JP3099502B2 - Manufacturing method of calcined phosphate fertilizer - Google Patents

Manufacturing method of calcined phosphate fertilizer

Info

Publication number
JP3099502B2
JP3099502B2 JP04058318A JP5831892A JP3099502B2 JP 3099502 B2 JP3099502 B2 JP 3099502B2 JP 04058318 A JP04058318 A JP 04058318A JP 5831892 A JP5831892 A JP 5831892A JP 3099502 B2 JP3099502 B2 JP 3099502B2
Authority
JP
Japan
Prior art keywords
molar ratio
dissolution rate
cao
mgo
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04058318A
Other languages
Japanese (ja)
Other versions
JPH05262589A (en
Inventor
堯 秋山
久登 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP04058318A priority Critical patent/JP3099502B2/en
Publication of JPH05262589A publication Critical patent/JPH05262589A/en
Application granted granted Critical
Publication of JP3099502B2 publication Critical patent/JP3099502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、焼成リン酸肥料(以
下、焼成リン肥という。)の製造方法に関する。詳しく
は、従来、利用価値が低かった高ケイ酸質低品位リン鉱
石を原料として焼成リン肥を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a calcined phosphate fertilizer (hereinafter, calcined phosphorus fertilizer). More specifically, the present invention relates to a method for producing a calcined phosphorus fertilizer using a high siliceous low-grade phosphate ore, which has conventionally had a low utility value.

【0002】[0002]

【従来の技術】従来、高ケイ酸質低品位のリン鉱石(概
ねSiO2含有率10%以上、P25含有率30%以
下)はリン酸含有率が低いために殆ど利用されることが
無かった。しかしながら、資源の枯渇化の懸念に伴い、
高ケイ酸質低品位リン鉱石も有効利用しようとする機運
が高まっている。従来の技術では、焼成リン肥を製造す
る場合、リン酸分の溶解率を高めるための添加剤として
高価な炭酸ナトリウムを添加し、さらに、反応を促進す
るために1300〜1500℃前後の高温にて焼成を行
っている。
2. Description of the Related Art Conventionally, high siliceous and low-grade phosphate rocks (generally, SiO 2 content of 10% or more, P 2 O 5 content of 30% or less) are mostly used because of their low phosphoric acid content. There was no. However, with concerns about resource depletion,
Motivation to effectively utilize high siliceous low-grade phosphate rock is increasing. According to the conventional technology, when manufacturing a burnt phosphorus fertilizer, expensive sodium carbonate is added as an additive for increasing the dissolution rate of the phosphoric acid component, and further, to a high temperature of about 1300 to 1500 ° C. to promote the reaction. Firing.

【0003】[0003]

【発明が解決しようとする課題】一般に、ケイ酸を含有
するリン鉱石中のアパタイトCa5(PO43Fと炭酸
ナトリウムの焼成反応は下記式(a)に従うので、炭酸
ナトリウムの好ましい添加量は理論的にはNa2O/P2
5(モル比)が1.33となる量である。
Generally, since the calcination reaction of apatite Ca 5 (PO 4 ) 3 F and sodium carbonate in a phosphate rock containing silicic acid follows the following formula (a), the preferred amount of sodium carbonate added is as follows: Is theoretically Na 2 O / P 2
This is an amount such that O 5 (molar ratio) becomes 1.33.

【0004】[0004]

【化1】 Ca5(PO43F+2Na2CO3+SiO2 →3NaCaPO4+Ca2SiO4+NaF+2CO2 (a)Embedded image Ca 5 (PO 4 ) 3 F + 2Na 2 CO 3 + SiO 2 → 3NaCaPO 4 + Ca 2 SiO 4 + NaF + 2CO 2 (a)

【0005】しかしながら、高ケイ酸質低品位リン鉱石
から焼成リン肥を製造する場合、後述の参考例1〜10
に示したように、Na2O/P25(モル比)が理論値
である1.33付近で反応を行なうと、得られる焼成リ
ン肥のク溶率は40%以下であり、Na2O/P2
5(モル比)が増加するにつれてク溶率は増加し、理論
値の倍近い2.5付近でようやく100%にまで達す
る。これは、一般に高ケイ酸質低品位のリン鉱石中に含
まれるシリカの含有率が高いので、炭酸ナトリウムが最
初は主としてシリカと反応してガラス質のケイ酸ナトリ
ウムを生成し、次に(a)式に従いレナニット(NaC
aPO4)を生成するためと考えられる。
However, when producing calcined phosphorus fertilizer from high siliceous low-grade phosphate ore, the following Reference Examples 1 to 10
As shown in the above, when the reaction is carried out at a Na 2 O / P 2 O 5 (molar ratio) around 1.33, which is the theoretical value, the dissolution rate of the obtained calcined phosphorus fertilizer is 40% or less, 2 O / P 2 O
5 As the molar ratio increases, the dissolution rate increases and reaches 100% only at around 2.5, which is almost twice the theoretical value. This is because sodium carbonate generally reacts primarily with silica to form vitreous sodium silicate, and then (a) because of the high silica content of high siliceous low grade phosphate rock. ) Formula according to the formula
aPO 4 ).

【0006】また、従来技術で高ケイ酸質低品位リン鉱
石から過リン酸石灰又は湿式リン酸を製造する場合は、
多量のゲル状シリカが生成するので多くの困難が指摘さ
れている。即ち、過リン酸石灰を製造する場合は、生成
物が高粘質で乾燥が困難であるばかりでなく、未反応の
アパタイトが残存するためにリン酸分の溶解率が低く、
しかも遊離の硫酸分を含んでしまう。また、湿式リン酸
を製造する場合は、石膏の分離が困難でリン酸分の損失
が多い。
In the case of producing lime superphosphate or wet phosphoric acid from high siliceous low-grade phosphate rock in the prior art,
Many difficulties have been pointed out as a large amount of gelled silica is formed. That is, when producing superphosphate, not only the product is highly viscous and difficult to dry, but also the dissolution rate of phosphoric acid is low because unreacted apatite remains,
Moreover, it contains free sulfuric acid. In the case of producing wet phosphoric acid, it is difficult to separate gypsum and the phosphoric acid content is large.

【0007】本発明者らは高ケイ酸質低品位リン鉱石を
原料とし、低いコストでしかも性能の優れたリン酸肥料
を得るべく、鋭意検討を重ねた結果、高ケイ酸質低品位
リン鉱石にナトリウム化合物、カルシウム化合物及びマ
グネシウム化合物を特定のモル比となるように添加する
ことにより、従来より低い焼成温度で、しかも高いク溶
率を示す優れた焼成リン肥が得られることを見出し、本
発明に到達した。
The present inventors have conducted intensive studies to obtain a low-cost, high-performance phosphate fertilizer from high-silicate low-grade phosphate ore as a raw material. It has been found that by adding a sodium compound, a calcium compound and a magnesium compound to a specific molar ratio, a superior calcined phosphorus fertilizer having a lower sintering temperature and a higher quench rate can be obtained. The invention has been reached.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の要旨は、
高ケイ酸質低品位リン鉱石に、ナトリウム化合物、カル
シウム化合物及びマグネシウム化合物を、P25:Na
2O:CaO(モル比)=1:1〜2:4〜6かつMg
O:(CaO+MgO)(モル比)=0.05〜0.3
0:1となるように添加し、焼成することを特徴とする
焼成リン肥の製造方法、に存する。
That is, the gist of the present invention is as follows.
A sodium compound, a calcium compound and a magnesium compound are added to a high siliceous low-grade phosphate rock by adding P 2 O 5 : Na
2 O: CaO (molar ratio) = 1: 1 to 2: 4 to 6 and Mg
O: (CaO + MgO) (molar ratio) = 0.05-0.3
0 to 1: 1 and sintering.

【0009】以下、本発明を詳細に説明する。本発明の
原料となる高ケイ酸質低品位リン鉱石は概ねSiO2
有率10wt%以上、P25含有率30wt%以下のリ
ン鉱石であれば、特に限定されないが、通常、主成分と
して、P25が20〜30wt%、SiO2が10〜3
0wt%、CaOが30〜40wt%、MgOが0.3
〜2wt%含有されており、その他にFe23、F、A
23等が含まれているものが挙げられる。具体的には
パトスデミナス55(ブラジル中央部産)、フロリダ5
7(フロリダ中央部産)、雲南省産60等があげられ
る。
Hereinafter, the present invention will be described in detail. The high siliceous low-grade phosphorus ore used as a raw material of the present invention is not particularly limited as long as it is a phosphorus ore having a SiO 2 content of at least 10 wt% and a P 2 O 5 content of at most 30 wt%. , P 2 O 5 is 20 to 30 wt%, and SiO 2 is 10 to 3 wt%.
0 wt%, CaO 30-40 wt%, MgO 0.3
22 wt%, and Fe 2 O 3 , F, A
and those containing l 2 O 3 and the like. Specifically, Patos deminas 55 (from central Brazil), Florida 5
7 (from central Florida) and 60 from Yunnan.

【0010】リン鉱石に添加されるナトリウム化合物、
カルシウム化合物及びマグネシウム化合物は特に限定さ
れず、例えば炭酸ナトリウム、水酸化ナトリウム、硫酸
ナトリウム、炭酸カルシウム、水酸化カルシウム、硫酸
カルシウム、水酸化マグネシウム、硫酸マグネシウム等
のナトリウム、カルシウム、マグネシウムの水酸化物、
炭酸塩、硫酸塩などが挙げられるが、通常、取扱性及び
価格の面から、それぞれ炭酸ナトリウム、炭酸カルシウ
ム及び水酸化マグネシウムが好ましい。
A sodium compound added to the phosphate rock,
Calcium compounds and magnesium compounds are not particularly limited, for example, sodium carbonate, sodium hydroxide such as sodium hydroxide, sodium sulfate, calcium carbonate, calcium hydroxide, calcium sulfate, magnesium hydroxide, magnesium sulfate, etc.
Although carbonates and sulfates are mentioned, sodium carbonate, calcium carbonate, and magnesium hydroxide are preferable from the viewpoint of handleability and cost.

【0011】ナトリウム化合物の添加量は、例えばナト
リウム化合物として炭酸ナトリウムを用いる場合、Na
2O/P25(モル比)が、前記(a)式から算出され
る理論値1.33の前後の1〜2となる量であるのが好
ましい。カルシウム化合物の添加量は、例えばナトリウ
ム化合物として炭酸ナトリウムをカルシウム化合物とし
て炭酸カルシウムを用いる場合、後述の参考例11〜2
1に示したように、Na2O/P25(モル比)が1.
33ではCaO/P25(モル比)が5付近でク溶率が
最大であることから、CaO/P25(モル比)がその
前後の4〜6となる量であるのが好ましい。
For example, when sodium carbonate is used as the sodium compound,
It is preferable that 2 O / P 2 O 5 (molar ratio) be an amount of 1 to 2 before and after the theoretical value of 1.33 calculated from the formula (a). The addition amount of the calcium compound is, for example, when sodium carbonate is used as the sodium compound and calcium carbonate is used as the calcium compound, the following reference examples 11 to 2 are used.
As shown in FIG. 1, Na 2 O / P 2 O 5 (molar ratio) was 1.
In 33 CaO / P 2 O 5 (molar ratio) in the vicinity of 5 since click溶率is maximum, CaO / P 2 O 5 (molar ratio) that is an amount which is a 4 to 6 before and after preferable.

【0012】これは、下記式(b)の反応式に従い、N
2Ca5(PO44やレナニット(NaCaPO4)の
生成が促進されるためと考えられる。
According to the following reaction formula (b), N
It is considered that the formation of a 2 Ca 5 (PO 4 ) 4 and lenanite (NaCaPO 4 ) is promoted.

【0013】[0013]

【化2】 Ca5(PO43F+XSiO2+2Na2CO3+2.5CaCO3 →0.5Na2Ca5(PO44+NaCaPO4 (b) +NaF+NaCa4SixO2+4.5+4.5CO2 ## STR2 ## Ca 5 (PO 4) 3 F + XSiO 2 + 2Na 2 CO 3 + 2.5CaCO 3 → 0.5Na 2 Ca 5 (PO 4) 4 + NaCaPO 4 (b) + NaF + NaCa 4 SixO 2 x +4.5 + 4.5CO 2

【0014】従って、ナトリウム化合物及びカルシウム
化合物の好ましい添加量は、P25:Na2O:CaO
(モル比)が1:1〜2:4〜6となる量である。本発
明では、アパタイトとナトリウムの反応を促進させる目
的で、マグネシウム化合物を添加して、高ケイ酸質低品
位リン鉱石中の過剰のシリカをアケルマナイト(Ca2
MgSi27)に変換するものである。この反応は下記
式(c)又は(d)の式に従うと考えられる。
Therefore, the preferable addition amount of the sodium compound and the calcium compound is P 2 O 5 : Na 2 O: CaO
(Molar ratio) is from 1: 1 to 2: 4 to 6. In the present invention, in order to promote the reaction between apatite and sodium, a magnesium compound is added to remove excess silica in high siliceous low-grade phosphate rock from akermanite (Ca 2
MgSi 2 O 7 ). This reaction is considered to follow the formula (c) or (d) below.

【0015】[0015]

【化3】 Ca5(PO43F+XSiO2+2Na2CO3 +(X−2)CaCO3+(X/2)Mg(OH)2 →3NaCaPO4+NaF (c) +(X/2)MgSi2O7+XCO2+(X/2)H2Embedded image Ca 5 (PO 4 ) 3 F + XSiO 2 + 2Na 2 CO 3 + (X-2) CaCO 3 + (X / 2) Mg (OH) 2 → 3NaCaPO 4 + NaF (c) + (X / 2) MgSi 2 O7 + XCO 2 + (X / 2) H 2 O

【0016】[0016]

【化4】 Ca5(PO43F+XSiO2+2Na2CO3+(X−2)CaCO3 +(X/2)Mg(OH)2 →0.5Na2Ca5(PO44+NaCaPO4+NaF (d) +(X/2−0.25)Ca2MgSi27 +0.25Na4MgSi27+XCO2+(X/2)H2Embedded image Ca 5 (PO 4 ) 3 F + XSiO 2 + 2Na 2 CO 3 + (X-2) CaCO 3 + (X / 2) Mg (OH) 2 → 0.5 Na 2 Ca 5 (PO 4 ) 4 + NaCaPO 4 + NaF (d) + (X / 2−0.25) Ca 2 MgSi 2 O 7 + 0.25Na 4 MgSi 2 O 7 + XCO 2 + (X / 2) H 2 O

【0017】この場合のP25:Na2O:CaO:M
gO(モル比)の理論値は1:1.33:[(X−2+
5)/1.5]:[(X/2)/1.5]である。例え
ば、高ケイ酸質低品位リン鉱石としてパトスデミナス5
5を用いる場合、X=3.75であるので上記の理論値
はP25:Na2O:CaO:MgO(モル比)=1:
1.33:4.5:1.25となる。カルシウム化合物
に対するマグネシウム化合物の好ましい添加量を求める
ために、かかる理論値に基づきP25:Na2O:(C
aO+MgO)(モル比)を1:1.33:5.75と
し、MgO:(CaO+MgO)(モル比)を変化させ
た場合のク溶率から、好ましくは、MgO:(CaO+
MgO)(モル比)が0.05〜0.30:1、特に好
ましくは0.09〜0.28:1である。
In this case, P 2 O 5 : Na 2 O: CaO: M
The theoretical value of gO (molar ratio) is 1: 1.33: [(X-2 +
5) /1.5]: [(X / 2) /1.5]. For example, as a high siliceous low-grade phosphate ore, Patos deminus 5
In the case of using 5, since X = 3.75, the above theoretical value is P 2 O 5 : Na 2 O: CaO: MgO (molar ratio) = 1: 1
1.33: 4.5: 1.25. In order to determine a preferable addition amount of the magnesium compound to the calcium compound, P 2 O 5 : Na 2 O: (C
aO + MgO) (molar ratio) is set to 1: 1.33: 5.75, and from the dissolution rate when MgO: (CaO + MgO) (molar ratio) is changed, MgO: (CaO +
MgO) (molar ratio) is 0.05 to 0.30: 1, particularly preferably 0.09 to 0.28: 1.

【0018】本発明においては、P25、Na2O、C
aO、MgOのモル比を上記の通りにすることにより、
従来より低い温度で高ケイ酸質低品位リン鉱石の焼成を
行うことが可能である。得られる焼成リン肥のク溶率の
点から好ましい焼成温度は950〜1250℃であり、
特に好ましくは1000〜1150℃である。この範囲
外では、焼成リン肥のク溶率が低下する傾向がある。
In the present invention, P 2 O 5 , Na 2 O, C
By setting the molar ratio of aO and MgO as described above,
It is possible to perform calcination of high siliceous low-grade phosphate rock at a lower temperature than before. The preferred firing temperature is 950 to 1250 ° C. from the viewpoint of the dissolution rate of the obtained fired phosphorus fertilizer,
Especially preferably, it is 1000-1150 degreeC. Outside this range, the dissolution rate of the burned phosphorus fertilizer tends to decrease.

【0019】焼成時間は、特に限定されないが、通常、
20〜40分焼成すれば十分である。各焼成温度におけ
る生成物をX線回折法で同定すると、900℃でレナニ
ットがアケルマナイトと共に生成しているのが認めら
れ、1000℃付近でレナニットの生成量は最大となっ
た。この場合の反応は、概ね前記(c)式で示される。
1050℃付近でNa2Ca5(PO44の生成量が増加
し、レナニットはやや減少した。この場合の反応は、概
ね前記(d)式で示される。さらに、1100℃以上で
は焼成物の一部が溶融するとともにNa2Ca5(P
44、レナニット及びアケルマナイトの生成量が減少
し、一部にシリコカーノタイトCa5(PO4 2SiO4
が生成した。これらのことは、先に推察した反応式
(c)及び(d)が概ね正しいことを裏付けている。
The firing time is not particularly limited, but is usually
Sintering for 20 to 40 minutes is sufficient. At each firing temperature
Products were identified by X-ray diffraction at 900 ° C.
Is found to form with the akermanite
At around 1000 ° C, the production of renanite reaches its maximum.
Was. The reaction in this case is generally represented by the above formula (c).
Na around 1050 ° CTwoCaFive(POFour)FourProduction
And Lenanite declined slightly. The reaction in this case is roughly
It is shown by the above equation (d). Further, at 1100 ° C or more
Indicates that a part of the fired material is melted and NaTwoCaFive(P
OFour)Four, Lenanite and Akermanite production reduced
And partly silico carnotite CaFive(POFour) TwoSiOFour
Generated. These are the reaction formulas inferred earlier.
(C) and (d) confirm that they are generally correct.

【0020】[0020]

【実施例】以下に、実施例及び参考例により、本発明の
具体的態様を更に詳細に説明するが、本発明は以下の実
施例及び参考例により何ら制限されるものではない。
尚、以下において、%は重量%を意味する。又、ク溶率
は、次の式で算出される値を示す。
EXAMPLES Specific examples of the present invention will be described below in more detail with reference to Examples and Reference Examples, but the present invention is not limited to the following Examples and Reference Examples.
In the following,% means% by weight. Further, the dissolution rate indicates a value calculated by the following equation.

【0021】[0021]

【数1】ク溶率(%)=(2%クエン酸可溶リン酸量/
全リン酸量)×100
## EQU1 ## Dissolution rate (%) = (2% citric acid-soluble phosphoric acid amount /
Total phosphoric acid amount) x 100

【0022】実施例1〜5 ブラジル中央部産出の高ケイ酸質低品位リン鉱石パトス
デミナス(Patosde Minas)55(P25
=25.6%、CaO=33.7%、MgO=0.36
%、Al23=2.99%、Fe23=2.10%、F
=1.77%、SiO2=27.0%)に、炭酸ナトリ
ウムをNa2O/P25(モル比)が1.33になるよ
うに添加し、同時に炭酸カルシウム及び水酸化マグネシ
ウムをCaO/P25(モル比)及びMgO/P2
5(モル比)がそれぞれ下記表−1に示した値となるよ
うに添加し、少量の水分を与えて混練し、80℃で一夜
乾燥した後、電気炉中で1050℃の温度で30分間焼
成し、100℃程度になるまで一夜徐冷した。得られた
焼成物を100メッシュ以下に粉砕後、2%クエン酸溶
液に対する溶解率を測定した。
Examples 1-5 High siliceous low-grade phosphate rock from Central Brazil, Patosde Minas 55 (P 2 O 5)
= 25.6%, CaO = 33.7%, MgO = 0.36
%, Al 2 O 3 = 2.99%, Fe 2 O 3 = 2.10%, F
= 1.77%, SiO 2 = 27.0%), sodium carbonate was added so that Na 2 O / P 2 O 5 (molar ratio) was 1.33, and simultaneously calcium carbonate and magnesium hydroxide were added. CaO / P 2 O 5 (molar ratio) and MgO / P 2 O
5 (molar ratio) was added so that each had the value shown in Table 1 below, kneaded by giving a small amount of water, dried at 80 ° C. overnight, and then in an electric furnace at a temperature of 1050 ° C. for 30 minutes. It was calcined and gradually cooled overnight until it reached about 100 ° C. After the obtained fired product was pulverized to 100 mesh or less, the dissolution rate in a 2% citric acid solution was measured.

【0023】[0023]

【表1】 [Table 1]

【0024】得られた生成物のリン酸のク溶率を図1に
示した。これから明らかなようにMgO/(CaO+M
gO)(モル比)が大きくなるのに伴いリン酸のク溶率
が増大し、モル比が0.22付近で最高に達した。 実施例6〜12 実施例1で用いた高ケイ酸質低品位リン鉱石に、炭酸ナ
トリウム、炭酸カルシウムおよび水酸化マグネシウムを
25:Na2O:CaO:MgO(モル比)が1:
1.33:5:1になるように添加し、焼成温度を下記
に示したように調整した以外は、実施例1と同様に処理
を行い、ク溶率を測定した。結果を表−2に示す。
FIG. 1 shows the dissolution rate of phosphoric acid in the obtained product. As is clear from this, MgO / (CaO + M
As gO) (molar ratio) increased, the dissolution rate of phosphoric acid increased, reaching a maximum at a molar ratio of around 0.22. Example 6-12 in the high siliceous low grade phosphate rock used in Example 1, sodium carbonate, calcium carbonate and magnesium hydroxide P 2 O 5: Na 2 O : CaO: MgO ( molar ratio) is 1:
1.33: 5: 1, and the same treatment as in Example 1 was carried out except that the firing temperature was adjusted as shown below, and the dissolution rate was measured. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】得られた生成物のク溶率を図2に示した。
これから明らかなように焼成温度が高くなるのに伴いリ
ン酸のク溶率が増大し、焼成温度が1050℃付近で最
高に達した。 参考例1〜6 実施例1で用いた高ケイ酸質低品位リン鉱石に炭酸ナト
リウムをNa2O/P25(モル比)が下記表−3に示
した比となる様に添加し、炭酸カルシウム及び水酸化マ
グネシウムを添加せず、焼成温度を1300℃とした以
外は実施例1と同様に処理を行い、ク溶率を測定した。
結果を表−3に示す。
FIG. 2 shows the solubility of the obtained product.
As is clear from this, as the firing temperature increases, the dissolution rate of phosphoric acid increases and reaches a maximum at a firing temperature of around 1050 ° C. Reference Examples 1 to 6 Sodium carbonate was added to the high siliceous low-grade phosphate rock used in Example 1 so that the molar ratio of Na 2 O / P 2 O 5 was as shown in Table 3 below. Calcium carbonate and magnesium hydroxide were not added, and the same treatment as in Example 1 was performed except that the firing temperature was 1300 ° C., and the dissolution rate was measured.
The results are shown in Table-3.

【0027】[0027]

【表3】 [Table 3]

【0028】得られた生成物のリン酸のク溶率を図3に
−●−で示した。これから明らかなようにNa2O/P2
5(モル比)が増加するのに伴いク溶率が増大し、モ
ル比が2.50付近で最高に達した。 参考例7〜10 リン鉱石をフロリダ中央部産出の高ケイ酸質低品位リン
鉱石フロリダ57(P 25=26.3%、CaO=3
9.9%、MgO=0.31%、Al23=0.26
%、Fe23=1.46%、F=1.54%、SiO2
=24.0%)に変え、炭酸ナトリウムをNa2O/P2
5(モル比)が下記に示した値となるように添加し、
炭酸カルシウム及び水酸化マグネシウムを添加せず、焼
成温度を1300℃とした他は、実施例1と同様に処理
を行い、ク溶率を測定した。結果を表−4に示す。
FIG. 3 shows the phosphoric acid dissolution rate of the obtained product.
-●- As is clear from this, NaTwoO / PTwo
OFive(Molar ratio) increases, the dissolution rate increases.
The ratio reached a maximum around 2.50. Reference Examples 7 to 10 Phosphorous ore was produced from high siliceous low-grade phosphorus produced in central Florida.
Ore Florida 57 (P TwoOFive= 26.3%, CaO = 3
9.9%, MgO = 0.31%, AlTwoOThree= 0.26
%, FeTwoOThree= 1.46%, F = 1.54%, SiOTwo
= 24.0%) and the sodium carbonate was changed to NaTwoO / PTwo
OFive(Molar ratio) so that the value shown below,
Baking without adding calcium carbonate and magnesium hydroxide
Except that the forming temperature was 1300 ° C., the treatment was the same as in Example 1.
And the dissolution rate was measured. The results are shown in Table-4.

【0029】[0029]

【表4】 [Table 4]

【0030】得られた生成物のリン酸のク溶率を図3に
−○−で示した。これから明らかなようにNa2O/P2
5(モル比)が増加するのに伴いク溶率が増大し、モ
ル比が2.50付近で最高に達した。 参考例11〜16 実施例1で用いた高ケイ酸質低品位リン鉱石に、炭酸ナ
トリウムをNa2O/P25(モル比)が1.33にな
るように添加し、同時に炭酸カルシウムをCaO/P2
5(モル比)が下記表−5に示した値となるように添
加し、水酸化マグネシウムを添加せず、焼成温度を13
00℃とした以外は、実施例1と同様に処理を行い、ク
溶率を測定した。結果を表−5に示す。
The solubility of phosphoric acid in the obtained product is shown by -− in FIG. As is clear from this, Na 2 O / P 2
As the O 5 (molar ratio) increased, the dissolution rate increased, and reached a maximum near a molar ratio of 2.50. Reference Examples 11 to 16 Sodium carbonate was added to the high siliceous low-grade phosphorus ore used in Example 1 so that the molar ratio of Na 2 O / P 2 O 5 was 1.33, and at the same time, calcium carbonate was added. To CaO / P 2
O 5 (molar ratio) was added so as to have the value shown in Table 5 below, and magnesium hydroxide was not added.
Except that the temperature was set to 00 ° C., the same treatment as in Example 1 was performed, and the dissolution rate was measured. The results are shown in Table-5.

【0031】[0031]

【表5】 [Table 5]

【0032】得られた生成物のリン酸のク溶率を図4に
−●−で示した。これから明らかなようにCaO/P2
5(モル比)が増加するのに伴いク溶率が増大し、モ
ル比が5.0付近で最高に達した。 参考例17〜21 リン鉱石を参考例7で用いた高ケイ酸質低品位リン鉱石
フロリダ57に変え、炭酸ナトリウムをNa2O/P2
5(モル比)が1.33になるように添加し、同時に炭
酸カルシウムをCaO/P25(モル比)が下記表−6
に示した値となるように添加し、水酸化マグネシウムを
添加せず、焼成温度を1300℃とした以外は、実施例
1と同様に処理を行い、ク溶率を測定した。結果を表−
6に示す。
The phosphoric acid dissolution rate of the obtained product is shown by-●-in FIG. As is clear from this, CaO / P 2
As the O 5 (molar ratio) increased, the dissolution rate increased, and reached a maximum near the molar ratio of 5.0. REFERENCE EXAMPLES 17-21 The phosphate ore was changed to the high siliceous low-grade phosphate ore Florida 57 used in Reference Example 7, and sodium carbonate was changed to Na 2 O / P 2 O.
5 (molar ratio) was added to 1.33, and at the same time, calcium carbonate was added to CaO / P 2 O 5 (molar ratio) in the following Table-6.
Was performed in the same manner as in Example 1 except that magnesium hydroxide was not added and the sintering temperature was set to 1300 ° C., and the dissolution rate was measured. Table-Results
6 is shown.

【0033】[0033]

【表6】 [Table 6]

【0034】得られた生成物のリン酸のク溶率を図4に
−○−で示した。これから明らかなようにCaO/P2
5(モル比)が増加するのに伴いク溶率が増大し、モ
ル比が5.0付近で最高に達した。
The solubility of phosphoric acid in the obtained product is indicated by-○ in FIG. As is clear from this, CaO / P 2
As the O 5 (molar ratio) increased, the dissolution rate increased, and reached a maximum near the molar ratio of 5.0.

【0035】[0035]

【発明の効果】本発明によれば、リン酸肥料原料として
利用率の低い高ケイ酸質低品位リン鉱石に、ナトリウム
化合物、カルシウム化合物及びマグネシウム化合物を、
特定割合で添加することにより、従来より低い焼成温度
でリン酸分のク溶率が極めて高い優れた焼成リン肥を得
ることができるので、工業的、経済的に有利である。
According to the present invention, a sodium compound, a calcium compound and a magnesium compound are added to a high siliceous low-grade phosphate ore having a low utilization rate as a raw material of a phosphate fertilizer.
By adding at a specific ratio, an excellent calcined phosphorus fertilizer having an extremely high phosphoric acid dissolution rate can be obtained at a calcining temperature lower than before, which is industrially and economically advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 原料配合中のMgO/(CaO+MgO)
(モル比)と生成物のリン酸のク溶率との関係を示す。
FIG. 1 MgO / (CaO + MgO) during compounding of raw materials
The relationship between (molar ratio) and the solubility of phosphoric acid in the product is shown.

【図2】 焼成温度と生成物のリン酸のク溶率との関係
を示す。
FIG. 2 shows the relationship between the firing temperature and the phosphoric acid dissolution rate of the product.

【図3】 原料配合中のNa2O:P25(モル比)と
生成物のリン酸のク溶率との関係を示す。
FIG. 3 shows the relationship between Na 2 O: P 2 O 5 (molar ratio) and the phosphoric acid dissolution rate of the product during the mixing of the raw materials.

【図4】 原料配合中のCaO/P25(モル比)と生
成物のリン酸のク溶率との関係を示す。
FIG. 4 shows the relationship between CaO / P 2 O 5 (molar ratio) in the mixing of raw materials and the solubility of phosphoric acid in the product.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高ケイ酸質低品位リン鉱石に、ナトリ
ウム化合物、カルシウム化合物及びマグネシウム化合物
を、P25:Na2O:CaO(モル比)=1:1〜
2:4〜6かつMgO:(CaO+MgO)(モル比)
=0.05〜0.30:1となるように添加し、焼成す
ることを特徴とする焼成リン酸肥料の製造方法。
1. A high siliceous low-grade phosphate rock containing a sodium compound, a calcium compound and a magnesium compound in a molar ratio of P 2 O 5 : Na 2 O: CaO = 1: 1 to 1.
2: 4 to 6 and MgO: (CaO + MgO) (molar ratio)
= 0.05 to 0.30: 1, and calcined.
JP04058318A 1992-03-16 1992-03-16 Manufacturing method of calcined phosphate fertilizer Expired - Fee Related JP3099502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04058318A JP3099502B2 (en) 1992-03-16 1992-03-16 Manufacturing method of calcined phosphate fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04058318A JP3099502B2 (en) 1992-03-16 1992-03-16 Manufacturing method of calcined phosphate fertilizer

Publications (2)

Publication Number Publication Date
JPH05262589A JPH05262589A (en) 1993-10-12
JP3099502B2 true JP3099502B2 (en) 2000-10-16

Family

ID=13080927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04058318A Expired - Fee Related JP3099502B2 (en) 1992-03-16 1992-03-16 Manufacturing method of calcined phosphate fertilizer

Country Status (1)

Country Link
JP (1) JP3099502B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043769A1 (en) * 2004-10-18 2006-04-27 Yeun-Wook Jeung Phosphoniter and confirmatory and quantitative methods of phosphoric acid and nitrogen contained in phosphoniter
JP5574583B2 (en) * 2008-07-18 2014-08-20 日立造船株式会社 Method for producing phosphate fertilizer
JP7085351B2 (en) * 2018-01-10 2022-06-16 太平洋セメント株式会社 Silicic acid magnesium fertilizer calcined product and its manufacturing method

Also Published As

Publication number Publication date
JPH05262589A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
Ando Thermal phosphate
US2442969A (en) Manufacture of defluorinated tricalcium phosphate
JP3099502B2 (en) Manufacturing method of calcined phosphate fertilizer
US2997367A (en) Defluorination of phosphatic material
SU568355A3 (en) Process of preparing phosphoric acid
GB1520273A (en) Phosphoric acid and gypsum from phosphatic material
SU574142A3 (en) Method of preparing alkaline phosphate slag
CN106495111A (en) A kind of slag-making fluxing agent for electric furnace process phosphorus production
US4167406A (en) High temperature decomposition process for producing an alkali-containing calcined phosphate fertilizer
CN1258640A (en) Gypsum process of producing potassium sulfate and cement
SU1054337A1 (en) Method for produciing difluorized phosphates
US3514268A (en) Novel process for the manufacture of dimagnesium aluminosilicate for medical uses
US3851086A (en) Defluorinated phosphate feed supplement production
JPH01305881A (en) Calcined phosphatic fertirizer and production thereof
US3262798A (en) Aluminous cement slag composition and method of increasing compressive strength of same
SU827386A1 (en) Method of producing synthetic wollastonite
RU1773894C (en) Method of hydrothermal processing of phosphates into fertilizers
US2861869A (en) Recovery of iron, aluminum, and phosphate values from phosphorous materials
SU1581690A1 (en) Charge for sintering initial phosphate material
Akiyama Chemical Composition and Properties of Pebble-Like Substance Precipitated during Nitric-Acidulation of Phosphate Ore
SU1701628A1 (en) Method of producing extraction phosphoric acid
SU1375624A1 (en) Method of producing phosphate-magnesium fertilizer
SU441258A1 (en) Fertilizer
MacIntire et al. Behavior of a New Source of Available Magnesium for Phosphatic Fertilizers
JPS55127486A (en) Production of granular soil conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees