JP2987670B2 - Molded product shape error judgment method by image processing - Google Patents

Molded product shape error judgment method by image processing

Info

Publication number
JP2987670B2
JP2987670B2 JP5152038A JP15203893A JP2987670B2 JP 2987670 B2 JP2987670 B2 JP 2987670B2 JP 5152038 A JP5152038 A JP 5152038A JP 15203893 A JP15203893 A JP 15203893A JP 2987670 B2 JP2987670 B2 JP 2987670B2
Authority
JP
Japan
Prior art keywords
shape
input
feature
image processing
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5152038A
Other languages
Japanese (ja)
Other versions
JPH0721380A (en
Inventor
義弘 富川
謙二 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAI KEI KEI KK
Original Assignee
WAI KEI KEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAI KEI KEI KK filed Critical WAI KEI KEI KK
Priority to JP5152038A priority Critical patent/JP2987670B2/en
Publication of JPH0721380A publication Critical patent/JPH0721380A/en
Application granted granted Critical
Publication of JP2987670B2 publication Critical patent/JP2987670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、スライドファスナーの
務歯等の成形品に対し、正常製品と異常製品の違いを画
像処理により自動的に判断させる方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically judging a difference between a normal product and an abnormal product of a molded product such as a tooth of a slide fastener by image processing.

【0002】[0002]

【従来の技術】スライドファスナーは、一対のテープに
添って多数の務歯を植つけ、この一対のテープに植え付
けられた務歯をスライダーで、噛合、離脱するものが一
般的である。この内金属スライドファスナーの務歯は、
成形機により一個毎に打ち抜き成形されている。この製
造過程において、成形機の異常等により務歯形状の異常
が現れることがあり、常に務歯形状の検査を行う必要が
ある。従来は、例えば作業者が、マイクロメーターで形
状寸法を測定したり、ルーペ等を用いて製品形状を観察
することによって、規定外寸法、務歯形状欠損、曲がり
等の加工不良を検出し、形状不良判定を行っている。
2. Description of the Related Art In general, a slide fastener is provided with a plurality of teeth which are planted along a pair of tapes, and the teeth which are planted on the pair of tapes are engaged with and disengaged by a slider. The metal slide fasteners
It is stamped and formed one by one by a molding machine. In this manufacturing process, an abnormality of the tooth shape may appear due to an abnormality of the molding machine or the like, and it is necessary to always inspect the tooth shape. Conventionally, for example, by measuring the shape and dimensions with a micrometer, or observing the product shape using a loupe, etc., it is possible to detect processing defects such as irregular dimensions, missing tooth shapes, bending, etc. Failure judgment is being performed.

【0003】この務歯形状の判断方法はマイクロメータ
ーの取扱いや目視による観察等、検査する作業者の技術
や経験など個人的な経験による影響を受け易く、検査基
準が不安定で信頼性が悪いものとなっている。
[0003] This method of determining the tooth shape is easily affected by personal experience such as the skill and experience of the inspecting operator, such as handling of a micrometer and visual observation, and the inspection standards are unstable and unreliable. It has become something.

【0004】一方、CCDカメラとCRTと画像処理用
コンピュータを備え、成形品をCCDカメラで撮影し、
その画像情報を基にコンピュータにより様々な形状を判
断する画像処理による形状判断技術が知られ、この技術
を務歯形状不良の判断に適用することによって、検査基
準が一定となって信頼性が向上する。
On the other hand, a CCD camera, a CRT, and a computer for image processing are provided.
A shape determination technology based on image processing that uses a computer to determine various shapes based on the image information is known. By applying this technology to the determination of defective tooth shape, the inspection standard is fixed and reliability is improved. I do.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
画像処理による形状不良判断方法では、対象物を限定
し、対象物特有の特徴量(面積、モーメント、特定部分
の寸法、色等)を使用し、画像処理に熟知した技術者に
よるプログラムの作成によって、不良判断装置が作成さ
れていた。このため作成された形状不良判断装置は、特
定の対象物にしか使用できずに汎用性は劣るばかりでは
なく、対象物のわずかの仕様の変更でもプログラムを書
き換えるために専門の技術者を必要とし、開発の上での
大きな問題となっていた。また、不良判断の正解率を高
めるためには、できるだけの多くの特徴量を使用し、総
合判定を行うことが望ましいが、特徴量を増やすことに
より計算量が増加し、判断結果が遅くなるという言う問
題があった。
However, in the conventional method of determining a shape defect by image processing, an object is limited, and characteristic amounts (area, moment, dimensions of a specific portion, color, etc.) specific to the object are used. A defect determination device has been created by a program created by a technician familiar with image processing. For this reason, the created shape defect judgment device can be used only for specific objects and is not only inferior in versatility, but also requires a specialized engineer to rewrite the program even if the specification of the object is slightly changed. , Had become a major problem in development. In addition, in order to increase the accuracy rate of the defect determination, it is desirable to use as many feature amounts as possible and to make a comprehensive determination. However, the increase in the feature amounts increases the amount of calculation and slows down the determination result. There was a problem to say.

【0006】そこで、本発明は、既に音声認識、文字認
識の分野で知られている階層型のニューラルネット・バ
ックプロパゲーション・アルゴリスムを成形品の形状不
良認識に適用し、前述の課題を解決する為の汎用性のあ
る画像処理による成形品形状判断方法を提供することを
目的としている。
Accordingly, the present invention solves the above-mentioned problems by applying a hierarchical neural net backpropagation algorithm already known in the fields of voice recognition and character recognition to recognition of a shape defect of a molded product. It is an object of the present invention to provide a molded article shape judging method by versatile image processing for the purpose.

【0007】[0007]

【課題を解決するための手段】成形品の汎用性のある判
断手法を実現するためには、位置ズレや回転に影響され
ない判断処理、複数の成形品に共通し、かつ、計算時間
を必要としない形状判定パラメータの選定、形状学習機
能を有することが最低限必要である。この3つの条件を
実現する手段として、特定の成形品の輪郭線形状を基準
形状とし、その基準形状から任意に選択される3点以上
の部位を基準点とし、その基準点から検出される勾配
差、周長差、距離等の位置、回転に不変な特徴を基準特
徴とし、また形状判断される成形品の輪郭線形状を入力
形状とし、その入力形状を等間隔に分割した部位を入力
部位とし、その入力部位の中から基準部位に対応させて
3点以上の部位を選択し、基準特徴に対応した勾配差、
周長差、距離等の位置、回転に不変な特徴を入力特徴と
したとき、入力特徴と基準特徴とが最も近似するように
3点以上の部位を入力部位の中から検出し、検出された
部位と基準部位が重なる様な座標変換を行うことによっ
て、基準形状と入力形状の位置合わせを行い、次に位置
合わせされた入力形状から、基準形状上で任意に設定さ
れた複数の評価領域に含まれる部位を抽出し、その部位
のX座標、Y座標データを関数級数近似によって曲線近
似し、その係数を、形状を判断するためのパラメータと
して抽出し、そのパラメータを階層型ニューラルネット
の入力データとして、成形品形状の学習及び判断を行う
ことで成形品形状判断を行うことを特徴とする画像処理
による成形品形状判断方法。
In order to realize a versatile judgment method of a molded article, a judgment processing which is not affected by positional deviation and rotation, a common processing method for a plurality of molded articles, and a calculation time are required. It is necessary at least to select a shape determination parameter and to have a shape learning function. As means for realizing these three conditions, a contour shape of a specific molded product is used as a reference shape, three or more points arbitrarily selected from the reference shape are used as reference points, and a gradient detected from the reference point is used. The features that are invariant to position, rotation, etc., such as differences, perimeter differences, distances, etc. are used as the reference features, and the contour shape of the molded product whose shape is determined is used as the input shape, and the input shape is divided into equally spaced parts. And selects three or more points from the input parts corresponding to the reference part, and calculates a gradient difference corresponding to the reference feature,
When a feature that is invariable in position and rotation such as a perimeter difference, a distance, and the like is set as an input feature, three or more sites are detected from the input site so that the input feature and the reference feature are most similar to each other. By performing coordinate transformation such that the part and the reference part overlap, the reference shape and the input shape are aligned, and then, from the aligned input shape, to a plurality of evaluation regions arbitrarily set on the reference shape. Extract the included part, and then
X- and Y-coordinate data near the curve by function series approximation
Similar, the coefficient is used as a parameter to determine the shape.
And extracted, the parameter as input data of the hierarchical neural network, the molded article shape determining method by the image processing and performs the molded article shape determined by performing learning and determination of a molded article shape.

【0008】[0008]

【作 用】本発明を適用することによって、回転や位
置ズレに影響されず、形状学習能力を利用して様々な成
形品の形状不良を判断できるので、対象物や多少の仕様
変更でも画像処理に熟知した技術者がいなくても、不良
判断装置が作成できる。
[Operation] By applying the present invention, it is possible to judge the shape defect of various molded products by utilizing the shape learning ability without being affected by rotation or positional deviation, so that image processing can be performed even for an object or a slight specification change. A defect determination device can be created without a technician familiar with the method.

【0009】[0009]

【実 施 例】図1に示すように、CCDカメラ1と、
拡大レンズ2を備えた拡大ユニット3と、成形品Aを載
置する透明なサンプルホルダ4と、そのサンプルホルダ
4の下方より光を照射する光源5と、画像処理用コンピ
ュータ6と、CRT7とより画像処理装置を構成し、成
形品AをCCDカメラ1で撮影し、その画像情報は画像
処理用コンピュータ6に入力されてCRT7に表示され
ると同時に情報処理される。前記成形品Aはスライドフ
ァスナーの務歯であり、以下成形品を務歯Aとして説明
する。
[Example] As shown in FIG.
A magnifying unit 3 having a magnifying lens 2, a transparent sample holder 4 on which the molded article A is placed, a light source 5 for irradiating light from below the sample holder 4, an image processing computer 6, and a CRT 7. An image processing apparatus is formed, and the molded article A is photographed by the CCD camera 1, and the image information is input to the image processing computer 6, displayed on the CRT 7, and processed at the same time. The molded product A is a tooth of a slide fastener.

【0010】(務歯形状判断の為の処理手順) 基準形状の入力 位置合わせ、評価領域指定の為の基準形状(図2のA)
を画像処理コンピュータ6に入力する。基準形状Aは、
形状の輪郭を示すN個の点列からなり、それぞれx座標
値、Y座標値を持つ。務歯形状は、通常テープ取り付け
部10、幅狭基部11、幅狭中間部12、幅広先端部1
3を有し、その輪郭線形状は、一側直線部14、一側直
線部14とほぼ直角にらる一側面部15、先端円弧部1
6、折曲した他側面部17、他側直線部18より成り立
つ。この基準形状上に、位置合わせの基準となる3個以
上の基準部位a,b,cを直線上に並ばないように指定
する。また、評価の対象となる評価領域B,C,Dを適
当な面積を有する4角形領域として指定する。
(Processing procedure for determining tooth shape) Input of reference shape Reference shape for position adjustment and designation of evaluation area (A in FIG. 2)
Is input to the image processing computer 6. The reference shape A is
It is made up of a series of N points indicating the outline of the shape, and has an x coordinate value and a y coordinate value, respectively. The normal tooth shape is usually a tape attachment part 10, a narrow base 11, a narrow middle part 12, a wide tip part 1.
3 has one side straight portion 14, one side portion 15 substantially perpendicular to the one side straight portion 14, and a tip arc portion 1.
6. It is composed of the bent other side surface portion 17 and the other side linear portion 18. On this reference shape, three or more reference portions a, b, and c, which are reference positions for alignment, are designated so as not to be aligned on a straight line. Also, the evaluation areas B, C, and D to be evaluated are designated as quadrangular areas having an appropriate area.

【0011】入力形状の入力 形状評価の対象となる入力形状(図3のE)をCCDカ
メラ1により、画像処理用コンピュータ6に入力する。
入力形状Eも、基準形状Aと同様に、形状の輪郭を示す
X座標値、y座標値を持つN個の点列からなる。
Input Shape Input The input shape (E in FIG. 3) to be evaluated is input to the image processing computer 6 by the CCD camera 1.
Similarly to the reference shape A, the input shape E is also composed of a sequence of N points having X coordinate values and y coordinate values indicating the outline of the shape.

【0012】基準形状上に入力形状を位置合わせす
る。 入力された入力形状Eは、外観上基準形状Aと類似して
いるが、位置、回転等のズレのためx,y座標値が異な
っており、比較すべき評価領域を入力形状上から直接見
つけだすことは不可能である。そこで、基準形状と入力
形状の位置合わせを行い、基準形状上で指定された評価
領域に含まれる入力形状上の点列を形状評価の対象とす
る。
The input shape is registered on the reference shape. The input shape E that has been input is similar in appearance to the reference shape A, but has different x and y coordinate values due to deviations in position, rotation, etc., and finds an evaluation area to be compared directly on the input shape. It is impossible. Therefore, the reference shape and the input shape are aligned, and a point sequence on the input shape included in the evaluation area specified on the reference shape is set as a shape evaluation target.

【0013】前述の部分形状に基づく位置合わせは、予
め画像処理用コンピュータ6上に記憶されている基準形
状Aにおいて予め指定された部分図2のa,b,cの情
報と、新たに入力された入力形状Bの任意の点の情報か
ら決定される評価関数fを最小にする点の組み合わせを
入力形状上から探しだし、探し出された点と基準形状上
の点が重なる様な座標変換のパラメータφ,u,vを決
定して入力データを座標変換することで両者の部分形状
を一致させることによって行う。
The registration based on the above-mentioned partial shape is performed by newly inputting the information of a, b, and c in FIG. 2 previously specified in the reference shape A stored in the image processing computer 6. A combination of points that minimizes the evaluation function f determined from the information of an arbitrary point of the input shape B is searched from the input shape, and coordinate conversion is performed such that the found point and the point on the reference shape overlap. This is performed by determining the parameters φ, u, and v and performing coordinate transformation on the input data so that the two partial shapes match.

【0014】前記評価関数fは、基準形状上の位置ズレ
や回転によって変化しない情報として、基準形状上の基
準部位(図4、a,b,c)間の距離(図4、L1)、
周長差(図4、L2)、勾配差(図4、α1)等の基準
特徴に着目し、それらの基準特徴と、入力形状上の任意
の入力部位(図3、d,e,f)で計測される距離(図
3、L3)、周長差(図3、L4)、勾配差(図3、α
2)等の入力特徴の差の自乗を全ての部位の組み合わせ
て計算し、足し合わせたものである。この評価関数f
は、両者が一致した場合は0で、それ以外は0より大き
い値をもつので、入力部位(図3、d,e,f)を適当
に変化させ、評価関数fの最小値を評価することによ
り、基準形状上の基準部位(図4、a,b,c)と条件
の最も一致する部位を入力形状上から見つけだすことが
できる。
The evaluation function f includes, as information that does not change due to displacement or rotation on the reference shape, distances between reference portions (FIGS. 4, a, b, and c) on the reference shape (FIG. 4, L1),
Focusing on reference features such as a perimeter difference (FIG. 4, L2) and a gradient difference (FIG. 4, α1), these reference features and an arbitrary input portion on the input shape (FIG. 3, d, e, f) (Fig. 3, L3), circumference difference (Fig. 3, L4), gradient difference (Fig. 3, α
The square of the difference of the input features such as 2) is calculated by combining all the parts and added. This evaluation function f
Is 0 if they match, otherwise it has a value greater than 0. Therefore, change the input part (FIG. 3, d, e, f) appropriately and evaluate the minimum value of the evaluation function f. Thus, a part that matches the condition with the reference part (FIGS. 4, a, b, and c) on the reference shape can be found on the input shape.

【0015】この評価関数fを計算式で表現すると、 評価関数f =(Σ(基準部位間の距離L1−入力部位間の距離L
3)2 ×(重み1) +(Σ(基準部位間の周長差L2−入力部位間の周長差
L4)2 ×(重み2) +(Σ(基準部位間の勾配差α1−入力部位間の勾配差
α2)2 ×(重み3) で表現できる。
When this evaluation function f is expressed by a calculation formula, an evaluation function f = (Σ (distance L between reference parts 1−distance L between input parts L
3) 2 × (weight 1) + (Σ (perimeter difference L2 between reference parts−perimeter difference L4 between input parts) 2 × (weight 2) + (Σ (gradient difference α1-input part between reference parts) Gradient difference between α2) 2 × (weight 3).

【0016】前述の評価関数fの最小値を評価すること
により、基準形状上の基準部位(図4、のa,b,c)
と条件の最も一致すること入力形状上部位(図3、a,
b,c)を検出できる。この三点がもっとも一致するよ
うに式1に示す座標変換のパラメータφ,n,vを最小
自乗法により決定し、入力形状の全点列に前記式1の座
標変換を行うことにより、入力形状Bと基準形状Aの位
置合わせが行える。
By evaluating the minimum value of the above-mentioned evaluation function f, a reference portion (a, b, c in FIG. 4) on the reference shape is obtained.
And the condition on the input shape (FIG. 3, a,
b, c) can be detected. The parameters φ, n, and v of the coordinate transformation shown in Equation 1 are determined by the least square method so that these three points are the best, and the coordinate transformation of Equation 1 is performed on all the points of the input shape. B and the reference shape A can be aligned.

【0017】[0017]

【式1】 (Equation 1)

【0018】座標変換パラメータφ,n,vは、基準形
状上の基準部位(図4、a,b,c)に対応するそれぞ
れの中心座標を(smx〔pi 〕、smy〔pi 〕、i
=1〜3、p1 ,p2 ,p3 は、a,b,cに対応)、
検出された入力形状上の入力部位(図3d,e,f)に
対応するそれぞれの中心座標を(mx〔ki 〕、my
〔ki 〕、i=1〜3、k1 ,k2 ,k3 はd,e,f
に対応)として、以下の式2で算出される。
The coordinate transformation parameters φ, n, and v represent the center coordinates (smx [p i ], smy [p i ]) corresponding to the reference parts (a, b, c) on the reference shape, respectively. i
= 1 to 3, p 1 , p 2 and p 3 correspond to a, b and c),
Input sites on the detected input shape (Fig. 3d, e, f) the respective center coordinates corresponding to (mx [k i], my
[K i ], i = 1 to 3, k 1 , k 2 , and k 3 are d, e, f
Is calculated by the following equation 2.

【0019】[0019]

【式2】 (Equation 2)

【0020】図5はこれらの操作により入力形状Eと基
準形状Aを重ね合せたものである。位置合せの精度は評
価関数の重みの規定により微妙に変化する。
FIG. 5 shows the input shape E and the reference shape A superimposed by these operations. The accuracy of the registration slightly changes depending on the weight of the evaluation function.

【0021】部分的な評価領域からの評価パラメータ
の抽出 形状誤差を判断(評価)する場合、形状識別が可能な範
囲でできるだけ少ないデータで評価する方が効率的であ
る。そこで評価する領域を図5のB,C,Dに示すよう
に最も形状異常が現れ易い部分的な領域に限定し、その
領域を評価する。この評価領域に含まれるx座標、y座
標データをそれぞれ、x〔i〕,y〔i〕で示し、公知
の最小自乗法により、下記式3のような関数級数で近似
し、その係数を評価パラメータとして抽出する。
Extraction of Evaluation Parameters from Partial Evaluation Area When determining (evaluating) a shape error, it is more efficient to evaluate with as little data as possible within a range where shape identification is possible. Therefore, the area to be evaluated is limited to a partial area where shape abnormality is most likely to appear as shown in B, C, and D of FIG. 5, and the area is evaluated. The x-coordinate and y-coordinate data contained in this evaluation area are represented by x [i] and y [i], respectively, and are approximated by a known least square method using a function series as shown in the following Expression 3, and the coefficients are evaluated. Extract as a parameter.

【0022】[0022]

【式3】 (Equation 3)

【0023】この関数近似による評価パラメータ抽出を
利用することにより、形状評価の為のパラメータを大幅
に削減できる。
By using the evaluation parameter extraction based on this function approximation, parameters for shape evaluation can be greatly reduced.

【0024】表1,表2及び図11は、上記の近似関数
として、下記式4
Tables 1 and 2 and FIG. 11 show the following equation 4 as the above approximate function.

【0025】[0025]

【式4】 (Equation 4)

【0026】の様な、iに関する4次と7次の多項式で
近似した場合と下記式5
Approximation by the 4th and 7th order polynomials with respect to i as shown in the following equation 5

【0027】[0027]

【式5】 (Equation 5)

【0028】の様な、フーリエ級数近似で近似した場合
のスライドファスナー務歯形状の判断結果の正解率を示
しており、これらの評価パラメータが成形品形状の判断
に有効であることを示している。
Shows the correct answer rate of the judgment result of the tooth shape of the slide fastener when approximated by the Fourier series approximation, and shows that these evaluation parameters are effective for the judgment of the molded article shape. .

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】評価パラメータによる入力形状の形状判
断 前述ので抽出した評価パラメータを利用して、図6に
示すような三層構造の階層型ニューラルネットモデルの
アルゴリズムを利用して、コンピュータに学習判断を行
わせる。つまり、処理を学習段階と判断段階に分割し、
学習段階では評価パラメータをニューラルネットに与え
ると同時にその形状が正常であるか不良であるかと言っ
た教師情報を入力する。判断段階では、教師情報が無く
てもコンピュータが適切な判断を与えてくれる様にな
る。このニューラルネットの学習能力を利用することに
よって、汎用的な形状判断が実現できる。(ニューラル
ネットに関しては、ニューロコンピュータの基礎、中野
馨、コロナ社、1990初版、他多数参照) これに対して、形状から抽出される評価パラメータに基
づいてプログラムによって基礎値を設定して形状を判断
する従来の方法では汎用性に劣る。
Judgment of Input Shape Based on Evaluation Parameters Using the evaluation parameters extracted as described above, the computer makes a learning judgment using an algorithm of a hierarchical neural network model having a three-layer structure as shown in FIG. Let In other words, the process is divided into a learning phase and a decision phase,
In the learning stage, the evaluation parameters are given to the neural network, and at the same time, teacher information indicating whether the shape is normal or bad is input. At the judgment stage, the computer will give an appropriate judgment even without teacher information. By utilizing the learning ability of the neural network, a general-purpose shape determination can be realized. (For neural networks, see Neuro Computer Basics, Kaoru Nakano, Corona, 1990, first edition, and many others) On the other hand, based on the evaluation parameters extracted from the shape, set the basic values by the program to determine the shape However, the conventional method is inferior in versatility.

【0032】前記図6に示すにニューラルネット、16
(10)×3ユニットの入力層20と100ユニットの
中間層21と、8ユニットの出力層22で構成される。
入力形状から抽出された評価パラメータは、それぞれ入
力層20のユニットに入力する。学習段階では、出力層
22のユニットは不良パターンを割当、入力形状を与え
ると同時に対応する不良のユニットを1それ以外を0に
設定する。学習方法は、バックプロパゲーションアルゴ
リズムを使用する。判断段階では、単に入力層20に入
力形状から抽出される評価パラメータを与え、そのとき
の出力層の反応を比較することによって、入力形状の判
断を行う。
As shown in FIG.
(10) An input layer 20 of 3 units, an intermediate layer 21 of 100 units, and an output layer 22 of 8 units.
The evaluation parameters extracted from the input shape are input to the units of the input layer 20, respectively. In the learning stage, the unit of the output layer 22 assigns a defective pattern, gives an input shape, and sets the corresponding defective unit to 1 and the others to 0. The learning method uses a back propagation algorithm. In the determination stage, the input shape is determined by simply giving an evaluation parameter extracted from the input shape to the input layer 20 and comparing the response of the output layer at that time.

【0033】前述〜までの処理を行うことによっ
て、汎用的な成形品の形状判断を行うことができる。表
1,表2,図11は、正常製品サンプル(図7)、山高
すぎサンプル(図8)、山低すぎサンプル(図9)、欠
け不良サンプル(図10)に対する判断結果を示したも
のである。近似関数の違いによる判断結果に違いはある
が、90%以上の形状判断が実現できている。
By performing the above-mentioned processes, the shape of a general-purpose molded product can be determined. Table 1, Table 2, and FIG. 11 show the determination results for the normal product sample (FIG. 7), the sample that is too high in the mountain (FIG. 8), the sample that is too low in the mountain (FIG. 9), and the sample with the defective chip (FIG. 10). is there. Although there is a difference in the determination result due to the difference in the approximate function, a shape determination of 90% or more can be realized.

【0034】[0034]

【発明の効果】特定の成形品の輪郭形状を基準形状と
し、その部分形状を基にした位置合わせを行っているの
で、比較的高速に位置ズレ回転に依存しない判断処理を
行うことができる。特定の評価領域に評価対象を限定
し、関数近似により評価パラメータの削減を行っている
ので、処理量が少なく高速に判断処理が行える。ニュー
ラルネットの学習能力を利用しているので、多様な成形
品を記憶し判断するので汎用性に優れた形状判断が行え
る。
According to the present invention, since the contour shape of a specific molded product is used as a reference shape and the positioning is performed based on the partial shape, it is possible to perform the judgment processing relatively fast without depending on the position shift rotation. Since the evaluation target is limited to a specific evaluation area and the evaluation parameters are reduced by function approximation, the processing amount is small and the judgment processing can be performed at high speed. Since the learning ability of the neural network is used, various molded products are stored and determined, so that shape determination with excellent versatility can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】画像処理装置の説明図である。FIG. 1 is an explanatory diagram of an image processing apparatus.

【図2】正しい成形品の基本形状の説明図である。FIG. 2 is an explanatory view of a basic shape of a correct molded product.

【図3】成形品の画像情報を処置した入力形状の説明図
である。
FIG. 3 is an explanatory diagram of an input shape obtained by treating image information of a molded product.

【図4】基本形状の基準点と距離、周長、勾配差の説明
図である。
FIG. 4 is an explanatory diagram of a reference point of a basic shape, a distance, a circumference, and a gradient difference.

【図5】基本形状の入力形状を位置合せした状態の説明
図である。
FIG. 5 is an explanatory diagram of a state in which input shapes of basic shapes are aligned.

【図6】ニューラルネットワークの構造説明図である。FIG. 6 is a diagram illustrating the structure of a neural network.

【図7】正常の務歯形状の説明図である。FIG. 7 is an explanatory view of a normal tooth shape.

【図8】務歯の形状不良の説明図である。FIG. 8 is an explanatory diagram of a defective shape of a working tooth.

【図9】務歯の形状不良の説明図である。FIG. 9 is an explanatory diagram of a defective shape of a working tooth.

【図10】務歯の形状不良の説明図である。FIG. 10 is an explanatory diagram of a defective shape of a working tooth.

【図11】4分類で学習率と自乗誤差量を示す図表であ
る。
FIG. 11 is a table showing a learning rate and a square error amount in four classes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 特定の成形品の輪郭線形状を基準形状と
し、その基準形状から任意に選択される3点以上の部位
を基準点とし、その基準点から検出される勾配差、周長
差、距離等の位置、回転に不変な特徴を基準特徴とし、
また形状判断される成形品の輪郭線形状を入力形状と
し、その入力形状を等間隔に分割した部位を入力部位と
し、その入力部位の中から基準部位に対応させて3点以
上の部位を選択し、基準特徴に対応した勾配差、周長
差、距離等の位置、回転に不変な特徴を入力特徴とした
とき、入力特徴と基準特徴とが最も近似するように3点
以上の部位を入力部位の中から検出し、検出された部位
と基準部位が重なる様な座標変換を行うことによって、
基準形状と入力形状の位置合わせを行い、次に位置合わ
せされた入力形状から、基準形状上で任意に設定された
複数の評価領域に含まれる部位を抽出し、その部位のX
座標、Y座標データを関数級数近似によって曲線近似
し、その係数を、形状を判断するためのパラメータとし
て抽出し、そのパラメータを階層型ニューラルネットの
入力データとして、成形品形状の学習及び判断を行うこ
とで成形品形状判断を行うことを特徴とする画像処理に
よる成形品形状判断方法。
1. A contour shape of a specific molded product is set as a reference shape, and three or more points arbitrarily selected from the reference shape are set as reference points, and a gradient difference and a circumferential length difference detected from the reference point are determined. , Features that are invariant to position, rotation, etc.
In addition, the contour shape of the molded product whose shape is determined is set as an input shape, and a portion obtained by dividing the input shape at equal intervals is set as an input portion, and three or more portions are selected from the input portions in correspondence with a reference portion. Then, when a feature such as a gradient difference, a perimeter difference, a distance, and the like corresponding to the reference feature and a feature that is invariable to rotation are input features, three or more points are input so that the input feature and the reference feature are most similar. By detecting from among the parts and performing coordinate transformation such that the detected part and the reference part overlap,
Aligns the reference shape and the input shape, from then aligned input shape, extracts a portion included in the plurality of evaluation areas set arbitrarily on the reference shape, X of the site
Curve approximation of coordinate and Y coordinate data by function series approximation
And use the coefficient as a parameter to determine the shape.
Extracting Te, the parameter as input data of the hierarchical neural network, the molded article shape determining method by the image processing and performs the molded article shape determined by performing learning and determination of a molded article shape.
JP5152038A 1993-06-23 1993-06-23 Molded product shape error judgment method by image processing Expired - Fee Related JP2987670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5152038A JP2987670B2 (en) 1993-06-23 1993-06-23 Molded product shape error judgment method by image processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5152038A JP2987670B2 (en) 1993-06-23 1993-06-23 Molded product shape error judgment method by image processing

Publications (2)

Publication Number Publication Date
JPH0721380A JPH0721380A (en) 1995-01-24
JP2987670B2 true JP2987670B2 (en) 1999-12-06

Family

ID=15531703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5152038A Expired - Fee Related JP2987670B2 (en) 1993-06-23 1993-06-23 Molded product shape error judgment method by image processing

Country Status (1)

Country Link
JP (1) JP2987670B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276743A (en) * 2000-04-28 2008-11-13 Orametrix Inc Method and system for scanning surface and preparing three-dimensional object
JP5172643B2 (en) * 2008-02-08 2013-03-27 株式会社東芝 Printed matter contamination degree determination apparatus and printed matter contamination degree determination method
WO2019064599A1 (en) * 2017-09-29 2019-04-04 日本電気株式会社 Abnormality detection device, abnormality detection method, and computer-readable recording medium

Also Published As

Publication number Publication date
JPH0721380A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
CN110766095B (en) Defect detection method based on image gray level features
EP1459035B1 (en) Method for determining corresponding points in stereoscopic three-dimensional measurements
US6987875B1 (en) Probe mark inspection method and apparatus
CN107388991A (en) A kind of more fillet axial workpiece radius of corner measuring methods in end face
CN115035092A (en) Image-based bottle detection method, device, equipment and storage medium
Kiddee et al. A practical and intuitive calibration technique for cross-line structured light
JP2987670B2 (en) Molded product shape error judgment method by image processing
CN111539927A (en) Detection process and algorithm of automobile plastic assembly fastening buckle lack-assembly detection device
JP3443083B2 (en) Method of evaluating dangerous spot information of semiconductor device pattern
Molleda et al. A profile measurement system for rail manufacturing using multiple laser range finders
CN113614774A (en) Method and system for defect detection in image data of target coating
JP2647502B2 (en) Pattern comparison inspection method and apparatus
CN112331574B (en) Method for detecting height distribution of semiconductor device
JPH065545B2 (en) Figure recognition device
Sahoo et al. A robotic assistance machine vision technique for an effective inspection and analysis
Hargas et al. Novel machine vision tools applied in biomechatronic tasks
JP2885422B2 (en) Shape evaluation device and shape evaluation method
JP2021157550A (en) Detection device and program
Shao et al. High-Speed and Accurate Method for the Gear Surface Integrity Detection Based on Visual Imaging
Gadelmawla et al. On-line measurement of product dimensions using computer vision
JP2000207557A (en) Method for measuring quantity of positional deviation
CN109100359A (en) A kind of product defects recognition methods based on machine vision
JP2018128357A (en) Shape inspection method and shape inspection device
Puda et al. Use of Industrial System Solutions for Image Processing
JPH0450709A (en) Position detecting method for scribing line crossing area

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees