JP3146538B2 - Non-contact height measuring device - Google Patents

Non-contact height measuring device

Info

Publication number
JP3146538B2
JP3146538B2 JP19930391A JP19930391A JP3146538B2 JP 3146538 B2 JP3146538 B2 JP 3146538B2 JP 19930391 A JP19930391 A JP 19930391A JP 19930391 A JP19930391 A JP 19930391A JP 3146538 B2 JP3146538 B2 JP 3146538B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
light
reflected light
means
photoelectric conversion
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19930391A
Other languages
Japanese (ja)
Other versions
JPH0540035A (en )
Inventor
秀行 上岡
英二 奥田
裕司 小野
健一 戎田
知博 木村
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、測定対象物に微小ビーム光を照射し、その反射光を用いて測定対象物の高さを測定することを特徴とする非接触高さ計測装置に関するものである。 The present invention relates to a micro beam light is irradiated to the measurement object, it relates to non-contact height measuring apparatus characterized by measuring the height of the measurement object using the reflected light it is.

【0002】 [0002]

【従来の技術】近年、高さ計測には微小ビーム光を用いた非接触方式がよく用いられている。 In recent years, non-contact method using a micro beam light is often used in height measurement. 以下に従来の技術について説明する。 It will be described prior art below. 図5は従来の非接触高さ計測装置の原理を示すものである。 Figure 5 shows the principle of a conventional non-contact height measuring device. 図5において、1は微小ビーム光を発生するための光源である。 5, 1 is a light source for generating a fine beam. 2は測定対象物3の載置された基板11上に微小ビーム光をスポット照射するための光学系である。 2 is a minute light beam onto the substrate placed 11 of the measuring object 3 an optical system for spot illumination. 4は測定対象物3からの垂直方向への反射光を偏向するハーフミラーである。 4 is a half-mirror for deflecting the reflected light in the vertical direction from the object to be measured 3. 5は偏向された前記反射光を集光するためのレンズ系である。 5 is a lens system for condensing the reflected light deflected. 8はレンズ系5を通過後の反射光の光量を検出する光電変換素子である。 8 is a photoelectric conversion element for detecting the amount of reflected light after passing through the lens system 5. 7は光電変換素子8に照射される反射光を制限するしぼりである。 7 is squeezed to restrict the reflection light irradiated to the photoelectric conversion element 8. 10はレンズ移動アクチュエータで、レンズ系5を光軸方向に移動させて、光電変換素子8に照射される光量を変化させるものである。 10 is a lens moving actuator moves the lens system 5 in the optical axis direction, thereby changing the amount of light irradiated to the photoelectric conversion element 8.

【0003】以上のように構成された非接触高さ計測装置について、以下にその動作を説明する。 [0003] The non-contact height measuring apparatus constructed as above, the operation thereof will be described below. まず、測定対象物3に光源1及び光学系2から微小ビーム光をスポット照射し、そのスポット照射位置からの垂直方向への反射光をハーフミラー4によりレンズ系5の方向に偏向する。 First, the micro-beam light spot emitted from the light source 1 and the optical system 2 to the measurement object 3, to deflect the reflected light in the vertical direction from the spot irradiation position by the half mirror 4 in the direction of the lens system 5. そして、レンズ系5により集光された反射光をしぼり7で制限して、その光量を光電変換素子8で測定する。 Then, by restricting at 7 squeeze the collected reflected light by the lens system 5, to measure the amount of light in the photoelectric conversion element 8. この際、反射光の焦点位置の光量は最大となることを利用し、光電変換素子8の出力が最大となるようにレンズ系5をレンズ移動アクチュエータ10により光軸方向に移動し、その時のレンズ系5の位置を知ることで測定対象物3の高さが計測できる。 At this time, the light amount of the focal position of the reflected light is utilized to a maximum, the lens system 5 so that the output of the photoelectric conversion element 8 is maximized moves in the optical axis direction by the lens moving actuator 10, the lens at that time the height of the measurement object 3 by knowing the position of the system 5 can be measured.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら上記従来の構成では、光電変換素子の出力が最大となるように、 In the [0005] However the conventional structure, so that the output of the photoelectric conversion element is maximized,
レンズ系5をレンズ移動アクチュエータ10により移動させなければならないために、測定に時間を要してしまう。 In order not to be moved by the lens moving actuator 10 of the lens system 5, it takes time to measure. さらに、光電変換素子8を1つしか用いないために、測定対象物の表面状態のむらによる反射光の光量分布のばらつきにより光量の最大値が正しく計測できず、 Further, the photoelectric conversion element 8 is not used only one, can not be measured maximum value of the light amount is correct due to variations in the light intensity distribution of the reflected light due to unevenness of the surface state of the measurement object,
測定誤差が生じるという問題点を有していた。 Measurement error is not a problem that arises.

【0005】本発明は上記従来の問題点を解決するもので、測定対象物の高さを高精度,高速に測定する計測装置を提供することを目的とする。 [0005] The present invention is intended to solve the above problems, and an object thereof is to provide a measuring device for measuring the height of the measurement object precision, high speed.

【0006】 [0006]

【課題を解決するための手段】上記課題を解決するために本発明の非接触高さ計測装置は、 微小ビーム光を発生する光源と、前記微小ビーム光を測定対象物上に集光し照射する光学系と、 前記測定対象物上の前記微小ビーム Non-contact height measuring apparatus of the present invention to solve the above problems SUMMARY OF THE INVENTION comprises a light source for generating a fine beam, and focusing the minute light beam onto a measurement object irradiated an optical system for the micro-beam on the measurement object
光の照射位置からの反射光を集光するレンズ系と、前記 A lens system for focusing the light reflected from the irradiation position of the light, the
レンズ系により集光された前記反射光を2つの光路に分 Minute lens the reflected light collected by system into two optical paths
光する分光手段と、前記分光手段により分光された一方 A spectroscopic means for light, while dispersed by the spectroscopic means
の反射光の収束する光を順次異なる方向に偏向するよう To deflect the converging light of the reflected light sequentially in different directions
光路長の異なる位置に配置され、前記分光後の反射光を Disposed optical path lengths different positions, the reflected light after said spectral
偏向すると同時にその光量を制限する同じ大きさのしぼ Grain of the same size to limit the deflection to the the amount of light at the same time
りを備えた複数のしぼり手段と、前記各しぼり手段のし A plurality of diaphragm means having a Ri, teeth of the respective throttle means
ぼりを通過した光をそれぞれ受光し、その受光量に応じ The light passing through the Helsingborg respectively received, depending on the amount of received light
た電気的出力に変換する第一の光電変換手段と、前記分 A first photoelectric conversion means for converting the electrical output was the amount
光手段により分光された他方の反射光の拡大する光を順 Order light to expand the other reflected light split by the optical means
次異なる方向に偏向するよう光路長の異なる位置に配置 Located at different positions in the optical path length to deflect the next different directions
され、前記分光後の反射光を偏向すると同時にその反射 Is, at the same time the reflected when deflecting the reflected light after said spectral
光の光量を制限する同じ大きさのしぼりを備えた複数の Multiple having a diaphragm of the same size to limit the amount of light
偏向手段と、前記偏向手段により偏向された光をそれぞ And deflecting means, the light deflected by said deflecting means it
れ受光し、受光量に応じた電気的出力に変換する第二の It is received, and a second to convert the electrical output corresponding to the received light amount
光電変換手段とを有し、前記第一と第二の光電変換手段の電気的出力の比較において前記測定対象物の高さを測定するものである。 And a photoelectric conversion means, which measures the height of the measurement object in the comparison of the electrical output of the first and second photoelectric conversion means.

【0007】 [0007]

【作用】上記構成によれば、得られた各光電変換手段 According to the above configuration, resulting in each of the photoelectric conversion means
出力の累積値を利用して光路長を求めることで焦点距離がわかる。 Focal length by calculating the optical path length by using the accumulated value of the output is seen. そのため、レンズ系を移動させることなく高速に測定対象物の高さを計測できる。 Therefore, possible to measure the height of the measurement object at high speed without moving the lens system. さらに、複数の光電変換手段から光量と光路長の関係を近似するため、測定対象物の表面状態のむらによる反射光の光量分布のばらつきのために一部の光電変換素子の出力に誤差が生じても、影響を受けることが少なくなり、高精度に高さが計測できる。 Furthermore, in order to approximate the plurality of photoelectric conversion means of the amount of light and the optical path length relationship, caused an error in the output of a part of the photoelectric conversion elements to the variation in the light intensity distribution of the reflected light due to unevenness of the surface state of the measurement object also, the less affected, height can be measured with high precision.

【0008】 [0008]

【実施例】以下本発明の第1の実施例について、図面を参照しながら説明する。 A first embodiment of EXAMPLES Hereinafter the present invention will be described with reference to the drawings. 図1は第1の実施例における非接触高さ計測装置の概略図である。 Figure 1 is a schematic view of a non-contact height measuring device in the first embodiment. 図1において1は微小ビーム光を発生するための光源、2は前記微小ビーム光を測定対象物3にスポット照射するための光学系、4 A light source for 1 in Figure 1 which generates the micro beam, 2 an optical system for spot irradiating the micro-beam light on the measurement object 3, 4
は測定対象物3のスポット照射位置からの垂直方向への反射光を偏向するためのハーフミラー、5はハーフミラー4により偏向された反射光を集光するためのレンズ系、6はレンズ系5を通過後の反射光を第一および第二の光路の2方向へ分光するためのビームスプリッタである。 A half mirror for deflecting the reflected light in the vertical direction from the spot irradiation position of the measurement object 3, 5 a lens system for condensing the deflected reflected light by the half mirror 4, 6 lens system 5 the is the reflected light after passing through a beam splitter for spectrally to the first and second two-way optical path. 9は反射光を偏向しかつ同一の絞り量に制限するための絞り付き反射鏡であり、例えば図3に示すような、 9 is a diaphragm with reflectors for limiting the deflected reflected light and the same aperture value, for example, as shown in FIG. 3,
それぞれしぼり部分の大きさの等しい穴あきミラーが用いられる。 Equal perforated mirror size of the aperture portions respectively is used. 8は各絞り付き反射鏡9で反射後または各絞り付き反射鏡9のしぼりを通過後の反射光の光量を検出するための光電変換素子である。 8 is a photoelectric conversion element for detecting the amount of reflected light after passing through the aperture of the reflector or after each stop with the reflector 9 at each stop with the reflector 9.

【0009】図中、第一の光路の焦点付近の反射光が収束するA部では、絞り付き反射鏡9のしぼりを通過後の光量を、第二の光路の焦点付近の反射光が拡大するB部では、絞り付き反射鏡9による反射光の光量を測定できるように、絞り付き反射鏡9と光電変換素子8が配置されている。 [0009] In the figure, the A unit reflected light near the focus of the first optical path is converged, the light intensity after passing through the aperture of the diaphragm with the reflector 9, the reflected light of the focus around the second optical path is expanded in part B, so that you can measure the quantity of light reflected by the aperture with the reflector 9, with throttle reflector 9 and a photoelectric conversion element 8 is disposed. この第一の光路のA部および第二の光路のB A portion and the second optical path B of the first optical path
部での絞り付き反射鏡9および光電変換素子8の配置について図2を用いてさらに詳しく説明する。 It will be described in more detail with reference to FIG. 2 the arrangement of the diaphragm with the reflector 9 and a photoelectric conversion element 8 in part. まず、 図2 First, as shown in FIG. 2
(a)において、第一の光路のA部は焦点付近の反射光が収束する光路であり、この光路上に絞り付き反射鏡9 (A), the first portion A of the optical path is an optical path the reflected light near the focus converges, the reflector 9 with stop to the optical path
A1を配置する。 To place the A1. そして、絞り付き反射鏡9A 1のしぼりを通過した反射光を受光できるように光電変換素子8A 1を配置する。 Then, placing the photoelectric conversion elements 8A 1 to allow receiving the reflected light passing through the diaphragm aperture with reflector 9A 1. 続いて、絞り付き反射鏡9A 1により反射された反射光の光路上に絞り付き反射鏡9A 2を配置し、絞り付き反射鏡9A 2のしぼりを通過した反射光を受光できるように光電変換素子8A 2を配置する。 Subsequently, with throttle reflector 9A 1 aperture with reflector 9A 2 on the optical path of the reflected light reflected place by, with throttle reflector photoelectric conversion element as 9A 2 aperture can receive the reflected light passing through the placing 8A 2. 同様にこの絞りつき反射鏡と光電変換素子の組合わせの配置をn回繰り返し、n番目の絞り付き反射鏡9A nを必ず焦点より後ろに配置する。 Likewise the arrangement of the combination of the diaphragm with the reflector and the photoelectric conversion elements repeated n times, placed in the n-th behind the always focus the Reflective mirror 9A n aperture.

【0010】また、 図2 (b)において、第二の光路のB部は焦点付近の反射光が拡大する光路であり、この光路上では焦点位置よりも前に必ずなるように、絞り付き反射鏡9B 1を配置する。 Further, in FIG. 2 (b), B section of the second optical path is an optical path to increase the reflected light near the focus, as always made before the focal position in the optical path, with throttle reflection placing a mirror 9B 1. そして、絞り付き反射鏡9B 1により反射された光を受光できるように光電変換素子8B 1 The photoelectric conversion so that it can receive light reflected by the aperture with the reflector 9B 1 element 8B 1
を配置する。 To place. 続いて、絞り付き反射鏡9B 1のしぼりを通過した反射光の光路上にしぼり付き反射鏡9B 2を配置し、絞り付き反射鏡9B 2により反射された反射光を受光できるように光電変換素子8B 2を配置する。 Subsequently, with throttle reflector 9B 1 of the aperture with reflector 9B 2 on the optical path of the reflected light which has passed through the diaphragm disposed, with throttle reflector 9B photoelectric conversion element so that it can receive the reflected light reflected by 2 placing 8B 2. 同様にこの絞り付き反射鏡と光電変換素子の組合せの配置をn回繰り返す。 Similarly repeated placement of the combination of the diaphragm with the reflector and the photoelectric conversion elements n times. そして、絞り付き反射鏡9B nのしぼりを通過した反射光を最後に受光する光電変換素子8B n+1を配置する。 Then, placing the photoelectric conversion element 8B n + 1 for receiving the reflected light passing through the diaphragm aperture with reflector 9B n last.

【0011】以上のように構成された高さ計測装置について、光電変換素子8の出力値の処理方法について説明をする。 [0011] The height measuring apparatus constructed as above will be explained processing method of the output value of the photoelectric conversion element 8. 反射光の収束する第一の光路のA部では、絞り付き反射鏡9のしぼりを通過後の光量を測定するため、 In the first part A of the optical path that converges the reflected light to measure the amount of light passed through the aperture of the diaphragm with the reflector 9,
絞り付き反射鏡に照射される光像が反射鏡のしぼりより小さくなり反射鏡面での反射がなくなると、それ以降に位置する光電変換素子群の出力は0となる。 When the reflected light image is irradiated with throttle reflector at small becomes mirror surface than aperture of the reflecting mirror is eliminated, the output of the photoelectric conversion element group positioned thereafter becomes zero. この位置を第一の光路のA部でi番目とする。 This position is the i-th in the A portion of the first optical path. 同様に、第二の光路のB部においても、絞り付き反射鏡9で偏向されず、光電変換素子8の出力が0となるときの位置をj番目とする。 Similarly, in the B section of the second optical path is not deflected by the diaphragm with the reflector 9, the position at which the output of the photoelectric conversion element 8 is zero and j-th. 第二の光路の反射光の拡大するB部においてj番目より前の光電変換素子の出力値は無視して0とし、j番目以後の光電変換素子の出力値に対して補正を加える。 The output value of the second prior j-th in expanding B section of the reflected light of the optical path photoelectric conversion element is set to 0 to ignore, adding the correction to the output value of the j-th subsequent photoelectric conversion element.
つまり、 第一の光路のA部での光電変換素子の出力値の That is, the output value of the photoelectric conversion element at the A portion of the first optical path
合計Σ8A n を8Atotalとし、第二の光路のB部での光電 The total Shiguma8A n and 8Atotal, photoelectric at B of the second optical path
変換素子の出力値の合計Σ8B n を8Btotalとし、第二の光路のB部でのk番目(j≦k≦n+1)の光電変換素子の出力値8B kに次式の補正を加え8B k 'とし、補正 The total Shiguma8B n output values of the conversion element and 8Btotal, second k-th in the B portion of the optical path (j ≦ k ≦ n + 1 ) correcting the added 8B k of the following equation to output values 8B k photoelectric conversion element ' and, correction
後のB部での出力値の合計Σ8B n` がA部での出力の合 If total Shiguma8B n` output value at the B portion after the output of the A portion
計8Atotal(=Σ8A n )と等しくなるようにする。 Total 8Atotal (= Σ8A n) becomes equal to a.

【0012】 8Bk'=8Bk×(8Atotal/8Btotal図4は光電変換素子の出力値と位置の関係を示したグラフである。 [0012] 8Bk '= 8Bk × (8Atotal / 8Btotal) FIG. 4 is a graph showing the relationship between the position and the output value of the photoelectric conversion element. この図について説明をする。 For this figure will be described. 横軸には、第一の光路のA部に位置する光電変換素子8A lから8A i-1に対応する測定対象物3からの光路長(lA lからlA i-1 The horizontal axis, the optical path length from the object to be measured 3 corresponding photoelectric conversion element 8A l located A portion of the first optical path 8A i-1 (lA i- 1 from lA l)
と、第二の光路B部に位置する光電変換素子8Bjから8 If, from the photoelectric conversion element 8Bj located in the second optical path B 8
B n+1に対応する光路長(lBjからlB n+1 )とをとっている。 Corresponding optical path length B n + 1 is taken and (lB n + 1 from LBJ). 縦軸には、横軸の第一の光路の光路長に対応する部分では、光電変換素子の出力8A nのk番目(1≦k<i The vertical axis, in a portion corresponding to the first optical path length of the optical path of the horizontal axis, k th output 8A n of the photoelectric conversion element (1 ≦ k <i
−1)までの累積値Σ8Akをとっている。 We are taking the cumulative value Σ8Ak of ​​up to -1). そして、横軸の第二の光路長に対応する部分では、第一の光路A部における光電変換素子7の出力の合計値8Atotalから、 Then, in the portion corresponding to the second optical path length in the horizontal axis, the sum 8Atotal the output of the photoelectric conversion element 7 in the first optical path A unit,
光電変換素子8Bk'のk番目(j≦k≦n+1)までの累積値Σ8Bk'を引いた値(8Atotal−Σ8Bk')をとっている。 Taking a value obtained by subtracting the 'k-th (j ≦ k ≦ n + 1) cumulative value Shiguma8Bk up of' the photoelectric conversion element 8Bk (8Atotal-Σ8Bk ').

【0013】これらの各測定点について、例えば最小自乗法などで近似して、光路長と光量の関係を近似曲線で表している。 [0013] For each of these measurement points, for example by approximation by a least square method and represents the optical path length and quantity of relationships approximate curve. この近似曲線から、縦軸の光電変換素子出力の累積値(光量)の最大値8maxとなる光路長lを求める。 This approximation curve, the photoelectric conversion element output of the cumulative value of the vertical axis of the optical path length l of the maximum value 8max of (light quantity) is determined. この光路長が反射光の焦点距離となり、あらかじめ設定しておいた光路長と測定対象物の高さとの関係から測定対象物の高さを知ることができる。 The optical path length is the focal length of the reflected light, it is possible to know the height of the measurement object from the relationship between the optical path length set in advance with the height of the measurement object.

【0014】以上のように本実施例によれば、反射光の光路上に複数の絞り付き反射鏡と光電変換素子を配置して光量を測定し、各測定点間を補間して光量が最大となる光路長を求めるため、レンズ系をアクチュエータ等で移動させて焦点を検出する必要がなく、高速で高さを測定できる。 According to this embodiment, as described above, the optical path of the reflected light by arranging a plurality of throttle with the reflector and the photoelectric conversion element to measure the amount of light, light intensity and interpolating between each measurement point maximum to determine the optical path length becomes, it is not necessary to detect the focus is moved by an actuator such as a lens system, can measure the height at a high speed. また、光電変換素子を複数個用いて、光量と光路長の関係を近似しているため、測定対象物の表面状態のむらによる反射光の光量分布のばらつきの影響が少なくなり測定精度が向上する。 Further, the photoelectric conversion element by using a plurality, because it approximates the relationship between the amount of light and the optical path length, variation in the impact decreases the measurement accuracy of the light quantity distribution of the reflected light due to unevenness of the surface state of the measurement object is increased.

【0015】なお、本実施例ではビームスプリッタ6の前にレンズ系5を配置しているが、ビームスプリッタ6 [0015] Incidentally, although this embodiment is arranged the lens system 5 in front of the beam splitter 6, the beam splitter 6
の後にレンズ系5を配置しても差し支えないし、測定対象物3とハーフミラー4の間にレンズ系5を配置しても差し支えない。 The lens system 5 do not safely be placed after, no problem be arranged lens system 5 between the measurement object 3 and the half mirror 4. また、ハーフミラー4の代わりに穴あきミラーを用いても差し支えないことは言うまでもない。 Further, it is needless to say that no problem even using the perforated mirror instead of the half mirror 4.

【0016】 [0016]

【発明の効果】以上のように本発明によれば、測定対象物からの反射光の光路長が互いに異なる位置に複数の光電変換素子を配置し、光電変換素子の出力から反射光の光量と光路長との関係を近似して反射光の焦点位置を調べることで、測定対象物の高さを高速に測定することができる優れた非接触高さ計測装置を実現することができる。 According to the present invention as described above, according to the present invention, arranging a plurality of photoelectric conversion elements at positions different from each other the optical path length of the reflected light from the object to be measured, and the amount of reflected light from the output of the photoelectric conversion element by examining the focal position of the reflected light approximates the relationship between the optical path length, the height of the measurement object can be achieved non-contact height measuring device excellent which it can be measured at high speed. さらに、測定対象物の表面状態のむらによる反射光の光量分布のばらつきのために一部の光電変換素子の出力に誤差が生じても、影響を受けることが少なくなり、 Furthermore, even if an error in the output of the part of the photoelectric conversion elements to the variation in the light intensity distribution of the reflected light due to unevenness of the surface condition of the measuring object is generated, it becomes less affected,
高精度に計測することができる。 It can be measured with high accuracy.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1の実施例における非接触高さ計測装置の構成図 Block diagram of a non-contact height measuring device in the first embodiment of the present invention; FIG

【図2】 (a)第一の光路のA部における絞り付き反射 2 (a) with throttle reflection at A portion of the first optical path
鏡と光電変換素子の配置図 (b)第二の光路のB部における絞り付き反射鏡と光電 Layout mirror and the photoelectric conversion element (b) with throttle reflectors in B section of the second optical path and a photoelectric
変換素子の配置図 Layout of transducer

【図3】 同本実施例における絞り付き反射鏡の斜視図 Perspective view of the diaphragm with the reflecting mirror in the same embodiment Fig. 3

【図4】 同実施例における光電変換素子出力と光路長と [Figure 4] and the photoelectric conversion element output and the optical path length in the same embodiment
の関係図 Relationship diagram

【図5】 従来の非接触高さ計測装置の構成図 Figure 5 is a configuration diagram of a conventional non-contact height measuring device

【符号の説明】 DESCRIPTION OF SYMBOLS

1 光源 2 光学系 3 測定対象物 4 ハーフミラー 5 レンズ系 6 ビームスプリッタ 7 絞り 8 光電変換素子 9 絞り付き反射鏡 10 レンズ移動アクチュエーター 1 light source 2 optical system 3 measured object 4 half-mirror 5 lens system 6 the beam splitter 7 aperture 8 photoelectric conversion element 9 with throttle reflector 10 lens moving actuator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 知博 香川県高松市寿町2丁目2番10号 松下 寿電子工業株式会社内 (72)発明者 奥田 英二 香川県高松市寿町2丁目2番10号 松下 寿電子工業株式会社内 (56)参考文献 特開 昭49−134354(JP,A) (58)調査した分野(Int.Cl. 7 ,DB名) G01B 11/00 - 11/30 102 G01C 3/00 - 3/32 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Tomo Kimura Hiroshi Kagawa Prefecture, Takamatsu Shikotobuki-cho 2-chome, No. 2, No. 10 Kotobuki Matsushita electronic industrial Co., Ltd. in the (72) inventor Eiji Okuda Kagawa Prefecture, Takamatsu Shikotobuki-cho 2-chome, 2 Ban No. 10 Kotobuki Matsushita electronic industrial Co., Ltd. in the (56) reference Patent Sho 49-134354 (JP, a) (58 ) investigated the field (Int.Cl. 7, DB name) G01B 11/00 - 11/30 102 G01C 3/00 - 3/32

Claims (2)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】微小ビーム光を発生する光源と、 前記微小ビーム光を測定対象物上に集光し照射する光学系と、 前記測定対象物上の前記微小ビーム光の照射位置からの反射光を集光するレンズ系と、 前記レンズ系により集光された前記反射光を2つの光路に分光する分光手段と、 前記分光手段により分光された一方の反射光の収束する光を順次異なる方向に偏向するよう光路長の異なる位置に配置され、前記分光後の反射光を偏向すると同時にその光量を制限する同じ大きさのしぼりを備えた複数のしぼり手段と、 前記各しぼり手段のしぼりを通過した光をそれぞれ受光し、その受光量に応じた電気的出力に変換する第一の光電変換手段と、 前記分光手段により分光された他方の反射光の拡大する光を順次異なる方向に偏向するよう光路長 1. A light source for generating a fine beam, an optical system for condensing and irradiating the micro beam light onto the measuring object, the reflected light from the micro beam irradiation position on the measurement object a lens system for focusing, the reflected light collected by the lens system and two spectroscopic means which disperses the light path, sequentially different directions of light that converges at one of the reflected light split by the spectral means is arranged in the optical path lengths of different positions so as to deflect and deflects the reflected light after the spectral and multiple diaphragm means having a diaphragm of the same size which limits the amount of light at the same time, passed through the aperture of the respective throttle means optical path to receive the light respectively, for deflecting the first photoelectric conversion means for converting the electrical output in accordance with the amount of received light, sequentially different directions to expand light of the other of the reflected light split by the spectral means The length 異なる位置に配置され、前記分光後の反射光を偏向すると同時にその反射光の光量を制限する同じ大きさのしぼりを備えた複数の偏向手段と、 前記偏向手段により偏向された光をそれぞれ受光し、受光量に応じた電気的出力に変換する第二の光電変換手段とを有し、 前記第一と第二の光電変換手段の電気的出力の比較において前記測定対象物の高さを測定することを特徴とする非接触高さ計測装置。 Are arranged at positions different, the when to deflect the reflected light after spectral and plurality of deflection means having a diaphragm of the same size to limit the amount of the reflected light at the same time, the deflected light received respectively by said deflecting means , and a second photoelectric conversion means for converting the electrical output corresponding to the amount of light received, to measure the height of the measurement object in the comparison of the electrical output of the first and second photoelectric conversion means non-contact height measuring device, characterized in that.
  2. 【請求項2】前記測定対象物上の前記微小ビーム光の照射位置からの反射光を分光手段により分光した後に、分光後の反射光をレンズ系により集光するようにしたことを特徴とする請求項2に記載の非接触高さ計測装置。 After wherein spectrally by spectroscopic means the reflected light from the irradiation position of the micro light beam on the measurement object, characterized in that so as to condensed by the lens system reflected light after spectral non-contact height measuring apparatus according to claim 2.
JP19930391A 1991-08-08 1991-08-08 Non-contact height measuring device Expired - Fee Related JP3146538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19930391A JP3146538B2 (en) 1991-08-08 1991-08-08 Non-contact height measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19930391A JP3146538B2 (en) 1991-08-08 1991-08-08 Non-contact height measuring device

Publications (2)

Publication Number Publication Date
JPH0540035A true JPH0540035A (en) 1993-02-19
JP3146538B2 true JP3146538B2 (en) 2001-03-19

Family

ID=16405561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19930391A Expired - Fee Related JP3146538B2 (en) 1991-08-08 1991-08-08 Non-contact height measuring device

Country Status (1)

Country Link
JP (1) JP3146538B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308432B2 (en) 2009-03-04 2012-11-13 Dyson Technology Limited Fan assembly
US8348597B2 (en) 2009-03-04 2013-01-08 Dyson Technology Limited Fan assembly
US8348629B2 (en) 2008-09-23 2013-01-08 Dyston Technology Limited Fan
US8356804B2 (en) 2009-03-04 2013-01-22 Dyson Technology Limited Humidifying apparatus
US8366403B2 (en) 2010-08-06 2013-02-05 Dyson Technology Limited Fan assembly
US8403640B2 (en) 2009-03-04 2013-03-26 Dyson Technology Limited Fan assembly
US8403650B2 (en) 2007-09-04 2013-03-26 Dyson Technology Limited Fan
US8408869B2 (en) 2009-03-04 2013-04-02 Dyson Technology Limited Fan assembly
US8430624B2 (en) 2009-03-04 2013-04-30 Dyson Technology Limited Fan assembly
US8454322B2 (en) 2009-11-06 2013-06-04 Dyson Technology Limited Fan having a magnetically attached remote control
US8469658B2 (en) 2009-03-04 2013-06-25 Dyson Technology Limited Fan
US8469660B2 (en) 2009-03-04 2013-06-25 Dyson Technology Limited Fan assembly
US8613601B2 (en) 2009-03-04 2013-12-24 Dyson Technology Limited Fan assembly
US8714937B2 (en) 2009-03-04 2014-05-06 Dyson Technology Limited Fan assembly
US8721286B2 (en) 2009-03-04 2014-05-13 Dyson Technology Limited Fan assembly
US8734094B2 (en) 2010-08-06 2014-05-27 Dyson Technology Limited Fan assembly
US8770946B2 (en) 2010-03-23 2014-07-08 Dyson Technology Limited Accessory for a fan
US8784071B2 (en) 2009-03-04 2014-07-22 Dyson Technology Limited Fan assembly
US8873940B2 (en) 2010-08-06 2014-10-28 Dyson Technology Limited Fan assembly
US8882451B2 (en) 2010-03-23 2014-11-11 Dyson Technology Limited Fan
US8894354B2 (en) 2010-09-07 2014-11-25 Dyson Technology Limited Fan
US8967979B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US8967980B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US9011116B2 (en) 2010-05-27 2015-04-21 Dyson Technology Limited Device for blowing air by means of a nozzle assembly
USD728092S1 (en) 2013-08-01 2015-04-28 Dyson Technology Limited Fan
USD728770S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728769S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729376S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729374S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729375S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729373S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729925S1 (en) 2013-03-07 2015-05-19 Dyson Technology Limited Fan
US9127855B2 (en) 2011-07-27 2015-09-08 Dyson Technology Limited Fan assembly
US9127689B2 (en) 2009-03-04 2015-09-08 Dyson Technology Limited Fan assembly
US9151299B2 (en) 2012-02-06 2015-10-06 Dyson Technology Limited Fan
US9249809B2 (en) 2012-02-06 2016-02-02 Dyson Technology Limited Fan
USD749231S1 (en) 2013-01-18 2016-02-09 Dyson Technology Limited Humidifier
US9283573B2 (en) 2012-02-06 2016-03-15 Dyson Technology Limited Fan assembly
US9513028B2 (en) 2009-03-04 2016-12-06 Dyson Technology Limited Fan assembly
US9568006B2 (en) 2012-05-16 2017-02-14 Dyson Technology Limited Fan
US9599356B2 (en) 2014-07-29 2017-03-21 Dyson Technology Limited Humidifying apparatus
US9732763B2 (en) 2012-07-11 2017-08-15 Dyson Technology Limited Fan assembly
US10145388B2 (en) 2008-10-25 2018-12-04 Dyson Technology Limited Fan with a filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525668B2 (en) 2005-04-14 2009-04-28 Panasonic Corporation Apparatus and method for appearance inspection

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764412B2 (en) 2007-09-04 2014-07-01 Dyson Technology Limited Fan
US8403650B2 (en) 2007-09-04 2013-03-26 Dyson Technology Limited Fan
US8348629B2 (en) 2008-09-23 2013-01-08 Dyston Technology Limited Fan
US10145388B2 (en) 2008-10-25 2018-12-04 Dyson Technology Limited Fan with a filter
US9127689B2 (en) 2009-03-04 2015-09-08 Dyson Technology Limited Fan assembly
US8356804B2 (en) 2009-03-04 2013-01-22 Dyson Technology Limited Humidifying apparatus
US8403640B2 (en) 2009-03-04 2013-03-26 Dyson Technology Limited Fan assembly
US8348596B2 (en) 2009-03-04 2013-01-08 Dyson Technology Limited Fan assembly
US8408869B2 (en) 2009-03-04 2013-04-02 Dyson Technology Limited Fan assembly
US8430624B2 (en) 2009-03-04 2013-04-30 Dyson Technology Limited Fan assembly
US9513028B2 (en) 2009-03-04 2016-12-06 Dyson Technology Limited Fan assembly
US8469655B2 (en) 2009-03-04 2013-06-25 Dyson Technology Limited Fan assembly
US8469658B2 (en) 2009-03-04 2013-06-25 Dyson Technology Limited Fan
US8469660B2 (en) 2009-03-04 2013-06-25 Dyson Technology Limited Fan assembly
US8529203B2 (en) 2009-03-04 2013-09-10 Dyson Technology Limited Fan assembly
US8613601B2 (en) 2009-03-04 2013-12-24 Dyson Technology Limited Fan assembly
US8784071B2 (en) 2009-03-04 2014-07-22 Dyson Technology Limited Fan assembly
US8708650B2 (en) 2009-03-04 2014-04-29 Dyson Technology Limited Fan assembly
US8714937B2 (en) 2009-03-04 2014-05-06 Dyson Technology Limited Fan assembly
US8721286B2 (en) 2009-03-04 2014-05-13 Dyson Technology Limited Fan assembly
US9599368B2 (en) 2009-03-04 2017-03-21 Dyson Technology Limited Nozzle for bladeless fan assembly with heater
US8348597B2 (en) 2009-03-04 2013-01-08 Dyson Technology Limited Fan assembly
US8308432B2 (en) 2009-03-04 2012-11-13 Dyson Technology Limited Fan assembly
US8684687B2 (en) 2009-03-04 2014-04-01 Dyson Technology Limited Fan assembly
US8784049B2 (en) 2009-03-04 2014-07-22 Dyson Technology Limited Fan
US8454322B2 (en) 2009-11-06 2013-06-04 Dyson Technology Limited Fan having a magnetically attached remote control
US9004878B2 (en) 2009-11-06 2015-04-14 Dyson Technology Limited Fan having a magnetically attached remote control
US8770946B2 (en) 2010-03-23 2014-07-08 Dyson Technology Limited Accessory for a fan
US8882451B2 (en) 2010-03-23 2014-11-11 Dyson Technology Limited Fan
US9011116B2 (en) 2010-05-27 2015-04-21 Dyson Technology Limited Device for blowing air by means of a nozzle assembly
US8366403B2 (en) 2010-08-06 2013-02-05 Dyson Technology Limited Fan assembly
US8873940B2 (en) 2010-08-06 2014-10-28 Dyson Technology Limited Fan assembly
US8734094B2 (en) 2010-08-06 2014-05-27 Dyson Technology Limited Fan assembly
US8894354B2 (en) 2010-09-07 2014-11-25 Dyson Technology Limited Fan
US8967979B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US8967980B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US9127855B2 (en) 2011-07-27 2015-09-08 Dyson Technology Limited Fan assembly
US9249809B2 (en) 2012-02-06 2016-02-02 Dyson Technology Limited Fan
US9151299B2 (en) 2012-02-06 2015-10-06 Dyson Technology Limited Fan
US9283573B2 (en) 2012-02-06 2016-03-15 Dyson Technology Limited Fan assembly
US9568006B2 (en) 2012-05-16 2017-02-14 Dyson Technology Limited Fan
US9732763B2 (en) 2012-07-11 2017-08-15 Dyson Technology Limited Fan assembly
USD749231S1 (en) 2013-01-18 2016-02-09 Dyson Technology Limited Humidifier
USD729925S1 (en) 2013-03-07 2015-05-19 Dyson Technology Limited Fan
USD729374S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729375S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729376S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729373S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD728769S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728092S1 (en) 2013-08-01 2015-04-28 Dyson Technology Limited Fan
USD728770S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
US9599356B2 (en) 2014-07-29 2017-03-21 Dyson Technology Limited Humidifying apparatus

Also Published As

Publication number Publication date Type
JPH0540035A (en) 1993-02-19 application

Similar Documents

Publication Publication Date Title
US4748333A (en) Surface displacement sensor with opening angle control
US5801831A (en) Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
US6800859B1 (en) Method and equipment for detecting pattern defect
US4589773A (en) Position detecting system
US20030146391A1 (en) Arrangement for monitoring the energy radiated by an EUV radiation source
US5410397A (en) Method and apparatus for holographic wavefront diagnostics
US5708498A (en) Three dimensional color imaging
US5498870A (en) Rotation information detection apparatus
US3922093A (en) Device for measuring the roughness of a surface
US4677293A (en) Photoelectric measuring system
Buffington et al. Correction of atmospheric distortion with an image-sharpening telescope
US5067811A (en) Illuminance distribution measuring system
US5615038A (en) Scanning optical device with aberration compensation feature
US4405238A (en) Alignment method and apparatus for x-ray or optical lithography
US4893003A (en) Circle-to-line interferometer optical system
JPH08136345A (en) Double monochromator
JPH0815156A (en) Laser scan optical system and laser scan optical apparatus
US6552809B1 (en) Position encoding optical device and method
WO1979000189A1 (en) Process and device for measuring a distance by telemetry
US4761546A (en) Optical displacement measuring system with nonlinearity correction
US4729654A (en) Laser interferometer
US4659936A (en) Line width measuring device and method
US5506681A (en) Method for detecting a reference position and displacement detector using the same
US6919979B2 (en) Optical scanning apparatus
US4254337A (en) Infrared interference type film thickness measuring method and instrument therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees