JP3060683B2 - Electrode catalyst support structure, fuel cell electrode and fuel cell using the same - Google Patents

Electrode catalyst support structure, fuel cell electrode and fuel cell using the same

Info

Publication number
JP3060683B2
JP3060683B2 JP3344423A JP34442391A JP3060683B2 JP 3060683 B2 JP3060683 B2 JP 3060683B2 JP 3344423 A JP3344423 A JP 3344423A JP 34442391 A JP34442391 A JP 34442391A JP 3060683 B2 JP3060683 B2 JP 3060683B2
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
electrode
platinum
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3344423A
Other languages
Japanese (ja)
Other versions
JPH05174838A (en
Inventor
繁雄 近藤
和典 高田
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3344423A priority Critical patent/JP3060683B2/en
Publication of JPH05174838A publication Critical patent/JPH05174838A/en
Application granted granted Critical
Publication of JP3060683B2 publication Critical patent/JP3060683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、白金属触媒の担持構造
に関するものであり、さらにその担持構造で触媒を担持
させて用いた燃料電池用電極とその電極を用いた燃料電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for supporting a white metal catalyst, and more particularly to an electrode for a fuel cell using a catalyst supported by the supporting structure and a fuel cell using the electrode. .

【0002】[0002]

【従来の技術】燃料極と酸素極が電解質に接してなる燃
料電池において、燃料極および酸素極での反応即ち、燃
料の酸化反応および酸素のイオン化反応を如何に効率良
くさせるかによって、燃料電池の特性が左右される。こ
れら反応の効率を上げるためには白金、パラジュウム、
ロジュウム、ルテニウム、イリディウム等の白金属触媒
が一般に使用されている。
2. Description of the Related Art In a fuel cell in which a fuel electrode and an oxygen electrode are in contact with an electrolyte, the fuel cell depends on how efficiently the reaction at the fuel electrode and the oxygen electrode, that is, the oxidation reaction of the fuel and the ionization reaction of oxygen, are improved. Characteristics are affected. In order to increase the efficiency of these reactions, platinum, palladium,
White metal catalysts such as rhodium, ruthenium and iridium are commonly used.

【0003】この白金触媒の担持方法としては一般にA
llen等の方法(H.G.Petrowet al.,U.S.P.39
92512(1976))あるいはJalan等の方法(V.M.
Jalan et al.,U.S.P.4136059(1979))が用いら
れている。これらの方法では塩化白金酸を亜硫酸水素ナ
トリウム(NaHSO4)あるいはチオ硫酸ナトリウム
(Na224)により還元することにより中間段階で
白金の硫黄化合物が生成する結果、白金の粒成長が抑え
られ極めて細かく、しかも粒径分布が揃った触媒を得る
ことができる。
As a method for supporting the platinum catalyst, A is generally used.
llen et al. (HG Petrow et al., US P. 39
92512 (1976)) or the method of Jalan et al.
Jalan et al., U.S.P. 4136059 (1979)) is used. In these methods, chloroplatinic acid is reduced with sodium hydrogen sulfite (NaHSO 4 ) or sodium thiosulfate (Na 2 S 2 O 4 ) to generate a sulfur compound of platinum in an intermediate stage, thereby suppressing grain growth of platinum. Thus, a very fine catalyst having a uniform particle size distribution can be obtained.

【0004】以下、この一例として白金をカーボンへ担
持させる方法を示す。先ず、塩化白金酸(H2PtC
6)1gを250ccの蒸留水に溶解させ、これに30
wt%の過酸化水素を攪拌しながら10.6cc加えた
後、チオ硫酸ナトリウム(Na224)水溶液(60
g/l)106ccを攪拌しながら加える事によりコロイ
ド状の白金を作成する。このコロイド状白金を、予め担
持させたいカーボンを蒸溜水100に対し1の重量割合
となるよう超音波攪拌機を用い充分に分散させたカーボ
ン分解溶液を作成し、この分散溶液を60℃に加温しな
がら滴下させカーボンに白金触媒を担持させる。この白
金担持カーボンを吸引濾過し、蒸溜水で充分洗浄を行う
ことによりカーボンに白金を担持させる。
[0004] A method of supporting platinum on carbon will be described below as an example. First, chloroplatinic acid (H 2 PtC
l 6) was dissolved 1g of 250cc of distilled water, to which 30
After adding 10.6 cc of hydrogen peroxide of wt% while stirring, an aqueous solution of sodium thiosulfate (Na 2 S 2 O 4 ) (60%) was added.
g / l) 106 cc are added with stirring to produce colloidal platinum. Using an ultrasonic stirrer, a carbon decomposition solution was prepared by sufficiently dispersing the colloidal platinum in advance so that the weight of carbon to be supported was 1 per 100 parts of distilled water, and the dispersion was heated to 60 ° C. The mixture is dropped while the platinum catalyst is supported on carbon. This platinum-carrying carbon is subjected to suction filtration and washed sufficiently with distilled water to carry the platinum on the carbon.

【0005】[0005]

【発明が解決しようとする課題】このような従来のAl
len等の方法あるいは、Jalan等の方法で作成し
たコロイド状白金属触媒には硫黄成分が残存してしま
う。硫黄成分が残っていると、燃料電池の電極用触媒と
して用いた場合、その電極反応が硫黄により阻害され特
性の経時的な劣化が大きくなるという問題を生ずる。そ
こで残留硫黄を取り除く処理がなされるが、完全に取り
除くことはきわめて困難とされている。
SUMMARY OF THE INVENTION Such a conventional Al
The sulfur component remains in the colloidal white metal catalyst prepared by the method of Len et al. or the method of Jalan et al. When the sulfur component remains, when used as a catalyst for an electrode of a fuel cell, the electrode reaction is inhibited by sulfur, and there is a problem that the deterioration with time of the characteristics is increased. Then, a treatment for removing the residual sulfur is performed, but it is extremely difficult to completely remove the sulfur.

【0006】さらにコロイド状白金触媒の担持が単に基
材との混合により行っているだけで触媒と基材との間で
の電子的接合が充分でないため電極反応において抵抗成
分が大きくなると同時に触媒の物理的な剥離が生じ易
く、燃料電池を作成した際、経時的な劣化が大きく認め
られるようになるという数々の問題を有していた。
[0006] Further, since the colloidal platinum catalyst is simply supported by mixing with the base material, the electronic bonding between the catalyst and the base material is not sufficient, so that the resistance component in the electrode reaction increases, and at the same time the catalyst is supported. Physical peeling is likely to occur, and when a fuel cell is manufactured, there has been a number of problems that deterioration over time is greatly recognized.

【0007】本発明は、上記課題を解決した電極触媒の
担持構造を提供するとともに、この構造を用いた優れた
燃料電池用電極及び燃料電池を提供することを目的とし
ている。
It is an object of the present invention to provide an electrode catalyst supporting structure which solves the above-mentioned problems, and to provide an excellent fuel cell electrode and a fuel cell using this structure.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、導電性触媒担持基材にあらかじめ有機金属
化合物の熱分解法により導電性金属酸化物を主体とする
層を形成させ、これを白金属の塩化物溶液中に浸漬させ
ることにより白金属触媒を導電性触媒担持基材表面に析
出させた構成である。
According to the present invention, in order to achieve the above object, a layer mainly composed of a conductive metal oxide is formed on a conductive catalyst-supporting substrate in advance by a thermal decomposition method of an organometallic compound, This is a configuration in which the white metal catalyst is deposited on the surface of the conductive catalyst supporting base material by immersing it in a white metal chloride solution.

【0009】[0009]

【作用】本発明は上記した構成により、白金属の塩化物
溶液がこれら導電性基材に対してその溶液の付着性が改
善され、導電性基材表面に存在する細孔内部にまで触媒
を析出させる事が可能となる。さらに、白金属の析出量
導電性基材表面に形成された導電性金属酸化物量以上
には析出しないため、白金属の析出が一定しており均一
な厚さの触媒を形成することができるものである。
According to the present invention, the white metal chloride solution improves the adhesion of the solution to these conductive substrates, and allows the catalyst to reach inside the pores existing on the surface of the conductive substrate. It becomes possible to precipitate. Moreover, since the precipitation amount of white metal is not precipitated on or formed conductive metal oxide content of the conductive base material surface, it can be white metal deposition to form a catalyst having a uniform thickness and constant Things.

【0010】[0010]

【実施例】以下、本発明の実施例について図を用いて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例による触媒形成工
程概略図である。図に示すように、触媒担持基材1の周
りに金属酸化物層2を形成させ、その周りに白金属層3
を担持させている。
FIG. 1 is a schematic diagram of a catalyst forming process according to an embodiment of the present invention. As shown in the figure, a metal oxide layer 2 is formed around a catalyst supporting substrate 1 and a white metal layer 3 is formed around the metal oxide layer 2.
Is carried.

【0012】図2は本発明の一実施例による電極構成概
略図である。図に示すように、カーボン電極4はステン
レスメッシュ5を中心に構成されており、ステンレスメ
ッシュ5には、リード電極6が接続されている。カーボ
ン電極4の周りにはカーボンを主成分とするペースト状
物7が形成され、それをイオン交換膜8をはさんで両側
に設けた構成になっている。
FIG. 2 is a schematic diagram of an electrode configuration according to one embodiment of the present invention. As shown in the figure, the carbon electrode 4 is configured around a stainless steel mesh 5, and a lead electrode 6 is connected to the stainless steel mesh 5. A paste 7 containing carbon as a main component is formed around the carbon electrode 4, and the paste 7 is provided on both sides with an ion exchange membrane 8 interposed therebetween.

【0013】図3は、本発明の一実施例による燃料電池
の概略断面図である。ポリカーボネート製のプラスチッ
ク容器9は断面aをボルト10、ナット11によって密
着させている。12は放電の際生成する水の排出孔であ
る。
FIG. 3 is a schematic sectional view of a fuel cell according to one embodiment of the present invention. The cross section a of the polycarbonate plastic container 9 is closely adhered by bolts 10 and nuts 11. Reference numeral 12 denotes a discharge hole for water generated at the time of discharge.

【0014】(実施例1)白金−カーボン触媒作成法及
びその特性について検討した。図1(a)に示すように
触媒担持基材1として、比表面積250m2/gのグラフ
ァイトを用いた。次にこのグラファイトを1mol/l
の酢酸亜鉛(Zn(CH3COO)2・2H 2O)のエタ
ノール溶液に超音波で攪拌しながら10分間浸漬後、前
記グラファイトを吸引濾過した後空気中で300℃で加
熱処理を行い、第1図(b)に示すようにその表面に酢
酸亜鉛を主体とした金属酸化物層2を設け、つづいて還
元性雰囲気中で加熱した。その後、前記金属酸化物層2
を形成した前記グラファイトを塩化白金酸水溶液を(3
00mg/l塩化白金水溶液を塩酸にてpH5に調整)中
に1分間浸漬し、その表面に白金属層3として白金を析
出させた。
(Example 1) Platinum-carbon catalyst preparation method and
And their characteristics were studied. As shown in FIG.
Specific surface area of 250 m as catalyst supporting substrate 1Two/ G graph
Aite was used. Next, 1 mol / l of this graphite
Of zinc acetate (Zn (CHThreeCOO)Two・ 2H TwoO) Eta
After immersion in a methanol solution for 10 minutes while stirring with ultrasonic waves,
The graphite is filtered by suction and heated at 300 ° C in air.
After heat treatment, vinegar is applied to the surface as shown in FIG.
A metal oxide layer 2 mainly composed of zinc oxide is provided.
Heated in a neutral atmosphere. Then, the metal oxide layer 2
The above-mentioned graphite formed with the aqueous solution of chloroplatinic acid (3
00mg / l aqueous solution of platinum chloride adjusted to pH 5 with hydrochloric acid)
For 1 minute and deposit platinum as a white metal layer 3 on the surface
Let out.

【0015】次に図2に示すような燃料電池用電極を作
成した。まず、比表面積300m2/gのカーボンブラッ
クを予めバインダーとしてフッ素樹脂(商品名 ポリフ
ロンディスパージョン(ダイキン製))と9:1,1:
1(重量比)の割合で混合した二種類のペースト状カー
ボンを作成した後、この二種類のペースト状カーボンを
1:1(重量比)で混合したものを図2(a)に示すよ
うにステンレスメッシュ5が中心になるように板状にプ
レス成形し、カーボン電極4とした。こうして作成した
カーボン電極4の周りに、白金を担持させている前記グ
ラファイトを予め前記フッ素樹脂と9:1,1:1(重
量比)の割合で混合した二種類のペースト状グラファイ
トを作成した後、この二種類のペースト状グラファイト
を1:1(重量比)で混合したものを図2(b)に示す
ようにプレス成形し電極(縦20mm、横20mm、厚さ1
mm)を作成した。
Next, a fuel cell electrode as shown in FIG. 2 was prepared. First, carbon black having a specific surface area of 300 m 2 / g was previously used as a binder and a fluororesin (trade name: Polyflon dispersion (manufactured by Daikin)) and 9: 1, 1:
After preparing two types of paste-like carbon mixed at a ratio of 1 (weight ratio), a mixture of the two types of paste-like carbon at a ratio of 1: 1 (weight ratio) is obtained as shown in FIG. The plate was press-formed into a plate shape with the stainless steel mesh 5 as the center, and the carbon electrode 4 was obtained. Around the carbon electrode 4 thus prepared, two types of paste-like graphite were prepared by previously mixing the graphite carrying platinum with the fluororesin at a ratio of 9: 1, 1: 1 (weight ratio). A mixture of these two types of pasty graphite in a ratio of 1: 1 (weight ratio) was press-formed as shown in FIG. 2 (b) to form electrodes (20 mm long, 20 mm wide, 1 mm thick).
mm).

【0016】こうして作成した電極を図2(c)に示す
ように、厚さ130μmのイオン交換膜(商品名 ナフ
ィオン117(アルドリ、4社製))を挟んでホットプ
レスを用い加圧一体化した。
As shown in FIG. 2 (c), the electrode thus formed was pressure-integrated using a hot press with an ion-exchange membrane (trade name: Nafion 117 (manufactured by Aldori, Inc.)) having a thickness of 130 μm. .

【0017】この一体化した素子を用いた燃料電池の構
成を図3に示す。この燃料電池で、陰極側には水素ガス
を、陽極側には酸素ガスを導入し、外部負荷13を通し
て動作試験を行った。図4,図5は、その結果を示した
ものである。
FIG. 3 shows the structure of a fuel cell using this integrated element. In this fuel cell, a hydrogen gas was introduced into the cathode side, and an oxygen gas was introduced into the anode side, and an operation test was performed through the external load 13. 4 and 5 show the results.

【0018】図4は、電流負荷に対する放電電圧を示し
ており、(a)は本実施例の燃料電池の特性を示してお
り、(b)は従来例の燃料電池の特性を示している。明
らかに本実施例の燃料電池の特性が優れていることがわ
かる。これは、触媒の担持基材の表面積が従来のものに
比べて大きくなっていることを示している。
FIGS. 4A and 4B show the discharge voltage with respect to the current load. FIG. 4A shows the characteristics of the fuel cell of this embodiment, and FIG. 4B shows the characteristics of the conventional fuel cell. It is clear that the characteristics of the fuel cell of this example are excellent. This indicates that the surface area of the catalyst-carrying substrate is larger than that of the conventional one.

【0019】図5は、連続負荷試験結果を示しており、
(a)は本実施例の燃料電池の特性を示しており、
(b)は従来例の燃料電池の特性を示している。(a)
は8000時間を経過しても異常なく動作しているのに
対し、(b)は暫時放電電圧が低下している様子が示さ
れている。これは、触媒の経時的な劣化によるもので、
本実施例が、経時劣化の少ない触媒担持構造となってい
ることを示している。
FIG. 5 shows the results of a continuous load test.
(A) shows the characteristics of the fuel cell of this example,
(B) shows the characteristics of the conventional fuel cell. (A)
In FIG. 3, (b) shows that the discharge voltage is temporarily lowered, while 8000 hours have passed without any trouble. This is due to the deterioration of the catalyst over time.
This example shows that the catalyst supporting structure has little deterioration over time.

【0020】(実施例2)担持させる触媒を白金からパ
ラジュウム触媒に代えた以外は実施例1と全く同様にし
て電極を作成し燃料電池を構成した。
Example 2 An electrode was prepared in the same manner as in Example 1 except that the supported catalyst was changed from platinum to a palladium catalyst, and a fuel cell was constructed.

【0021】パラジュウム触媒の担持は、担持させるカ
ーボンとして比表面積250m2/gのグラファイトを用
い、該グラファイトを1mol/lの酢酸亜鉛(Zn
(CH 3COO)2・2H2O)のエタノール溶液に超音
波で攪拌しながら10分間浸漬後、該グラファイトを吸
引濾過した後、空気中で300℃で加熱処理を行い、そ
の表面に酢酸亜鉛を主体とした層を設け、つづいて還元
性雰囲気中で加熱した。
The palladium catalyst is supported by a supported catalyst.
250m specific surface areaTwo/ G of graphite
The graphite was treated with 1 mol / l of zinc acetate (Zn).
(CH ThreeCOO)Two・ 2HTwoO) supersonic in ethanol solution
After immersing for 10 minutes while stirring with waves, absorb the graphite.
After filtration, heat treatment is performed at 300 ° C in air.
A layer mainly composed of zinc acetate on the surface of
Heated in a neutral atmosphere.

【0022】その後、酢酸亜鉛を主体とする金属酸化物
層を形成したカーボンを塩化パラジュウム水溶液(30
0mg/l塩化パラジュウム水溶液を塩酸にてpH5に調
整)中に1分間浸漬し、その表面にパラジュウムを析出
させた。
Thereafter, the carbon on which the metal oxide layer mainly composed of zinc acetate was formed was converted to a palladium chloride aqueous solution (30%).
A 0 mg / l aqueous solution of palladium chloride was adjusted to pH 5 with hydrochloric acid for 1 minute to precipitate palladium on the surface.

【0023】該触媒を用い実施例1と同様にして電極を
構成した後、燃料電池を作成し、その特性を検討したと
ころ、実施例1と全く同様の特性を示した。
After the electrode was formed in the same manner as in Example 1 using the catalyst, a fuel cell was prepared and its characteristics were examined. As a result, the characteristics were exactly the same as those in Example 1.

【0024】(実施例3)担持させる触媒を白金からロ
ジュウム触媒に代えた以外は実施例1と全く同様にして
電極を作成し燃料電池を構成した。
(Example 3) An electrode was prepared in the same manner as in Example 1 except that the supported catalyst was changed from platinum to a rhodium catalyst, and a fuel cell was constructed.

【0025】ロジュウム触媒の担持は、担持させるカー
ボンとして比表面積250m2/gのグラファイトを用
い、該グラファイトを1mol/lの酢酸亜鉛(Zn
(CH3COO)2・2H2O)のエタノール溶液に超音
波で攪拌しながら10分間浸漬後、該グラファイトを吸
引濾過した後、空気中で300℃で加熱処理を行い、そ
の表面に酢酸亜鉛を主体とした層を設け、つづいて還元
性雰囲気中で加熱した。
For supporting the rhodium catalyst, graphite having a specific surface area of 250 m 2 / g is used as the carbon to be supported, and the graphite is mixed with 1 mol / l of zinc acetate (Zn).
After immersion in an ethanol solution of (CH 3 COO) 2 .2H 2 O) for 10 minutes while stirring with ultrasonic waves, the graphite was suction-filtered, and then subjected to a heat treatment at 300 ° C. in air, and zinc acetate was applied to the surface thereof. Was provided, followed by heating in a reducing atmosphere.

【0026】その後、酢酸亜鉛を主体とする金属酸化物
層を形成したカーボンを塩化ロジュウム水溶液(250
mg/l塩化ロジュウム水溶液を塩酸にてpH5に調整)
中に1分間浸漬し、その表面にロジュウムを析出させ
た。
Thereafter, the carbon on which the metal oxide layer mainly composed of zinc acetate was formed was washed with an aqueous solution of rhodium chloride (250%).
mg / l aqueous solution of rhodium chloride adjusted to pH 5 with hydrochloric acid)
Immersion for 1 minute to deposit rhodium on the surface.

【0027】該触媒を用い実施例1と同様にして電極を
構成した後、燃料電池を作成し、その特性を検討したと
ころ、実施例1と全く同様の特性を示した。
After the electrode was formed in the same manner as in Example 1 using the catalyst, a fuel cell was prepared and its characteristics were examined. As a result, the characteristics were exactly the same as those in Example 1.

【0028】(実施例4)担持させる触媒を白金からル
テニウム触媒に代えた以外は実施例1と全く同様にして
電極を作成し燃料電池を構成した。
Example 4 An electrode was prepared in the same manner as in Example 1 except that the supported catalyst was changed from platinum to a ruthenium catalyst, and a fuel cell was constructed.

【0029】ルテニウム触媒の担持は、担持させるカー
ボンとして比表面積250m2/gのグラファイトを用
い、該グラファイトを1mol/lの酢酸亜鉛(Zn
(CH3COO)2・2H2O)のエタノール溶液に超音
波で攪拌しながら10分間浸漬後、該グラファイトを吸
引濾過した後、空気中で300℃で加熱処理を行い、そ
の表面に酢酸亜鉛を主体とした層を設け、つづいて還元
性雰囲気中で加熱した。
For supporting the ruthenium catalyst, graphite having a specific surface area of 250 m 2 / g was used as the carbon to be supported, and the graphite was mixed with 1 mol / l of zinc acetate (Zn).
After immersion in an ethanol solution of (CH 3 COO) 2 .2H 2 O) for 10 minutes while stirring with ultrasonic waves, the graphite was suction-filtered, and then subjected to a heat treatment at 300 ° C. in air, and zinc acetate was applied to the surface thereof. Was provided, followed by heating in a reducing atmosphere.

【0030】その後、酢酸亜鉛を主体とする金属酸化物
層を形成したカーボンを塩化ルテニウム水溶液(300
mg/l塩化ルテニウム水溶液を塩酸にてpH5に調整)
中に1分間浸漬し、その表面にルテニウムを析出させ
た。
Thereafter, the carbon on which the metal oxide layer mainly composed of zinc acetate was formed was converted to an aqueous ruthenium chloride solution (300
mg / l Ruthenium chloride aqueous solution is adjusted to pH 5 with hydrochloric acid)
Immersion for 1 minute to deposit ruthenium on the surface.

【0031】該触媒を用い実施例1と同様にして電極を
構成した後、燃料電池を作成し、その特性を検討したと
ころ、実施例1と全く同様の特性を示した。
After the electrode was formed in the same manner as in Example 1 using the catalyst, a fuel cell was prepared, and its characteristics were examined. As a result, the characteristics were exactly the same as those in Example 1.

【0032】(実施例5)担持させる触媒を白金からイ
リディウム触媒に代えた以外は実施例1と全く同様にし
て電極を作成し燃料電池を構成した。
Example 5 An electrode was prepared in the same manner as in Example 1 except that the catalyst to be supported was changed from platinum to an iridium catalyst, and a fuel cell was constructed.

【0033】イリディウム触媒の担持は、担持させるカ
ーボンとして比表面積250m2/gのグラファイトを用
い、該グラファイトを1mol/lの酢酸亜鉛(Zn
(CH 3COO)2・2H2O)のエタノール溶液に超音
波で攪拌しながら10分間浸漬後、該グラファイトを吸
引濾過した後、空気中で300℃で加熱処理を行い、そ
の表面に酢酸亜鉛を主体とした層を設け、つづいて還元
性雰囲気中で加熱した。
The loading of the iridium catalyst depends on the supported catalyst.
250m specific surface areaTwo/ G of graphite
The graphite was treated with 1 mol / l of zinc acetate (Zn).
(CH ThreeCOO)Two・ 2HTwoO) supersonic in ethanol solution
After immersing for 10 minutes while stirring with waves, absorb the graphite.
After filtration, heat treatment is performed at 300 ° C in air.
A layer mainly composed of zinc acetate on the surface of
Heated in a neutral atmosphere.

【0034】その後、酢酸亜鉛を主体とする金属酸化物
層を形成したカーボンを塩化イリジュム水溶液(250
mg/l塩化イリディウム水溶液を塩酸にてpH5に調
整)中に1分間浸漬し、その表面にイリディウムを析出
させた。
Thereafter, the carbon on which the metal oxide layer mainly composed of zinc acetate was formed was converted to an aqueous iridium chloride solution (250
(1 mg / l iridium chloride aqueous solution was adjusted to pH 5 with hydrochloric acid) for 1 minute to precipitate iridium on the surface.

【0035】該触媒を用い実施例1と同様にして電極を
構成した後、燃料電池を作成し、その特性を検討したと
ころ、実施例1と全く同様の特性を示した。
After the electrode was formed in the same manner as in Example 1 using the catalyst, a fuel cell was prepared and its characteristics were examined. As a result, the characteristics were exactly the same as those in Example 1.

【0036】(実施例6)担持させる触媒を白金から白
金/ロジュウム触媒に代えた以外は実施例1と全く同様
にして電極を作成し燃料電池を構成した。
(Example 6) An electrode was prepared in exactly the same manner as in Example 1 except that the supported catalyst was changed from platinum to a platinum / rhodium catalyst, and a fuel cell was constructed.

【0037】白金/ロジュウム触媒の担持は、担持させ
るカーボンとして比表面積250m2/gのグラファイト
を用い、該グラファイトを1mol/lの酢酸亜鉛(Z
n(CH3COO)2・2H2O)のエタノール溶液に超
音波で攪拌しながら10分間浸漬後、該グラファイトを
吸引濾過した後、空気中で300℃で加熱処理を行い、
その表面に酢酸亜鉛を主体とした層を設け、つづいて還
元性雰囲気中で加熱した。
For supporting the platinum / rhodium catalyst, graphite having a specific surface area of 250 m 2 / g was used as the carbon to be supported, and the graphite was mixed with 1 mol / l of zinc acetate (Z
After immersing in an ethanol solution of n (CH 3 COO) 2 .2H 2 O) for 10 minutes while stirring with ultrasonic waves, the graphite was subjected to suction filtration, and then heat-treated at 300 ° C. in the air.
A layer mainly composed of zinc acetate was provided on the surface, and subsequently heated in a reducing atmosphere.

【0038】その後、酢酸亜鉛を主体とする金属酸化物
層を形成したカーボンを塩化白金/塩化ロジュウム混合
水溶液(150mg/l塩化白金、150mg/l塩化ロジ
ュウム混合水溶液を塩酸にてpH5に調整)中に1分間
浸漬し、その表面に白金/ロジュウム混合触媒を析出さ
せた。
Thereafter, the carbon having a metal oxide layer mainly composed of zinc acetate formed thereon is mixed with a platinum chloride / rhodium chloride mixed aqueous solution (150 mg / l platinum chloride, 150 mg / l rhodium chloride mixed aqueous solution adjusted to pH 5 with hydrochloric acid). For 1 minute to precipitate a platinum / rhodium mixed catalyst on the surface.

【0039】該触媒を用い実施例1と同様にして電極を
構成した後、燃料電池を作成し、その特性を検討したと
ころ、実施例1と全く同様の特性を示した。
After the electrode was formed in the same manner as in Example 1 using the catalyst, a fuel cell was prepared and its characteristics were examined. As a result, the characteristics were exactly the same as those in Example 1.

【0040】このように本発明の実施例の触媒担持構造
によれば、経時劣化の原因となる硫黄分を含まず、触媒
表面積の大きく触媒効率のよい触媒が得られ、優れた燃
料電池を得ることができる。
As described above, according to the catalyst supporting structure of the embodiment of the present invention, a catalyst having a large catalyst surface area and a high catalyst efficiency can be obtained without containing sulfur which causes deterioration with time, and an excellent fuel cell can be obtained. be able to.

【0041】[0041]

【発明の効果】以上のように本発明の担持構造では担持
基材表面に有機金属を塗布し、その後に、非酸化雰囲気
で加熱処理を行う事によって、その表面の溌水性が改良
される結果、触媒の析出工程が水溶液中(塩化物水溶
液)であっても、触媒貴金属を担持基材表面のみならず
担持基材に存在する微細孔に均一に析出させる事が可能
となり、付着触媒表面積が大きくなる。その結果、燃料
電池の電極に本触媒を応用した際、放電性能に優れた燃
料電池が可能となり、さらに析出させた触媒には触媒毒
となる硫黄が含まれていないため経時劣化の少ない燃料
電池を提供する事ができる。
As described above, in the support structure of the present invention, the organic metal is applied to the surface of the support substrate, and then the heat treatment is performed in a non-oxidizing atmosphere, whereby the water repellency of the surface is improved. Even if the catalyst deposition step is in an aqueous solution (chloride aqueous solution), the catalyst noble metal can be uniformly deposited not only on the surface of the support substrate but also on the fine pores present in the support substrate, and the surface area of the attached catalyst can be reduced. growing. As a result, when the present catalyst is applied to an electrode of a fuel cell, a fuel cell with excellent discharge performance can be obtained. Further, the deposited catalyst does not contain sulfur that is a catalyst poison, and therefore, the fuel cell is less deteriorated with time. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による触媒形成工程概略図FIG. 1 is a schematic diagram of a catalyst forming process according to an embodiment of the present invention.

【図2】本発明の一実施例による電極構成概略図FIG. 2 is a schematic diagram of an electrode configuration according to an embodiment of the present invention.

【図3】本発明の一実施例による燃料電池の概略断面図FIG. 3 is a schematic sectional view of a fuel cell according to one embodiment of the present invention.

【図4】燃料電池特性を示す図FIG. 4 is a diagram showing characteristics of a fuel cell;

【図5】燃料電池寿命特性を示す図FIG. 5 is a diagram showing fuel cell life characteristics.

【符号の説明】[Explanation of symbols]

1 触媒担持基材 2 金属酸化物層 3 白金属層 DESCRIPTION OF SYMBOLS 1 Catalyst support base material 2 Metal oxide layer 3 White metal layer

フロントページの続き (56)参考文献 特開 昭58−166644(JP,A) 特開 昭60−82137(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/98 B01J 21/00 - 38/74 Continuation of the front page (56) References JP-A-58-166644 (JP, A) JP-A-60-82137 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 86-4/98 B01J 21/00-38/74

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一種以上の導電性金属酸化物
を主体とする層を導電性触媒担持基材表面に形成され、
これに白金属を被着させた事を特徴とする電極触媒担持
構造。
Claims: 1. A layer comprising at least one or more conductive metal oxides as a main component is formed on the surface of a conductive catalyst-carrying substrate,
An electrode catalyst supporting structure characterized in that a white metal is adhered to this.
【請求項2】 導電性金属酸化物を主体とする層は熱分
解法により形成されていることを特徴とする請求項1記
載の電極触媒担持構造。
2. The electrode catalyst supporting structure according to claim 1, wherein the layer mainly composed of a conductive metal oxide is formed by a thermal decomposition method.
【請求項3】 請求項1記載の電極触媒担持構造を用い
た事を特徴とする燃料電池用電極。
3. An electrode for a fuel cell, wherein the electrode catalyst supporting structure according to claim 1 is used.
【請求項4】 請求項3記載の燃料電池用電極を用いた
事を特徴とする燃料電池。
4. A fuel cell comprising the fuel cell electrode according to claim 3.
JP3344423A 1991-12-26 1991-12-26 Electrode catalyst support structure, fuel cell electrode and fuel cell using the same Expired - Fee Related JP3060683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344423A JP3060683B2 (en) 1991-12-26 1991-12-26 Electrode catalyst support structure, fuel cell electrode and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344423A JP3060683B2 (en) 1991-12-26 1991-12-26 Electrode catalyst support structure, fuel cell electrode and fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH05174838A JPH05174838A (en) 1993-07-13
JP3060683B2 true JP3060683B2 (en) 2000-07-10

Family

ID=18369146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344423A Expired - Fee Related JP3060683B2 (en) 1991-12-26 1991-12-26 Electrode catalyst support structure, fuel cell electrode and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3060683B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587199B2 (en) 2002-05-29 2004-11-10 日本電気株式会社 Fuel cell catalyst-carrying particles, composite electrolytes using the same, catalyst electrodes, fuel cells, and methods for producing them
KR100552697B1 (en) 2003-11-13 2006-02-20 삼성에스디아이 주식회사 Metal oxide-carbon composite catalyst support and fuel cell comprising the same
US20050282061A1 (en) * 2004-06-22 2005-12-22 Campbell Stephen A Catalyst support for an electrochemical fuel cell
JP2009259492A (en) * 2008-04-14 2009-11-05 Ricoh Co Ltd Catalyst for direct alcohol fuel cell, direct alcohol fuel cell, and electronic equipment
JP2010188243A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Catalytic material and method of producing the same
JP2012024745A (en) 2010-07-28 2012-02-09 Hitachi Ltd Catalyst material and method of manufacturing the same
CN102744110A (en) * 2012-06-06 2012-10-24 中国科学院等离子体物理研究所 Preparation method for hydrogen energy-powered low-temperature fuel cell electrode catalyst
JP6172734B2 (en) * 2013-03-04 2017-08-02 国立大学法人電気通信大学 Catalyst for polymer electrolyte fuel cell cathode and method for producing such catalyst
JP2019008864A (en) * 2015-11-10 2019-01-17 デンカ株式会社 Catalyst for gas electrode and battery

Also Published As

Publication number Publication date
JPH05174838A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
US7988834B2 (en) Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device
JP5329405B2 (en) catalyst
US8470495B2 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
US8304365B2 (en) Stabilized platinum catalyst
JPH05129023A (en) Improved catalyst material
JPS5846829B2 (en) How to manufacture fuel cell electrodes
KR20010071152A (en) Improved composition of a selective oxidation catalyst for use in fuel cells
US20140080014A1 (en) Power generation method using a fuel cell having a stabilized cathode catalyst
KR20080066852A (en) Electrocatalyst for fuel cell and method for preparing the same
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
EP0557674B1 (en) Platinum alloy catalyst and process of preparing same
JP3060683B2 (en) Electrode catalyst support structure, fuel cell electrode and fuel cell using the same
JP2005508450A (en) Improved rhodium electrocatalyst and process
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
WO2009139748A1 (en) Method of producing a stabilized platinum catalyst
JPH07246336A (en) Anode electrode catalyst for fuel cell and production thereof
US5126216A (en) Ternary alloy electrocatalysts
KR20220091753A (en) Catalyst for fuel cell and method for preparing the same
JP3648988B2 (en) Fuel cell electrode and method of manufacturing the same
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH10102273A (en) Water electrolytic cell
JP2977199B2 (en) Electrode catalyst
JPS60133662A (en) Method for manufacturing gas diffusion electrode of fuel cell
EP4141997A1 (en) Fuel cell catalyst, method for preparing the same, and fuel cell comprising the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees