JP2982041B2 - Aspherical reflecting mirror and light beam scanning optical system - Google Patents

Aspherical reflecting mirror and light beam scanning optical system

Info

Publication number
JP2982041B2
JP2982041B2 JP6289734A JP28973494A JP2982041B2 JP 2982041 B2 JP2982041 B2 JP 2982041B2 JP 6289734 A JP6289734 A JP 6289734A JP 28973494 A JP28973494 A JP 28973494A JP 2982041 B2 JP2982041 B2 JP 2982041B2
Authority
JP
Japan
Prior art keywords
scanning
light beam
reflecting mirror
aspherical
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6289734A
Other languages
Japanese (ja)
Other versions
JPH08146322A (en
Inventor
小野裕士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP6289734A priority Critical patent/JP2982041B2/en
Priority to US08/561,391 priority patent/US5812298A/en
Publication of JPH08146322A publication Critical patent/JPH08146322A/en
Application granted granted Critical
Publication of JP2982041B2 publication Critical patent/JP2982041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レーザービームプリン
タやデジタル複写機等に使用される光ビーム走査光学系
及びその中で使用される非球面反射鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam scanning optical system used for a laser beam printer, a digital copying machine, and the like, and an aspherical reflecting mirror used therein.

【0002】[0002]

【従来の技術】レーザービームプリンタやデジタル複写
機等に使用される光ビーム走査光学系の偏向器として
は、高速走査が可能なポリゴンミラーが主に使用されて
いる。ポリゴンミラーによる偏向は等角速度的に行われ
るため、偏向点を中心とする円弧軌跡上においては等速
度走査となるが、ドラム状感光体のように主走査方向に
おいて直線状である被走査面上においては、主走査方向
の走査中心と両端部で走査速度が異なり、画像の歪みを
発生する。この問題を解決するために、従来は走査面上
での走査が等速度となるように補正するfθレンズが使
用されてきた。
2. Description of the Related Art As a deflector of a light beam scanning optical system used in a laser beam printer, a digital copying machine, or the like, a polygon mirror capable of high-speed scanning is mainly used. Since the deflection by the polygon mirror is performed at a constant angular velocity, scanning is performed at a constant speed on an arc locus centered on the deflection point, but on a scanned surface that is linear in the main scanning direction such as a drum-shaped photoconductor. In, the scanning speed differs between the scanning center and both ends in the main scanning direction, and image distortion occurs. In order to solve this problem, conventionally, an fθ lens that corrects the scanning on the scanning surface so as to have a constant speed has been used.

【0003】しかし、一般に複数枚のレンズで構成され
るfθレンズは、研磨によって製造されるガラスレンズ
を使用すると高価なものとなるため、加工コストを低減
する目的でプラスチック成形により製造されるfθレン
ズが実用化されている。
However, an fθ lens generally composed of a plurality of lenses becomes expensive when a glass lens manufactured by polishing is used. Therefore, an fθ lens manufactured by plastic molding for the purpose of reducing the processing cost. Has been put to practical use.

【0004】ところが、プラスチックは温度や湿度等の
環境変化に伴う形状変化や屈折率の変動がガラスに比べ
て大きく、例えば実使用で想定される40°程度の温度
変化が生じた場合、プラスチックレンズを使用したfθ
レンズでは、走査全長の変化量が無視できない画像の伸
び縮みを引き起こす。この光学特性の悪化は、その大部
分が屈折率変動により生じる。すなわち、fθレンズを
プラスチック化すると、非球面レンズが安価に生産でき
るが、材料物性に起因する環境依存性が無視できず、光
学特性の変動が避けられないため、その適用範囲には限
界がある。
However, plastic changes in shape and refractive index due to environmental changes such as temperature and humidity are larger than those of glass. For example, when a temperature change of about 40 °, which is assumed in actual use, occurs, a plastic lens is used. Fθ using
With the lens, the amount of change in the total scanning length causes expansion and contraction of the image that cannot be ignored. Most of the deterioration of the optical characteristics is caused by a change in the refractive index. In other words, if the fθ lens is made of plastic, an aspherical lens can be produced at low cost, but the environmental dependency due to the material properties cannot be ignored, and fluctuations in optical characteristics cannot be avoided. .

【0005】また、結像特性に影響する面精度の点で
も、プラスチックレンズは不利である。一般に、レンズ
は光ビーム透過方向の厚さが透過位置により異なる偏肉
形状となるため、成形加工において冷却速度のばらつき
が生じやすく、高精度な面精度確保が非常に難しい。
[0005] Plastic lenses are also disadvantageous in terms of surface accuracy which affects the imaging characteristics. In general, since the thickness of the lens in the light beam transmission direction varies in thickness depending on the transmission position, the cooling rate tends to vary during molding, and it is extremely difficult to ensure high precision surface accuracy.

【0006】これらの問題は、光ビームを内部透過させ
ず、均一で薄肉形状の部品デザインができる凹反射鏡を
利用することにより解決できる。fθレンズに代えて、
被走査面上の走査速度を等速化する機能を持つ凹反射鏡
を利用するものとしては、従来、球面ミラーを用いるも
の(特開平1−200220号)、共軸非球面反射鏡を
用いるもの(特開平5−341218号)、主走査平面
内に定義した非円弧形状を主走査平面内で光軸と直交す
る軸の回りに回転して形成される凹樽型面の反射鏡を用
いるもの(特開平5−164981号)が提案されてい
る。
[0006] These problems can be solved by using a concave reflecting mirror which does not allow the light beam to penetrate inside and allows a uniform and thin-walled part design. Instead of fθ lens,
Conventionally, the use of a concave reflecting mirror having a function of equalizing the scanning speed on the surface to be scanned includes a method using a spherical mirror (Japanese Patent Laid-Open No. 1-220020) and a method using a coaxial aspherical reflecting mirror. (JP-A-5-341218) using a concave barrel-shaped reflecting mirror formed by rotating a non-arc shape defined in the main scanning plane around an axis orthogonal to the optical axis in the main scanning plane. (JP-A-5-164981) has been proposed.

【0007】[0007]

【発明が解決しようとする課題】ところが、球面ミラー
を用いる上記特開平1−200220号のものでは、反
射面が光軸に対し対称な形状なため、主走査方向のパワ
ーと副走査方向のパワーが全く同じとなり、偏向器とし
てポリゴンミラーを用いたときに、加工誤差及び取付け
誤差によりポリゴンミラー反射面の法線と回転軸のなす
角度が面毎に異なる現象、いわゆる面倒れを補正するた
めに、ポリゴンミラー反射面と被走査面を幾何光学的共
役関係とするには、この球面ミラーと別にアナモフィッ
ク光学素子を配置する必要があり、部品点数の増加及び
装置の複雑化を招くと共に、低コスト化に限界がある。
また、反射面形状が球面のため、光学設計の自由度が乏
しく、像面湾曲及びfθ特性を十分補正することは難し
い。
However, in Japanese Patent Application Laid-Open No. 1-220020 using a spherical mirror, since the reflecting surface is symmetrical with respect to the optical axis, the power in the main scanning direction and the power in the sub-scanning direction are reduced. When using a polygon mirror as a deflector, in order to correct the phenomenon that the angle between the normal line of the polygon mirror reflection surface and the rotation axis differs for each surface due to processing errors and mounting errors, so-called surface tilt In order to make the polygon mirror reflection surface and the scanned surface geometrically conjugate with each other, it is necessary to dispose an anamorphic optical element separately from the spherical mirror, which increases the number of parts and the complexity of the apparatus, and reduces the cost. There is a limit to conversion.
Further, since the shape of the reflecting surface is spherical, the degree of freedom in optical design is poor, and it is difficult to sufficiently correct the field curvature and the fθ characteristic.

【0008】共軸非球面の反射鏡を用いる上記特開平5
−341218号のものでは、反射鏡を非球面化し、像
面湾曲補正とfθ特性補正を行っているが、光軸に対し
て対称な共軸非球面によって主走査方向と副走査方向の
像面湾曲補正を同時に行うには、非球面反射鏡を偏向点
から被走査面までの距離の中点よりも被走査面側に配置
する必要がある。そして、副走査方向の像面湾曲は非球
面反射鏡を被走査面に近づける程良好に補正されるた
め、像面湾曲及びfθ特性を良好に補正するには、非球
面反射鏡を被走査面の直前に配置する必要がある。とこ
ろが、反射鏡を使用した光学系では、反射鏡に入射する
光ビームと反射鏡により反射された光ビームを分離する
ために、非球面反射鏡と被走査面の間に折り返しミラー
やハーフミラー等の光ビーム分離手段を設けなけれなら
ないので、副走査方向の像面湾曲を良好に補正する配置
を実現することは困難である。また、共軸非球面を使用
するため、偏向点と被走査面を幾何光学的な共役にでき
ないので、ポリゴンミラー等の複数の反射面を持つ偏向
器を使用した場合は、走査線のピッチむらを補正できな
い問題がある。
The above-mentioned Japanese Patent Application Laid-Open No. Hei 5 (1993) using a coaxial aspherical reflecting mirror.
In the case of -341218, the reflecting mirror is made aspherical, and the field curvature correction and the fθ characteristic correction are performed. However, the image planes in the main scanning direction and the sub-scanning direction are formed by a coaxial aspherical surface symmetrical with respect to the optical axis. To perform the curvature correction at the same time, it is necessary to arrange the aspherical reflecting mirror closer to the scanned surface than the midpoint of the distance from the deflection point to the scanned surface. Since the curvature of field in the sub-scanning direction is corrected better as the aspherical reflecting mirror is brought closer to the surface to be scanned, in order to correct the curvature of field and the fθ characteristic satisfactorily, the aspherical reflecting mirror must be moved toward the surface to be scanned. Must be placed immediately before However, in an optical system using a reflecting mirror, in order to separate a light beam incident on the reflecting mirror and a light beam reflected by the reflecting mirror, a folding mirror, a half mirror, or the like is provided between the aspherical reflecting mirror and the surface to be scanned. Therefore, it is difficult to realize an arrangement for satisfactorily correcting the curvature of field in the sub-scanning direction. Further, since a coaxial aspherical surface is used, the deflection point and the surface to be scanned cannot be geometrically conjugated to each other. Therefore, when a deflector having a plurality of reflecting surfaces such as a polygon mirror is used, the scanning line pitch unevenness is increased. There is a problem that cannot be corrected.

【0009】非円弧形状を回転させた凹樽型面の反射鏡
を用いた上記特開平5−164981号のものでは、反
射鏡のみで光学特性の補正と面倒れ補正が行えるが、反
射面を回転対称形状としたため、良好な光学特性が得ら
れる非球面反射鏡の配置が限定される。すなわち、主走
査面内に定義された非円弧形状を、偏向点と被走査面を
幾何光学的な共役関係とするために必要な曲率半径で回
転させるため、主走査方向の結像関係と副走査方向の結
像関係を独立に決定することはできず、主走査方向及び
副走査方向の像面湾曲補正とfθ特性を良好に補正でき
る非球面反射鏡の配置は、偏向点から被走査面までの距
離のほぼ中央付近に限定されてしまう。そして、非球面
反射鏡を中央より偏向器側に近づけると、副走査方向の
像面湾曲がアンダーになり、非球面反射鏡を中央より被
走査面側に近づけると、副走査方向の像面湾曲がオーバ
ーになってしまう。また、主走査面内の形状を円錐定数
により表される非球面形状としているため、高次展開項
の非球面係数を独立に決定することができず、主走査方
向像面湾曲とfθ特性の補正に限界がある。
In the above-mentioned Japanese Patent Application Laid-Open No. Hei 5-164981 using a concave barrel-shaped reflecting mirror having a non-circular shape rotated, correction of optical characteristics and correction of surface tilt can be performed only by the reflecting mirror. Because of the rotationally symmetric shape, the arrangement of the aspherical reflecting mirror that can obtain good optical characteristics is limited. That is, in order to rotate the non-circular shape defined in the main scanning plane at the radius of curvature necessary to make the deflection point and the scanned surface geometrically conjugate, the imaging relation in the main scanning direction and the auxiliary The imaging relationship in the scanning direction cannot be determined independently, and the arrangement of the aspherical reflecting mirror that can satisfactorily correct the field curvature in the main scanning direction and the sub-scanning direction and the fθ characteristic can be determined from the deflection point to the surface to be scanned. It is limited to almost the center of the distance to. When the aspherical reflecting mirror is closer to the deflector side than the center, the field curvature in the sub-scanning direction is under. When the aspherical reflecting mirror is closer to the surface to be scanned than the center, the field curvature in the sub-scanning direction is lower. Will be over. Further, since the shape in the main scanning plane is an aspherical shape represented by a conical constant, the aspherical coefficient of the higher order expansion term cannot be determined independently, and the field curvature in the main scanning direction and the fθ characteristic There is a limit to correction.

【0010】本発明は上述した従来技術の問題点を鑑み
てなされたものであり、その目的は、偏向器と被走査面
の間に集光特性を持つ光学素子として非球面反射鏡のみ
が配置される光ビーム走査光学系でありながら、主走査
方向及び副走査方向の光学特性を非球面反射鏡の配置に
よらず良好に補正でき、しかも、ポリゴンミラーの面倒
れ補正機能を備えた高密度な光走査を可能ならしめる非
球面反射鏡と光ビーム走査光学系を提供することであ
る。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to arrange only an aspherical reflecting mirror as an optical element having a light condensing property between a deflector and a surface to be scanned. Despite being a light beam scanning optical system, the optical characteristics in the main scanning direction and sub-scanning direction can be corrected well regardless of the arrangement of the aspherical reflecting mirror, and high-density with a polygon mirror surface tilt correction function An object of the present invention is to provide an aspherical reflecting mirror and a light beam scanning optical system capable of performing an optical scanning.

【0011】[0011]

【課題を解決するための手段】上記目的を達成する本発
明の第1の非球面反射鏡は、光源から発せられた光ビー
ムが光源と偏向器の間に設けられた光学系により主走査
平面と平行な線像として集光され、偏向器によって等角
速度的に反射偏向された偏向光ビームを反射して被走査
面上にスポット結像させると共に、等速度的な光走査を
行う非球面反射鏡である。ここで、主走査平面とは、光
ビームの主光線の掃引により形成される平面を言い、副
走査平面とは、光軸と平行で主走査平面に直交する平面
を言う。
According to a first aspherical reflecting mirror of the present invention, which achieves the above object, a light beam emitted from a light source is provided on a main scanning plane by an optical system provided between the light source and a deflector. Aspherical reflection that reflects a deflected light beam that is condensed as a linear image parallel to and deflected by a deflector and is reflected and deflected at a uniform angular velocity to form a spot image on the surface to be scanned and also to perform constant-speed optical scanning It is a mirror. Here, the main scanning plane refers to a plane formed by sweeping the principal ray of the light beam, and the sub-scanning plane refers to a plane parallel to the optical axis and orthogonal to the main scanning plane.

【0012】すなわち、この第1の非球面反射鏡は、偏
向面近傍に主走査平面と平行な線像として集光され、偏
向器によって等角速度的に偏向される光ビームを反射し
て被走査面上にスポット結像させると共に、等速度的な
光走査を行うための非球面反射鏡であって、光軸を含む
主走査平面内における形状が、光軸方向の座標をZ、光
軸と直交し主走査平面内に含まれる座標をYとしたと
き、 Z(Y)=AY2 +BY4 +CY6 +DY8 +EY10 (A,B,C,D:係数) なる数式で表され、係数A及びCが、 A<0 かつ C<0 なる条件を満足すると共に、光軸と平行で主走査平面に
直交する副走査面内における形状が、主走査方向の何れ
の位置でも偏向面と被走査面の幾何光学的な共役関係を
満足する円弧であることを特徴とするものである。
That is, the first aspherical reflecting mirror condenses a linear image parallel to the main scanning plane in the vicinity of the deflecting surface, reflects the light beam deflected at a uniform angular velocity by the deflector, and scans the light beam. An aspherical reflecting mirror for spot imaging on a surface and performing uniform speed optical scanning, wherein the shape in the main scanning plane including the optical axis is such that the coordinates in the optical axis direction are Z, Assuming that the coordinates orthogonal to each other and included in the main scanning plane are Y, Z (Y) = AY 2 + BY 4 + CY 6 + DY 8 + EY 10 (A, B, C, D: coefficient) And C satisfy the conditions of A <0 and C <0, and the shape in the sub-scanning plane which is parallel to the optical axis and orthogonal to the main scanning plane has any shape in the main scanning direction. Characterized in that the arc satisfies the geometric optic conjugate relationship of the surface It is.

【0013】本発明の第2の非球面反射鏡は、上記第1
の非球面反射鏡において、光軸と直交する副走査平面内
に含まれる座標をXとし、副走査平面内の曲率半径R
(Y)が、 R(Y)=a0 +a2 2 +a4 4 +a6 6 (a0 ,a2 ,a4 ,a6 :係数)なる数式で表される
とき、反射面の非球面形状が、 Z(X,Y)=Z(Y)+R(Y)−{R(Y)2 −X
2 1/2 なる数式で表されることを特徴とするものである。
The second aspherical reflecting mirror of the present invention is characterized in that the first
In the aspherical reflecting mirror, the coordinate included in the sub-scanning plane orthogonal to the optical axis is X, and the radius of curvature R in the sub-scanning plane is
When (Y) is represented by the following formula: R (Y) = a 0 + a 2 Y 2 + a 4 Y 4 + a 6 Y 6 (a 0 , a 2 , a 4 , a 6 : coefficient), The aspheric surface shape is expressed as follows: Z (X, Y) = Z (Y) + R (Y) − {R (Y) 2 −X
It is characterized by being expressed by an equation of 21/2 .

【0014】本発明の光ビーム走査光学系は、変調され
た光ビームを発生する光源と、光源からの光ビームを主
走査平面と平行な線像として結像させる光学系と、前記
線像近傍に反射面を有し光ビームを等角速度的に偏向さ
せる偏向器と、偏向光ビームを反射し被走査面上を等速
度的に光走査させる非球面反射鏡とを備え、前記非球面
反射鏡が上記第1又は第2の非球面反射鏡であることを
特徴とするものである。
A light beam scanning optical system according to the present invention comprises: a light source for generating a modulated light beam; an optical system for forming the light beam from the light source as a line image parallel to the main scanning plane; A deflector having a reflecting surface and deflecting the light beam at a constant angular velocity; and an aspherical reflecting mirror for reflecting the deflected light beam and scanning the surface to be scanned at a constant speed, wherein the aspherical reflecting mirror is provided. Is the above-mentioned first or second aspherical reflecting mirror.

【0015】ここで、光源には半導体レーザが使用でき
る。光源と偏向器の間に配置された光学系は、光源から
発せられる発散光ビームを主走査方向と副走査方向で異
なる位置に結像させる結像特性を持つ光学系であり、副
走査方向においては、偏向器の反射面近傍に結像させる
機能を持つものである。偏向器は、光源と偏向器の間に
配置された光学系による線状結像の近傍に反射面を有
し、高速走査が可能なポリゴンミラー等が使用できる。
Here, a semiconductor laser can be used as the light source. The optical system disposed between the light source and the deflector is an optical system having an imaging characteristic of forming a divergent light beam emitted from the light source at different positions in the main scanning direction and the sub scanning direction, and in the sub scanning direction. Has a function of forming an image near the reflection surface of the deflector. As the deflector, a polygon mirror or the like having a reflection surface near a linear image formed by an optical system disposed between the light source and the deflector and capable of high-speed scanning can be used.

【0016】上記の光ビーム走査光学系において、偏向
点から前記非球面反射鏡までの距離をLm 、偏向点から
被走査面までの距離をL0 としたとき、 0.3<Lm /L0 <0.7 なる条件を満足することが望ましい。
In the above light beam scanning optical system, when the distance from the deflection point to the aspherical reflecting mirror is L m and the distance from the deflection point to the surface to be scanned is L 0 , 0.3 <L m / It is desirable to satisfy the condition L 0 <0.7.

【0017】また、被走査面上における走査中心から走
査端までの距離をY0 としたとき、 1.25<1/(2|A|Y0 )−2.43(Lm /L
0 )<1.53 なる関係を満足することが望ましい。
When the distance from the scanning center to the scanning end on the surface to be scanned is Y 0 , 1.25 <1 / (2 | A | Y 0 ) −2.43 (L m / L
0 ) <1.53.

【0018】[0018]

【作用】以下、上記構成の作用について説明する。本発
明の第1の非球面反射鏡は、光軸を含む主走査平面内に
おける形状を、光軸方向の座標をZ、光軸と直交し主走
査平面内に含まれる座標をYとしたとき、 Z(Y)=AY2 +BY4 +CY6 +DY8 +EY10 (A,B,C,D:係数)なる数式で表される非円弧形
状としたため、光軸近傍と非球面反射鏡端部の主走査面
内の形状を独立に設定可能となり、偏向光ビームの主走
査平面内集光位置と走査速度の等速度性を良好に補正で
きる。
The operation of the above configuration will be described below. The first aspherical reflecting mirror of the present invention has a shape in the main scanning plane including the optical axis, wherein the coordinate in the optical axis direction is Z, and the coordinate orthogonal to the optical axis and included in the main scanning plane is Y. , Z (Y) = AY 2 + BY 4 + CY 6 + DY 8 + EY 10 (A, B, C, D: Coefficients) Since the shape is a non-circular arc, the vicinity of the optical axis and the end of the aspherical reflecting mirror are The shape in the main scanning plane can be set independently, and the uniformity of the converging position of the deflected light beam in the main scanning plane and the scanning speed can be favorably corrected.

【0019】さて、上記数式における非球面係数と主走
査方向像面湾曲特性及び走査位置精度との関係を詳細に
検討する。ここで、走査位置精度とは、任意の偏向角に
対する理想走査位置と実際の走査位置の差を表してい
る。理想走査位置は、最大偏向角に対する像高(被走査
面における走査中心からの光ビーム到達位置までの距
離)を基準とし、任意偏向角と最大偏向角との比例関係
から求める。
Now, the relationship between the aspheric coefficient in the above equation, the curvature of field in the main scanning direction, and the scanning position accuracy will be examined in detail. Here, the scanning position accuracy indicates a difference between an ideal scanning position and an actual scanning position for an arbitrary deflection angle. The ideal scanning position is obtained from the proportional relationship between the arbitrary deflection angle and the maximum deflection angle with reference to the image height (the distance from the scanning center on the surface to be scanned to the light beam arrival position) on the maximum deflection angle.

【0020】図14は、非球面係数の補正効果を示した
グラフの1例である。横軸に像面湾曲、縦軸に走査位置
精度をとり、2次、4次、6次の非球面係数を0から変
化させたときの光学特性の変化を示している。なお、グ
ラフ原点が理想的な補正状態を示している。
FIG. 14 is an example of a graph showing the effect of correcting the aspheric coefficient. The horizontal axis indicates the curvature of field, and the vertical axis indicates the scanning position accuracy. The change in the optical characteristics when the second-order, fourth-order, and sixth-order aspherical coefficients are changed from 0 is shown. The origin of the graph indicates an ideal correction state.

【0021】このグラフから、2次、4次、6次の非球
面係数を変化させると、主走査方向像面湾曲、走査位置
精度が共に変化することが分かる。そして、2次の非球
面係数Aと4次の非球面係数Bによる効果は相互に直交
する方向に現れ、AとBを適宜選択することにより、主
走査方向像面湾曲と走査位置精度を同時に補正できるこ
とが分かる。
From this graph, it can be seen that changing the second-order, fourth-order, and sixth-order aspherical coefficients changes both the field curvature in the main scanning direction and the scanning position accuracy. The effects of the second-order aspherical coefficient A and the fourth-order aspherical coefficient B appear in directions orthogonal to each other. By appropriately selecting A and B, the field curvature in the main scanning direction and the scanning position accuracy can be simultaneously achieved. It can be seen that the correction can be made.

【0022】さらに、6次の非球面係数Cの効果を検討
した結果、2次の非球面係数Aと4次の非球面係数Bを
適宜選択した後に、補正不十分である光学特性を補正す
る働きがあることが分かった。
Further, as a result of examining the effect of the sixth-order aspherical coefficient C, after appropriately selecting the second-order aspherical coefficient A and the fourth-order aspherical coefficient B, the insufficiently corrected optical characteristics are corrected. I found that there was work.

【0023】以上述べたように、光軸を含む主走査平面
内における形状を、 Z(Y)=AY2 +BY4 +CY6 +DY8 +EY10 なる数式で表される非円弧形状とし、非球面係数A,
B,Cを適宜選択することで、主走査方向像面湾曲と走
査位置精度を良好に補正することができる。ここで、8
次及び10次の非球面係数D,E、さらに高次の非球面
項を加えてもよいことは言うまでもない。
As described above, the shape in the main scanning plane including the optical axis is defined as Z (Y) = AY 2 + BY 4 + CY 6 + DY 8 + EY 10. A,
By appropriately selecting B and C, it is possible to satisfactorily correct the field curvature in the main scanning direction and the scanning position accuracy. Where 8
It goes without saying that higher order aspherical terms D and E and higher order aspherical terms may be added.

【0024】また、主走査方向像面湾曲と走査位置精度
を良好に補正するときに必要な非球面係数A,B,Cの
条件について検討した結果、6次の非球面係数Cを2次
の非球面係数Aとが、 A<0 かつ C<0 なる条件を満足する必要があることが分かった。AとC
の符号が異なると、主走査方向像面湾曲補正と走査位置
精度補正のバランスが崩れてしまい、目的達成が困難に
なる。
Further, as a result of examining the conditions of the aspherical coefficients A, B, and C necessary for favorably correcting the field curvature in the main scanning direction and the scanning position accuracy, the sixth order aspherical surface coefficient C was changed to the second order. It has been found that the aspherical coefficient A needs to satisfy the conditions of A <0 and C <0. A and C
Are different, the balance between the field curvature correction in the main scanning direction and the correction of the scanning position accuracy is lost, and it is difficult to achieve the object.

【0025】そして、副走査面内における形状を、偏向
器の反射面と被走査面を幾何光学的な共役関係とする円
弧形状としたため、偏向器反射面の面倒れにより走査面
上で発生する走査線むらが補正できる。
Since the shape in the sub-scanning surface is an arc shape in which the reflecting surface of the deflector and the surface to be scanned are in a geometrically conjugate relationship, it is generated on the scanning surface due to the inclination of the reflecting surface of the deflector. Scan line unevenness can be corrected.

【0026】次に、本発明の第2の非球面反射鏡は、主
走査平面内の光学特性を良好に補正する第1の非球面反
射鏡に加えて、副走査方向集光位置を良好に補正するた
めの非球面形状を規定しているものである。
Next, the second aspherical reflecting mirror according to the present invention, in addition to the first aspherical reflecting mirror which satisfactorily corrects the optical characteristics in the main scanning plane, also has a good focusing position in the sub-scanning direction. This defines an aspherical shape for correction.

【0027】副走査方向平面内の曲率半径を、 R(Y)=a0 +a2 2 +a4 4 +a6 6 (a0 ,a2 ,a4 ,a6 :係数)なる数式で表すこと
により、任意の主走査位置における副走査平面内曲率半
径R(Y)を任意に決定できる。このことは、何れの偏
向角に対しても、偏向点と被走査面を幾何光学的な共役
関係にできることを示している。
The radius of curvature in the plane in the sub-scanning direction is expressed by the following formula: R (Y) = a 0 + a 2 Y 2 + a 4 Y 4 + a 6 Y 6 (a 0 , a 2 , a 4 , a 6 : coefficient) By expressing, the radius of curvature R (Y) in the sub-scanning plane at an arbitrary main scanning position can be arbitrarily determined. This indicates that the deflecting point and the surface to be scanned can have a geometrical conjugate relationship for any deflection angle.

【0028】そして、反射面を、第1の非球面反射鏡の
主走査平面内の形状Z(Y)と組み合わせて、 Z(X,Y)=Z(Y)+R(Y)−{R(Y)2 −X
2 1/2 なる数式で表される非球面形状とすることにより、主走
査平面内形状と副走査方向形状をそれぞれ独立に決定す
ることが可能となり、主走査方向像面湾曲、副走査方向
像面湾曲、走査位置精度を全て良好に補正することがで
きる。
Then, by combining the reflecting surface with the shape Z (Y) in the main scanning plane of the first aspherical reflecting mirror, Z (X, Y) = Z (Y) + R (Y)-{R ( Y) 2 -X
By using an aspherical shape represented by a mathematical formula of 21/2, it is possible to determine the shape in the main scanning plane and the shape in the sub-scanning direction independently of each other. It is possible to satisfactorily correct the field curvature and the scanning position accuracy.

【0029】本発明の光ビーム走査光学系は、光源と偏
向器の間に線状結像機能を持つ光学系を配置し、上記第
1又は第2の非球面反射鏡を用いた光ビーム走査光学系
であり、光ビーム走査光学系に要求される光学特性を良
好に補正することが可能となる。
In the light beam scanning optical system of the present invention, an optical system having a linear image forming function is arranged between a light source and a deflector, and the light beam scanning optical system using the first or second aspherical reflecting mirror is used. It is an optical system, and it is possible to satisfactorily correct optical characteristics required for a light beam scanning optical system.

【0030】そして、この光ビーム走査光学系におい
て、偏向器への光ビームの入射や非球面反射鏡からの反
射光ビームを被走査面に導くための光ビーム分離手段等
を配置するための空間を確保するために、偏向点から前
記非球面反射鏡までの距離をLm 、偏向点から被走査面
までの距離をL0 としたとき、 0.3<Lm /L0 <0.7 なる条件を満足する必要があり、この条件式の下限の
0.3を越えると、偏向器と非球面反射鏡の間隔が狭ま
りすぎて、偏向器へ光ビームを入射することが困難とな
る。また、上記条件式の上限の0.7を越えると、非球
面反射鏡と被走査面の間隔が狭まりすぎて、非球面反射
鏡からの反射光ビームを被走査面に導くことが困難とな
る。
In this light beam scanning optical system, a space for arranging a light beam separating means for inputting the light beam to the deflector and guiding the reflected light beam from the aspherical reflecting mirror to the surface to be scanned is provided. 0.3 <L m / L 0 <0.7, where L m is the distance from the deflection point to the aspherical reflecting mirror and L 0 is the distance from the deflection point to the surface to be scanned. If the lower limit of 0.3 of the conditional expression is exceeded, the distance between the deflector and the aspherical reflecting mirror becomes too small, and it becomes difficult for the light beam to enter the deflector. If the upper limit of 0.7 of the above conditional expression is exceeded, the distance between the aspherical reflecting mirror and the surface to be scanned is too small, and it is difficult to guide the light beam reflected from the aspherical reflecting mirror to the surface to be scanned. .

【0031】さらに、走査位置精度を良好に補正するた
めの条件として、主走査平面内の非円弧形状を表す数式
の2次の係数をA、被走査面上における走査中心から走
査端までの距離Y0 、偏向点から非球面反射鏡までの距
離をL、偏向点から被走査面までの距離をLとし
たとき、 1.25<1/(2|A|Y0 )−2.43(Lm /L
0 )<1.53 なる関係を満足する必要がある。この条件式の上限の
1.53を越えると、負の走査位置誤差が過大になり、
下限の1.25を越えると、正の走査位置誤差が過大と
なり、何れも走査位置精度が悪化してしまう。
Further, as a condition for satisfactorily correcting the scanning position accuracy, a quadratic coefficient of an equation representing a non-circular shape in the main scanning plane is represented by A, and a distance from the scanning center to the scanning end on the surface to be scanned. If Y 0 , the distance from the deflection point to the aspherical reflecting mirror is L m , and the distance from the deflection point to the surface to be scanned is L 0 , 1.25 <1 / (2 | A | Y 0 ) -2. 43 (L m / L
0 ) <1.53. When the value exceeds the upper limit of 1.53 of the conditional expression, a negative scanning position error becomes excessive, and
If the lower limit of 1.25 is exceeded, the positive scanning position error becomes excessively large, and in any case, the scanning position accuracy deteriorates.

【0032】[0032]

【実施例】以下、本発明の非球面反射鏡及び光ビーム走
査光学系を具体的な実施例に基づいて図面を参照しなが
ら説明する。図1は、本発明による非球面反射鏡の1実
施例の面形状を説明するための図である。図1のように
直交する座標軸X,Y,Zが定義され、Z軸が光軸、Y
Z平面が主走査平面に対応する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An aspherical reflecting mirror and a light beam scanning optical system according to the present invention will be described below based on specific embodiments with reference to the drawings. FIG. 1 is a diagram for explaining the surface shape of an embodiment of an aspherical reflecting mirror according to the present invention. As shown in FIG. 1, orthogonal coordinate axes X, Y, and Z are defined.
The Z plane corresponds to the main scanning plane.

【0033】YZ平面内に定義される非円弧Z(Y)
は、主走査方向像面湾曲と走査位置精度を補正する形状
として決定される。また、光軸と平行な副走査平面、す
なわち、XZ平面に平行な平面内における非球面反射鏡
の形状は、偏向角によらず偏向器の反射面と被走査面を
幾何光学的共役関係とする凹円弧形状として決定され
る。
Non-circular arc Z (Y) defined in the YZ plane
Is determined as a shape for correcting field curvature and scanning position accuracy in the main scanning direction. The shape of the aspherical reflecting mirror in the sub-scanning plane parallel to the optical axis, that is, in the plane parallel to the XZ plane, is such that the reflecting surface of the deflector and the surface to be scanned have a geometrical conjugate relationship regardless of the deflection angle. Is determined as a concave arc shape.

【0034】偏向角によらず偏向点と被走査面を幾何光
学的な共役関係とするには、集光特性を損なわない滑ら
か曲面であり、かつ、Y軸に沿った任意の位置における
円弧の曲率半径が最適な値として決定されればよい。
In order for the deflection point and the surface to be scanned to be in a geometrical conjugate relationship regardless of the deflection angle, a smooth curved surface which does not impair the light condensing characteristic and a circular arc at an arbitrary position along the Y axis are required. The radius of curvature may be determined as an optimal value.

【0035】光軸と平行な副走査平面内における曲率半
径を、主走査平面内に定義した上記非円弧Z(Y)を、
光軸上で偏向点と被走査面を幾何光学的な共役関係を満
たす円弧の曲率中心Oを通り、Y軸と平行な回転対称軸
11の回りに回転させたものとした場合、光軸上ではr
1 、端部ではr2 となる。ところが、このような回転対
称非球面は、主走査平面内と副走査平面内それぞれの形
状を独立に決定できず、どちらかの光学特性を犠牲にす
るか、補正を均等に割り振る等を行う必要がある。
The non-circular arc Z (Y) defined in the main scanning plane is defined by the radius of curvature in the sub-scanning plane parallel to the optical axis.
When the deflection point and the surface to be scanned on the optical axis are rotated around a rotational symmetry axis 11 parallel to the Y axis through the center of curvature O of an arc satisfying the geometrical conjugate relationship, Then r
1 and r 2 at the end. However, such a rotationally symmetric aspherical surface cannot determine the shape in the main scanning plane and the shape in the sub-scanning plane independently, and it is necessary to sacrifice one of the optical characteristics or to allocate corrections uniformly. There is.

【0036】そこで、主走査平面内、副走査平面内の光
学特性を独立に補正できるようにするには、主走査平面
内の形状がXを含まない数式として、副走査平面内の形
状がYのみの関数で定義されればよい。このような面形
状は、主走査平面内における非円弧形状Z(Y)を、 Z(Y)=AY2 +BY4 +CY6 +DY8 +EY10 (A,B,C,D:係数)により、副走査平面内の曲率
半径R(Y)を、 R(Y)=a0 +a2 2 +a4 4 +a6 6 (a0 ,a2 ,a4 ,a6 :係数)により定義し、反射
面の非球面形状を、 Z(X,Y)=Z(Y)+R(Y)−{R(Y)2 −X
2 1/2 なる式で表される非球面反射鏡により実現できる。
Therefore, in order to be able to independently correct the optical characteristics in the main scanning plane and the sub-scanning plane, the shape in the main scanning plane is expressed as a mathematical expression not including X, and the shape in the sub-scanning plane is defined as Y. Only the function needs to be defined. Such a surface shape is obtained by substituting the non-arc shape Z (Y) in the main scanning plane by Z (Y) = AY 2 + BY 4 + CY 6 + DY 8 + EY 10 (A, B, C, D: coefficients). the curvature radius R of the scanning plane (Y), R (Y) = a 0 + a 2 Y 2 + a 4 Y 4 + a 6 Y 6 (a 0, a 2, a 4, a 6: factor) to define, The aspherical shape of the reflecting surface is expressed as follows: Z (X, Y) = Z (Y) + R (Y) − {R (Y) 2 −X
It can be realized by an aspherical reflecting mirror expressed by the formula 2 21/2 .

【0037】例えば、図1に示した例は、端部における
曲率半径r2 ’を、主走査平面内に定義された非円弧Z
(Y)を回転軸11を中心に回転させて決定される曲率
半径r2 よりも小さくした場合を示すものである。な
お、曲率半径の大きさは、 r2 ’>r2 の関係にあってもよく、また、非球面反射鏡の配置、具
体的には、偏向点から非球面反射鏡までの距離をLm
偏向点から被走査面までの距離をL0 としたとき、 0.35<Lm /L0 <0.4 なる条件を満足する範囲では、 r2 ’=r2 すなわち、回転対称非球面であってもよい。
For example, in the example shown in FIG. 1, the radius of curvature r 2 ′ at the end is defined by the non-arc Z defined in the main scanning plane.
(Y) in which are shown a case where less than the radius of curvature r 2 which is determined by rotating about an axis of rotation 11. The magnitude of the radius of curvature may be in a relationship of r 2 ′> r 2 , and the arrangement of the aspherical reflecting mirror, specifically, the distance from the deflection point to the aspherical reflecting mirror is L m ,
Assuming that the distance from the deflection point to the surface to be scanned is L 0 , r 2 ′ = r 2 in a range satisfying the condition of 0.35 <L m / L 0 <0.4. There may be.

【0038】副走査平面内の円弧形状を主走査平面の形
状と独立に決定することで、非球面反射鏡の配置によら
ずに、副走査方向の像面湾曲を良好に補正することが本
発明の意図するところである。なお、図1中には、副走
査平面内の円弧の曲率中心を結んだ軌跡を点線で示して
ある。
By determining the arc shape in the sub-scanning plane independently of the shape of the main scanning plane, it is possible to satisfactorily correct the field curvature in the sub-scanning direction regardless of the arrangement of the aspherical reflecting mirror. It is the intention of the invention. In FIG. 1, the trajectory connecting the centers of curvature of the arcs in the sub-scanning plane is indicated by dotted lines.

【0039】図2に本発明による光ビーム走査光学系の
1実施例の構成を示す。光源である半導体レーザ21か
ら発せられた光ビームは、集光レンズ22により収束又
は発散光ビームにされた後、シリンドリカルレンズ23
により主走査平面に平行な線像として結像される。ポリ
ゴンミラー24は、上記線像近傍に反射面を有するよう
に配置され、図示しないスキャナモータにより等角速度
で回転され、光ビームを反射偏向する。偏向光ビーム
は、ポリゴンミラー24からなる偏向器と非球面反射鏡
1の間に配置されたビームスプリッタ25を透過した
後、非球面反射鏡1により、被走査面の主走査方向に等
速度で光走査すると共に、被走査面上に光スポットとし
て集光される光ビームとして反射される。非球面反射鏡
1への入射方向と反対方向に反射された光ビームは、ビ
ームスプリッタ25により光路を分割されて被走査面で
ある感光体ドラム26へ至る。
FIG. 2 shows the configuration of an embodiment of a light beam scanning optical system according to the present invention. A light beam emitted from a semiconductor laser 21 as a light source is converged or diverged by a condenser lens 22 and then converted into a cylindrical lens 23.
To form a line image parallel to the main scanning plane. The polygon mirror 24 is arranged so as to have a reflection surface near the line image, is rotated at a constant angular speed by a scanner motor (not shown), and reflects and deflects the light beam. The deflected light beam passes through a beam splitter 25 disposed between the deflector composed of the polygon mirror 24 and the aspherical reflecting mirror 1, and is then transmitted by the aspherical reflecting mirror 1 at a constant speed in the main scanning direction of the surface to be scanned. While being optically scanned, the light is reflected as a light beam focused as a light spot on the surface to be scanned. The light beam reflected in the direction opposite to the direction of incidence on the aspherical reflecting mirror 1 is split in the optical path by the beam splitter 25 and reaches the photosensitive drum 26 which is the surface to be scanned.

【0040】図2に示したビームスプリッタ25は、非
球面反射鏡1を光軸に対して傾けて配置すると、非球面
反射鏡1による反射光ビームが弓状に反ることを回避す
るためのものであるが、弓状の反りの発生量が許容でき
る場合は、図3(a)、(b)に示すように、ビームス
プリッタを使用せずに、非球面反射鏡1を傾けて配置
し、通常の折り返しミラー31を使用して走査光ビーム
を被走査面に向けるようにしてもよい。
In the beam splitter 25 shown in FIG. 2, when the aspherical reflecting mirror 1 is disposed at an angle with respect to the optical axis, the beam reflected by the aspherical reflecting mirror 1 is prevented from bowing. However, if the amount of bowing can be tolerated, as shown in FIGS. 3A and 3B, the aspherical reflecting mirror 1 is disposed at an angle without using a beam splitter. Alternatively, the scanning light beam may be directed to the surface to be scanned by using a normal folding mirror 31.

【0041】以下、表1〜表4に、本発明の非球面反射
鏡を用いた光ビーム走査光学系の実施例1〜10の数値
データを示す。なお、凹面は負の曲率として示してあ
る。
Tables 1 to 4 show numerical data of Examples 1 to 10 of the light beam scanning optical system using the aspherical reflecting mirror of the present invention. The concave surface is shown as a negative curvature.

【0042】 [0042] .

【0043】 [0043] .

【0044】 [0044] .

【0045】 注)Rm :ポリゴンミラーの内接半径(mm) S :偏向角0°の反射点から入射ビームの主走査方向
集光点までの距離(mm) Lm :偏向角0°の反射点から非球面反射鏡までの距離
(mm) L0 :偏向角0°の反射点から被走査面までの距離(m
m) 。
[0045] Note) R m : Inscribed radius of polygon mirror (mm) S: Distance from the reflection point with deflection angle of 0 ° to the converging point in the main scanning direction of the incident beam (mm) L m : From reflection point with deflection angle of 0 ° Distance to aspherical reflecting mirror (mm) L 0 : Distance (m) from the reflection point at deflection angle of 0 ° to the surface to be scanned
m).

【0046】以上の実施例1〜10の走査位置精度(走
査速度の等速度性)(a)と像面湾曲(b)をそれぞれ
図4〜図13に示す。各実施例共、像面湾曲、走査位置
精度が良好に補正されていることが分かる。なお、走査
位置精度に関しては、被走査面上で光ビームの進行する
方向がグラフの正方向に対応する。
FIGS. 4 to 13 show the scanning position accuracy (constant scanning speed) (a) and the field curvature (b) of the first to tenth embodiments, respectively. It can be seen that in each of the embodiments, the field curvature and the scanning position accuracy are satisfactorily corrected. As for the scanning position accuracy, the traveling direction of the light beam on the surface to be scanned corresponds to the positive direction of the graph.

【0047】以上、本発明の非球面反射鏡と光ビーム走
査光学系を実施例に基づいて説明してきたが、本発明は
これら実施例に限定されず種々の変形が可能である。
As described above, the aspherical reflecting mirror and the light beam scanning optical system of the present invention have been described based on the embodiments. However, the present invention is not limited to these embodiments, and various modifications are possible.

【0048】[0048]

【発明の効果】以上のように、本発明によれば、等速度
な光走査を高密度に行うことができる非球面反射鏡及び
光ビーム反射光学系を提供することができる。
As described above, according to the present invention, it is possible to provide an aspherical reflecting mirror and a light beam reflecting optical system capable of performing high-speed optical scanning at a constant speed.

【0049】本発明の第1の非球面反射鏡は、主走査平
面内の形状を高次非球面項を持つ非円弧としたので、主
走査方向の像面湾曲と走査位置精度を良好に補正可能で
ある。
In the first aspherical reflecting mirror of the present invention, since the shape in the main scanning plane is a non-circular arc having a higher order aspherical term, the field curvature in the main scanning direction and the scanning position accuracy are favorably corrected. It is possible.

【0050】第2の非球面反射鏡は、副走査平面内の曲
率半径を光軸からの距離の関数とする多項式で定義した
ので、主走査方向と副走査方向の光学特性を共に良好に
補正することができる。
Since the second aspherical reflecting mirror is defined by a polynomial in which the radius of curvature in the sub-scanning plane is a function of the distance from the optical axis, the optical characteristics in both the main scanning direction and the sub-scanning direction are well corrected. can do.

【0051】本発明による光ビーム走査光学系は、上記
非球面反射鏡を使用しているので、構成部品が少なく、
偏向角を大きく取れるので、小型な走査光学系を実現す
ることができる。
Since the light beam scanning optical system according to the present invention uses the aspherical reflecting mirror, the number of components is small.
Since a large deflection angle can be obtained, a small scanning optical system can be realized.

【0052】なお、本発明による光ビーム走査装置は、
非球面反射鏡の配置によらず良好な光学特性が得られる
ので、光ビーム走査装置の設計によって光学特性が劣化
することはない。
The light beam scanning device according to the present invention
Since good optical characteristics can be obtained regardless of the arrangement of the aspherical reflecting mirrors, the optical characteristics do not deteriorate due to the design of the light beam scanning device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による非球面反射鏡の1実施例の面形
状を説明するための図。
FIG. 1 is a diagram for explaining a surface shape of an embodiment of an aspherical reflecting mirror according to the present invention.

【図2】 本発明による光ビーム走査光学系の1実施例
の構成を示す図。
FIG. 2 is a diagram showing a configuration of an embodiment of a light beam scanning optical system according to the present invention.

【図3】 非球面反射鏡を光軸に対して傾けて配置する
変形例の概略の構成を示す図。
FIG. 3 is a diagram showing a schematic configuration of a modification in which an aspherical reflecting mirror is arranged to be inclined with respect to an optical axis.

【図4】 実施例1の走査位置精度(走査速度の等速度
性)(a)と像面湾曲(b)を示す図。
FIGS. 4A and 4B are diagrams showing scanning position accuracy (constant scanning speed) (a) and field curvature (b) of the first embodiment.

【図5】 実施例2の図4と同様の図。FIG. 5 is a view similar to FIG. 4 of the second embodiment.

【図6】 実施例3の図4と同様の図。FIG. 6 is a view similar to FIG. 4 of a third embodiment.

【図7】 実施例4の図4と同様の図。FIG. 7 is a view similar to FIG. 4 of a fourth embodiment;

【図8】 実施例5の図4と同様の図。FIG. 8 is a view similar to FIG. 4 of a fifth embodiment.

【図9】 実施例6の図4と同様の図。FIG. 9 is a view similar to FIG. 4 of a sixth embodiment.

【図10】 実施例7の図4と同様の図。FIG. 10 is a view similar to FIG. 4 of a seventh embodiment.

【図11】 実施例8の図4と同様の図。FIG. 11 is a view similar to FIG. 4 of the eighth embodiment.

【図12】 実施例9の図4と同様の図。FIG. 12 is a view similar to FIG. 4 of a ninth embodiment;

【図13】 実施例10の図4と同様の図。FIG. 13 is a view similar to FIG. 4 of the tenth embodiment.

【図14】 非球面係数の補正効果を示すための図。FIG. 14 is a diagram showing the effect of correcting an aspheric coefficient.

【符号の説明】[Explanation of symbols]

1…非球面反射鏡、11…回転対称軸、21…半導体レ
ーザ、22…集光レンズ、23…シリンドリカルレン
ズ、24…ポリゴンミラー、25…ビームスプリッタ、
26…感光体ドラム、31…折り返しミラー
DESCRIPTION OF SYMBOLS 1 ... Aspherical reflecting mirror, 11 ... Rotational symmetry axis, 21 ... Semiconductor laser, 22 ... Condensing lens, 23 ... Cylindrical lens, 24 ... Polygon mirror, 25 ... Beam splitter,
26: photoreceptor drum, 31: folding mirror

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 偏向面近傍に主走査平面と平行な線像と
して集光され、偏向器によって等角速度的に偏向される
光ビームを反射して被走査面上にスポット結像させると
共に、等速度的な光走査を行うための非球面反射鏡であ
って、 光軸を含む主走査平面内における形状が、光軸方向の座
標をZ、光軸と直交し主走査平面内に含まれる座標をY
としたとき、 Z(Y)=AY2 +BY4 +CY6 +DY8 +EY10 (A,B,C,D:係数) なる数式で表され、係数A及びCが、A<0 かつ C<0 なる条件を満足すると共に、 光軸と平行で主走査平面に直交する副走査面内における
形状が、主走査方向の何れの位置でも偏向面と被走査面
の幾何光学的な共役関係を満足する円弧であることを特
徴とする非球面反射鏡。
1. A light beam condensed near a deflecting surface as a line image parallel to a main scanning plane and reflected by a deflector at a uniform angular velocity is reflected to form a spot image on a surface to be scanned. An aspherical reflecting mirror for performing speedy optical scanning, wherein a shape in a main scanning plane including an optical axis has a coordinate in the optical axis direction as Z, and a coordinate perpendicular to the optical axis and included in the main scanning plane. Is Y
Where Z (Y) = AY 2 + BY 4 + CY 6 + DY 8 + EY 10 (A, B, C, D: coefficients) where coefficients A and C are A <0 and C <0 An arc that satisfies the conditions and has a shape in the sub-scanning plane that is parallel to the optical axis and orthogonal to the main scanning plane, and that satisfies the geometric-optical conjugate relationship between the deflection surface and the scanned surface at any position in the main scanning direction. An aspherical reflecting mirror, characterized in that:
【請求項2】 請求項1において、 光軸と直交する副走査平面内に含まれる座標をXとし、
副走査平面内の曲率半径R(Y)が、 R(Y)=a0 +a2 2 +a4 4 +a6 6 (a0 ,a2 ,a4 ,a6 :係数) なる数式で表されるとき、反射面の非球面形状が、 Z(X,Y)=Z(Y)+R(Y)−{R(Y)2 −X2 1/2 なる数式で表されることを特徴とする非球面反射鏡。
2. The method according to claim 1, wherein a coordinate included in a sub-scanning plane orthogonal to the optical axis is X,
The curvature in the sub-scanning plane radius R (Y) is, R (Y) = a 0 + a 2 Y 2 + a 4 Y 4 + a 6 Y 6 (a 0, a 2, a 4, a 6: coefficient) becomes a formula When expressed, it is assumed that the aspherical shape of the reflecting surface is expressed by the following equation: Z (X, Y) = Z (Y) + R (Y) − {R (Y) 2 −X 2 } 1/2 Characterized aspherical reflector.
【請求項3】 変調された光ビームを発生する光源と、
光源からの光ビームを主走査平面と平行な線像として結
像させる光学系と、前記線像近傍に反射面を有し光ビー
ムを等角速度的に偏向させる偏向器と、偏向光ビームを
反射し被走査面上を等速度的に光走査させる非球面反射
鏡とを備え、 前記非球面反射鏡の光軸を含む主走査平面内における形
状が、光軸方向の座標をZ、光軸と直交し主走査平面内
に含まれる座標をYとしたとき、 Z(Y)=AY2 +BY4 +CY6 +DY8 +EY10 (A,B,C,D:係数) なる数式で表され、係数A及びCが、A<0 かつ C<0 なる条件を満足すると共に、 光軸と平行で主走査平面に直交する副走査面内における
形状が、主走査方向の何れの位置でも偏向面と被走査面
の幾何光学的な共役関係を満足する円弧であることを特
徴とする光ビーム走査光学系。
3. A light source for producing a modulated light beam;
An optical system that forms a light beam from a light source as a line image parallel to the main scanning plane, a deflector that has a reflecting surface near the line image and deflects the light beam at an equal angular velocity, and reflects the deflected light beam An aspherical reflecting mirror for optically scanning the surface to be scanned at a constant speed, wherein the shape in the main scanning plane including the optical axis of the aspherical reflecting mirror is such that the coordinates in the optical axis direction are Z, Assuming that the coordinates orthogonal to each other and included in the main scanning plane are Y, Z (Y) = AY 2 + BY 4 + CY 6 + DY 8 + EY 10 (A, B, C, D: coefficient) And C satisfy the conditions of A <0 and C <0 , and the shape in the sub-scanning plane that is parallel to the optical axis and orthogonal to the main scanning plane has the same shape as the deflecting surface and the scanning target at any position in the main scanning direction. Light beam scanning characterized by an arc satisfying the geometric optical conjugation relation of the surface Manabu system.
【請求項4】 請求項3において、 光軸と直交する副走査平面内に含まれる座標をXとし、
副走査平面内の曲率半径R(Y)が、 R(Y)=a0 +a2 2 +a4 4 +a6 6 (a0 ,a2 ,a4 ,a6 :係数) なる数式で表されるとき、前記非球面反射鏡の非球面形
状が、 Z(X,Y)=Z(Y)+R(Y)−{R(Y)2 −X2 1/2 なる数式で表されることを特徴とする光ビーム走査光学
系。
4. The coordinate system according to claim 3, wherein a coordinate included in a sub-scanning plane orthogonal to the optical axis is X,
The curvature in the sub-scanning plane radius R (Y) is, R (Y) = a 0 + a 2 Y 2 + a 4 Y 4 + a 6 Y 6 (a 0, a 2, a 4, a 6: coefficient) becomes a formula When expressed, the aspherical shape of the aspherical reflecting mirror is represented by the following equation: Z (X, Y) = Z (Y) + R (Y) − {R (Y) 2 −X 2 } 1/2 A light beam scanning optical system, comprising:
【請求項5】 請求項3又は4において、 偏向点から前記非球面反射鏡までの距離をLm 、偏向点
から被走査面までの距離をL0 としたとき、 0.3<Lm /L0 <0.7 なる条件を満足することを特徴とする光ビーム走査光学
系。
5. The method according to claim 3, wherein a distance from the deflection point to the aspherical reflecting mirror is L m , and a distance from the deflection point to the surface to be scanned is L 0 , wherein 0.3 <L m / A light beam scanning optical system that satisfies a condition of L 0 <0.7.
【請求項6】 請求項3から5の何れか1項において、 被走査面上における走査中心から走査端までの距離をY
0 としたとき、 1.25<1/(2|A|Y0 )−2.43(Lm /L0 )<1.53 なる関係を満足することを特徴とする光ビーム走査光学
系。
6. The scanning device according to claim 3, wherein the distance from the scanning center to the scanning end on the surface to be scanned is Y.
0 the time, 1.25 <1 / (2 | A | Y 0) -2.43 (L m / L 0) < Light-beam scanning optical system that satisfies the 1.53 the relationship.
JP6289734A 1994-11-24 1994-11-24 Aspherical reflecting mirror and light beam scanning optical system Expired - Fee Related JP2982041B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6289734A JP2982041B2 (en) 1994-11-24 1994-11-24 Aspherical reflecting mirror and light beam scanning optical system
US08/561,391 US5812298A (en) 1994-11-24 1995-11-21 Aspherical reflector and light beam scanning optical system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6289734A JP2982041B2 (en) 1994-11-24 1994-11-24 Aspherical reflecting mirror and light beam scanning optical system

Publications (2)

Publication Number Publication Date
JPH08146322A JPH08146322A (en) 1996-06-07
JP2982041B2 true JP2982041B2 (en) 1999-11-22

Family

ID=17747068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6289734A Expired - Fee Related JP2982041B2 (en) 1994-11-24 1994-11-24 Aspherical reflecting mirror and light beam scanning optical system

Country Status (1)

Country Link
JP (1) JP2982041B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445128B1 (en) * 2002-06-05 2004-08-21 삼성전자주식회사 laser scanning apparatus
US7327507B2 (en) * 2005-08-02 2008-02-05 Kabushiki Kaisha Toshiba Optical beam scanning device having two sets of fθ mirrors where the mirror base and mirror face have differing coefficients of linear expansion
JP5906115B2 (en) 2012-03-29 2016-04-20 川崎重工業株式会社 Optical scanning apparatus and laser processing apparatus

Also Published As

Publication number Publication date
JPH08146322A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
EP0745880B1 (en) Scanning optical apparatus comprising a plastic lens
JPH05346549A (en) Scanning optical device
US6445483B2 (en) Optical scanning apparatus
US6512623B1 (en) Scanning optical device
JP3445092B2 (en) Scanning optical device
JP2982041B2 (en) Aspherical reflecting mirror and light beam scanning optical system
JP3500873B2 (en) Scanning optical system
JP3003065B2 (en) Optical scanning device
JPH1184304A (en) Optical scanner
JP3364558B2 (en) Single lens fθ lens and optical scanning device
JP3320239B2 (en) Scanning optical device
JP2982042B2 (en) Aspherical reflecting mirror and light beam scanning optical system
JPH08248345A (en) Optical scanner
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JPH10260371A (en) Scanning optical device
JPS63142317A (en) Light beam scanner
JP3721487B2 (en) Scanning imaging lens and optical scanning device
JPH112769A (en) Optical scanner
JP3081535B2 (en) Optical scanning device
JPH08179236A (en) Beam scanner
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JP2615850B2 (en) Light beam scanning optical system
JP3405373B2 (en) Optical deflector and optical scanning device
JPH11125777A (en) Optical scanner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees