質5を配した
正極を重ね合わせて渦巻き形状にし電池缶1内に収納し
ている。この渦巻き形状を有する円筒型電池の最外周
に、負極活物質の付いていない負極基板2が位置し、負
極基板2が、電池缶1に直接接触する構造を有すること
により、電池内部で発生した熱を効率良く外部に放散さ
せることができる。また、最外周の負極基板2に負極活
物質が付いていると、発熱源の増加による熱安定性の低
下および、コストの上昇の点から好ましくない。この最
外周の負極基板は、セパレータ3の外周方向の最終端よ
り、少なくとも2周以上余分に巻くのが好ましい。外部
への熱の放散性を良好にするためである。
As shown in FIGS. 2 and 3, a three-layered negative electrode having lithium 6 on both sides of a negative electrode substrate 2 is stacked with a positive electrode having a positive electrode active material 5 disposed on a positive electrode substrate 4 with a separator 3 interposed therebetween. The spiral shape is combined and stored in the battery can 1. The negative electrode substrate 2 having no negative electrode active material is located at the outermost periphery of the spiral-shaped cylindrical battery, and the negative electrode substrate 2 has a structure in which the negative electrode substrate 2 is in direct contact with the battery can 1. Heat can be efficiently dissipated to the outside. Further, if the outermost negative electrode substrate 2 is provided with a negative electrode active material, it is not preferable from the viewpoint of a decrease in thermal stability due to an increase in the number of heat sources and an increase in cost. The outermost negative electrode substrate is preferably wound at least two more turns from the final end of the separator 3 in the outer circumferential direction. This is for improving heat dissipation to the outside.

【0010】本発明で用いた負極構造と類似の構造は、
既に特開平2−51875号で公知であるが、特開平2
−51875号の図2および図3においては、負極の外
周方向の最終端と、正極の外周方向の最終端とが接近し
ている。これに対し、本発明では負極基板を正極の最終
端よりさらに少なくとも2周余分に巻くことを特徴とし
ている。本発明における構造上の特徴は以下の理由によ
る。
A structure similar to the negative electrode structure used in the present invention is as follows.
As already known in Japanese Patent Application Laid-Open No. 2-51875,
In FIGS. 2 and 3 of -51875, the final end in the outer peripheral direction of the negative electrode and the final end in the outer peripheral direction of the positive electrode are close to each other. On the other hand, the present invention is characterized in that the negative electrode substrate is wound at least two more times around the final end of the positive electrode. The structural features of the present invention are as follows.

【0011】特開平2−51875号では、負極の欠落
による充放電サイクル寿命の低下を防ぐことが目的であ
ったため、電池缶に負極リードを電気的に接続しただけ
で十分な効果が期待できたが、本研究の目的は電池内部
での発熱を効率良く外部に放散させることが目的である
ため、負極リードのみの電池缶への接続では不十分であ
る。したがって、負極リードばかりでなく負極基板全体
で電池缶と接触していることが必要となる。しかしなが
らこの場合には、渦巻き電極を電池缶に挿入するとき、
負極の捲れ等による正極と電池缶との接触の危険性があ
るため、負極基板を余分に巻いて渦巻き電極全体を被い
保護する必要がある。
In Japanese Patent Application Laid-Open No. 2-51875, the purpose was to prevent a reduction in the charge / discharge cycle life due to the lack of the negative electrode, so that a sufficient effect could be expected only by electrically connecting the negative electrode lead to the battery can. However, since the purpose of this study is to efficiently dissipate the heat generated inside the battery to the outside, it is not sufficient to connect only the negative electrode lead to the battery can. Therefore, not only the negative electrode lead but also the entire negative electrode substrate needs to be in contact with the battery can. However, in this case, when inserting the spiral electrode into the battery can,
Since there is a risk of contact between the positive electrode and the battery can due to the curling of the negative electrode or the like, it is necessary to extraly wind the negative electrode substrate to cover and protect the entire spiral electrode.

【0012】また、電極基板の材料は、リチウムと反応
して合金化せずかつ熱導電性の良い金属であれば、特に
限定されるものではない。例えば、銅、ニッケル、ステ
ンレス網等を材料とした、10マイクロメータ厚程度の
箔が望ましい。
The material of the electrode substrate is not particularly limited as long as it does not react with lithium to form an alloy and has good thermal conductivity. For example, a foil made of copper, nickel, stainless steel mesh or the like and having a thickness of about 10 micrometers is desirable.

【0013】[0013]

【作用】上記構成によりなる渦巻き電極を用いた円筒型
電池においては、何らかの異常使用により電池温度が上
昇した場合でも、効率的に熱を放散させることができる
ため、安全性を向上させることができる。
In the cylindrical battery using the spiral electrode having the above structure, even if the battery temperature rises due to some abnormal use, heat can be efficiently dissipated, so that safety can be improved. .

【0014】[0014]

【実施例】以下本発明の実施例について詳述する。Embodiments of the present invention will be described below in detail.

【0015】[0015]

【実施例1】P25を5モル%添加した非晶質V25
正極活物質とし、基板に幅42mm、厚さ10μmの帯
状の銅箔を用い、その両側に基板と同じ幅で、60μm
厚のリチウム金属を配置した電極を負極として、正極と
負極を平均孔径0.15μm、厚さ50μmのポリエチ
レンセパレータで電気的に絶縁し、電解液として炭酸プ
ロピレンと炭酸エチレンの混合溶媒系電解液を用いた電
池A(負極基板を電池缶に接触させてある)、および、
正極とセパレータ、電解液はAと同一であるが、負極に
130μm厚のリチウム金属を用い、電池の最外周をセ
パレータで包んだ構造の電池Bとを、室温から−7℃の
恒温槽に投入したときの、電池中心部の温度変化を図4
に示す。図から明らかなように、負極基板を電池缶に直
接接触させることにより、温度伝達が早くなっている。
EXAMPLE 1 and P 2 O 5 to 5 mol% added amorphous V 2 O 5 positive electrode active material was, width 42mm to the substrate, using a band-shaped copper foil having a thickness of 10 [mu] m, the same as the substrate on both sides 60 μm in width
A thick lithium metal electrode is used as a negative electrode, the positive electrode and the negative electrode are electrically insulated with a polyethylene separator having an average pore diameter of 0.15 μm and a thickness of 50 μm, and a mixed solvent-based electrolyte of propylene carbonate and ethylene carbonate is used as an electrolyte. Battery A used (a negative electrode substrate was brought into contact with a battery can), and
The positive electrode, the separator, and the electrolytic solution are the same as those of A, but the battery B having a structure in which the negative electrode is made of lithium metal having a thickness of 130 μm and the outermost periphery of the battery is wrapped by the separator is put into a constant temperature bath at room temperature to -7 ° C. Figure 4 shows the temperature change at the center of the battery when
Shown in As is clear from the figure, the temperature transmission is accelerated by bringing the negative electrode substrate into direct contact with the battery can.

【0016】[0016]

【実施例2】P25を5モル%添加した非晶質V25
正極活物質とし、基板に幅42mm、厚さ10μmの帯
状の銅箔を用い、その両側に基板と同じ幅で、60μm
厚のリチウム金属を配置した電極を負極として、正極と
負極を平均孔径0.15μm、厚さ50μmのポリエチ
レンセパレータで電気的に絶縁し、電解液として炭酸プ
ロピレンと炭酸エチレンの混合溶媒系電解液を用いた電
池A(負極基板を電池缶に接触させてある)、および、
正極とセパレータ、電解液はAと同一であるが、負極に
130μm厚のリチウム金属を用い、電池の最外周をセ
パレータで包んだ構造の電池Bとを、60mAで25回
充放電した後、約40mΩの抵抗を介した短絡試験およ
び、リチウム1次電池のUL規格の加熱試験(室温から
毎分5℃で165℃まで昇温し、165℃で10分間維
持)を行い、発火の有無を比較した。結果を図5及び表
1に示す。短絡試験においては、電池A、Bともに発火
しなかった。しかし、加熱試験においてはBの電池が発
火しているのに対し、Aの電池では発火せず(図5)、
電池の安全性に関して効果の大きいことがわかる。
EXAMPLE 2 Amorphous V 2 O 5 to which P 2 O 5 was added in an amount of 5 mol% was used as a positive electrode active material, and a 42 mm wide, 10 μm thick strip-shaped copper foil was used for the substrate. 60 μm in width
A thick lithium metal electrode is used as a negative electrode, the positive electrode and the negative electrode are electrically insulated with a polyethylene separator having an average pore diameter of 0.15 μm and a thickness of 50 μm, and a mixed solvent-based electrolyte of propylene carbonate and ethylene carbonate is used as an electrolyte. Battery A used (a negative electrode substrate was brought into contact with a battery can), and
The positive electrode, the separator, and the electrolytic solution are the same as A, but after charging and discharging the battery B having a structure in which the negative electrode is made of lithium metal having a thickness of 130 μm and the outermost periphery of the battery is wrapped by the separator at 60 mA, 25 times, Conduct a short-circuit test via a 40 mΩ resistor and a UL-standard heating test for lithium primary batteries (heat from room temperature to 165 ° C at 5 ° C / min and maintain at 165 ° C for 10 minutes) to compare the presence or absence of ignition did. The results are shown in FIG. In the short circuit test, neither battery A nor B ignited. However, in the heating test, the battery of B ignited, while the battery of A did not ignite (FIG. 5).
It can be seen that the effect is large regarding the safety of the battery.

【0017】 [0017]

【0018】[0018]

【発明の効果】上述したように、金属箔を基板とし、基
板の両側に負極活物質を配置した三層構造をとる負極と
を用い、負極基板を渦巻き電極の外周方向の最終端より
少なくとも2周以上余分に巻いた電池においては、電池
内部で発熱した熱が効率良く電池外部に放散するため電
池の安全性を向上させることができ、その工業的価値は
極めて大である。
As described above, a negative electrode having a three-layer structure in which a metal foil is used as a substrate and a negative electrode active material is disposed on both sides of the substrate is used. In a battery that is wound extra than the circumference, the heat generated inside the battery is efficiently dissipated to the outside of the battery, so that the safety of the battery can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池の負極構造を示す
斜視図。
FIG. 1 is a perspective view showing a negative electrode structure of a nonaqueous electrolyte secondary battery of the present invention.

【図2】本発明の非水電解液二次電池の横方向断面図。FIG. 2 is a lateral cross-sectional view of the non-aqueous electrolyte secondary battery of the present invention.

【図3】本発明の非水電解液二次電池の縦方向断面図。FIG. 3 is a longitudinal sectional view of the nonaqueous electrolyte secondary battery of the present invention.

【図4】実施例1で示した電池の質音から−7℃の恒温
槽に投入したときの電池の中心部の温度変化を示す図。
FIG. 4 is a diagram showing a change in temperature at the center of the battery when the battery is put into a -7 ° C. constant temperature bath based on the sound quality of the battery shown in Example 1.

【図5】実施例2で示した電池の加熱試験の結果を示す
FIG. 5 is a diagram showing a result of a heating test of the battery shown in Example 2.

【符号の説明】[Explanation of symbols]

1 電池缶 2 負極基板 3 セパレータ 4 正極基板 5 正極活物質 6 リチウム(負極活物質) Reference Signs List 1 battery can 2 negative electrode substrate 3 separator 4 positive electrode substrate 5 positive electrode active material 6 lithium (negative electrode active material)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉原 茂雄 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 市村 雅弘 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平2−51875(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeo Sugihara 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Masahiro Ichimura 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (56) References JP-A-2-51875 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】帯状の正極と、帯状のリチウムあるいはリ
チウムイオンを活物質とする負極と、帯状のセパレータ
と、非水電解液とを用いる、渦巻き電極構造の円筒型の
リチウム非水電解液二次電池において、正極および負極
活物質より長い金属箔を負極基板とし、前記負極は、前
記負極基板の一端よりその両側に前記負極活物質を配置
した三層構造部分と前記負極活物質の付いていない部分
を残した構造とし、前記負極を前記セパレータを介して
前記正極に重ね合わせて渦巻き電極として電池缶に収納
し、前記渦巻き電極の最外周には前記負極の前記負極活
物質の付いていない部分が位置して前記電池缶に直接接
触する構造としたことを特徴とする非水電解液二次電
池。
1. A cylindrical lithium non-aqueous electrolyte having a spiral electrode structure, comprising a strip-shaped positive electrode, a strip-shaped negative electrode using lithium or lithium ions as an active material, a strip-shaped separator, and a non-aqueous electrolyte. In the next battery, a metal foil longer than the positive electrode and the negative electrode active material is used as a negative electrode substrate, and the negative electrode is
Serial does not have one end than the negative electrode active material was placed a three-layer structure portion on both sides of the negative electrode substrate and of said negative electrode active material portion
And the negative electrode is interposed through the separator.
Superposed on the positive electrode and stored in a battery can as a spiral electrode
The outermost periphery of the spiral electrode has the negative electrode active of the negative electrode.
The part without substance is located and directly connected to the battery can.
A non-aqueous electrolyte secondary battery having a structure that can be touched .
【請求項2】請求項1記載の非水電解液二次電池におい
て、前記負極の前記負極活物質の付いていない部分を、
前記正極および前記セパレータの、渦巻き電極の外周方
向の最終端よりさらに、少なくとも2周以上余分に巻く
ことを特徴とする非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1,
The portion of the negative electrode without the negative electrode active material ,
The positive electrode and the separator, even more final end of the outer circumference of the spiral electrode, a nonaqueous electrolyte secondary battery, characterized by winding extra least two turns or more.
JP31939292A 1992-11-04 1992-11-04 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3166880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31939292A JP3166880B2 (en) 1992-11-04 1992-11-04 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31939292A JP3166880B2 (en) 1992-11-04 1992-11-04 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06150973A JPH06150973A (en) 1994-05-31
JP3166880B2 true JP3166880B2 (en) 2001-05-14

Family

ID=18109663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31939292A Expired - Lifetime JP3166880B2 (en) 1992-11-04 1992-11-04 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3166880B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402047B2 (en) * 1996-02-08 2003-04-28 松下電器産業株式会社 Battery
JP3932653B2 (en) * 1998-03-10 2007-06-20 ソニー株式会社 Non-aqueous electrolyte secondary battery
DE19839217C2 (en) * 1998-08-28 2001-02-08 Fraunhofer Ges Forschung Pasty masses, layers and layer structures, cells and processes for their production
DE19964159B4 (en) 1998-10-20 2005-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing self-supporting layers or intermediate products lying on a substrate and usable in electrochemical components for this purpose
WO2009144919A1 (en) * 2008-05-28 2009-12-03 パナソニック株式会社 Cylindrical nonaqueous electrolytic secondary battery
JP5649013B2 (en) * 2011-07-25 2015-01-07 パナソニックIpマネジメント株式会社 Lithium ion secondary battery
CN111164814B (en) * 2017-09-29 2023-04-04 松下知识产权经营株式会社 Cylindrical secondary battery
WO2023182341A1 (en) * 2022-03-24 2023-09-28 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH06150973A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
US7585589B2 (en) Pouch-type lithium secondary battery
JP3191519U (en) Power storage device
US20070166611A1 (en) High power lithium unit cell and high power lithium battery pack having the same
JP2008078008A (en) Battery pack and its manufacturing method
KR20040100264A (en) Pouched-type lithium secondary battery and the fabrication method thereof
US8021781B2 (en) Jelly-roll type electrode assembly and secondary battery employing the same
JP4496582B2 (en) Lithium secondary battery
KR20070025722A (en) Pouch type secondary battery and the fabrication method thereof
JP3283805B2 (en) Lithium secondary battery
JP2000106167A (en) Battery
JP3166880B2 (en) Non-aqueous electrolyte secondary battery
US20240055741A1 (en) Electrode assembly and secondary battery comprising the same
JP2003346779A (en) Non-aqueous secondary battery
JP2003288863A (en) Electrochemical device
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JP4263308B2 (en) Cylindrical battery with heat dissipation means
JPH11233149A (en) Nonaqueous electrolyte battery
JPH10233237A (en) Nonaqueous electrolyte secondary battery
KR20190065077A (en) Cylindrical Secondary Battery having Hollow portion filled with Thermal Conductive Resin
JP2001185201A (en) Sealed battery
KR20040037577A (en) Jelly-roll type battery unit and winding method of the same and lithum secondary battery using the same
KR20220000662A (en) Secondary battery and device including the same
KR20040042373A (en) Cylindrical secondary battery
CN114631218A (en) Electrode assembly and secondary battery including the same
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12