JP2973472B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JP2973472B2
JP2973472B2 JP2150313A JP15031390A JP2973472B2 JP 2973472 B2 JP2973472 B2 JP 2973472B2 JP 2150313 A JP2150313 A JP 2150313A JP 15031390 A JP15031390 A JP 15031390A JP 2973472 B2 JP2973472 B2 JP 2973472B2
Authority
JP
Japan
Prior art keywords
waveguide
substrate
reaction vessel
substrate holder
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2150313A
Other languages
Japanese (ja)
Other versions
JPH03277776A (en
Inventor
修 望月
弘明 伊藤
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2150313A priority Critical patent/JP2973472B2/en
Priority to US07/665,580 priority patent/US5234502A/en
Priority to DE4107543A priority patent/DE4107543A1/en
Publication of JPH03277776A publication Critical patent/JPH03277776A/en
Application granted granted Critical
Publication of JP2973472B2 publication Critical patent/JP2973472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明はプラズマのエネルギーと反応ガスとによっ
て化学蒸着法により薄膜を形成する装置に関し、均等な
厚さの3次元形状の薄膜を形成できる装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for forming a thin film by a chemical vapor deposition method using plasma energy and a reactive gas, and an apparatus capable of forming a thin film having a uniform thickness and a three-dimensional shape. About.

「従来の技術」 従来、第14図に示すように、水平に保持した導波管1
に貫通された反応管2を垂直に設けるとともに、交差部
分に基体ホルダ3を設けて構成されたプラズマCVD装置
が知られている。
[Prior Art] Conventionally, as shown in FIG.
A plasma CVD apparatus is known which is provided with a vertically extending reaction tube 2 and a substrate holder 3 provided at an intersection.

このプラズマCVD装置は、基体ホルダ3に基体4を設
置し、反応管2に気体供給源から反応ガスを送り込むと
ともに、導波管1内にマイクロ波を導入し、これによっ
て基体4の周囲にプラズマを発生させ、基体4の周囲で
反応ガスをプラズマにより分解して基体4の表面に反応
ガスの成分を堆積させることで基体4の表面に所望の組
成の薄膜を形成する装置である。
In this plasma CVD apparatus, a substrate 4 is placed on a substrate holder 3, a reaction gas is supplied from a gas supply source to a reaction tube 2, and a microwave is introduced into the waveguide 1, whereby a plasma is formed around the substrate 4. Is generated, and a reaction gas is decomposed by plasma around the substrate 4 to deposit a component of the reaction gas on the surface of the substrate 4 to form a thin film having a desired composition on the surface of the substrate 4.

また、プラズマCVD装置の他の例として、第15図に示
すように、鉛直に保持された導波管1を水平に保持され
た反応管2が貫通し、交差部分に基体ホルダ3を設けた
構造の装置も知られている。
As another example of the plasma CVD apparatus, as shown in FIG. 15, a horizontally held reaction tube 2 penetrates a vertically held waveguide 1, and a substrate holder 3 is provided at an intersection. Structured devices are also known.

「発明が解決しようとする課題」 前記構成のプラズマCVD装置を使用した場合におい
て、基体4としてドーム状などの3次元形状のものを用
いた場合、第16図に示すように基体4の上に強いプラズ
マ5が発生するので、基体4の周囲に反応ガスが熱分解
されて基体4の表面に堆積される結果、第17図に示すよ
うに基体4の外面に薄膜6を堆積される。
[Problem to be Solved by the Invention] In the case where the plasma CVD apparatus having the above-described configuration is used, when a three-dimensional shape such as a dome is used as the substrate 4, as shown in FIG. Since the strong plasma 5 is generated, the reaction gas is thermally decomposed around the substrate 4 and deposited on the surface of the substrate 4, and as a result, a thin film 6 is deposited on the outer surface of the substrate 4 as shown in FIG.

ところが、前記構造のプラズマCVD装置で成膜した場
合、基体4の上部側ほど膜厚が大きく、基体4の下部側
ほど膜厚が小さくなる傾向があり、甚だしい場合は、厚
い部分と薄い部分の膜厚比が4:1にもなることがあっ
た。
However, when the film is formed by the plasma CVD apparatus having the above structure, the film thickness tends to be larger on the upper side of the substrate 4 and smaller on the lower side of the substrate 4. The film thickness ratio could be as high as 4: 1.

そこで、前記の膜厚差が生じる原因について詳しく研
究したところ、基体に対する強いプラズマの相対位置関
係が薄膜形成に重要な影響を与えていることが判明し
た。
Then, a detailed study of the cause of the above-mentioned film thickness difference revealed that the relative positional relationship of strong plasma with respect to the substrate had an important effect on the formation of the thin film.

即ち、ドーム状などの3次元形状の基体に成膜しよう
とした場合、強いプラズマまでの距離が大きいと電子衝
撃の作用が弱くなり、強いプラズマまでの距離が小さい
と電子衝撃の作用が強くなる結果、基体4の上部側が高
温で底部側が低温になって温度分布にばらつきが生じ、
これが原因となって膜厚に変動を生じるものと思われ
る。
That is, when a film is to be formed on a three-dimensional substrate such as a dome, the effect of electron impact is weak when the distance to strong plasma is large, and the effect of electron impact is strong when the distance to strong plasma is small. As a result, the upper side of the base 4 becomes high temperature and the bottom side becomes low temperature, and the temperature distribution varies,
It is considered that this causes a change in the film thickness.

なお、第14図と第15図に示す従来のCVD装置では、反
応管2が導波管1を貫通している構成であるので、反応
管2を介する電磁波の漏洩を防止するために、反応管2
を大きく形成できない欠点があり、このために、基体4
として大きなものを使用できない問題があった。
In the conventional CVD apparatus shown in FIGS. 14 and 15, the reaction tube 2 penetrates through the waveguide 1. Therefore, in order to prevent leakage of electromagnetic waves through the reaction tube 2, Tube 2
Has a disadvantage that it cannot be formed large.
There was a problem that large ones could not be used.

本発明は前記課題を解決するためになされたもので、
ドーム状などの3次元形状の基体を用いて基体上に成膜
する場合であっても、膜厚のバラツキを±10%以内に抑
えることができるとともに、大きな基板に成膜すること
ができ、良好な再現性で良質の薄膜を形成できるプラズ
マCVD装置を提供することを目的とする。
The present invention has been made to solve the above problems,
Even when a film is formed on a substrate using a three-dimensional substrate such as a dome, the variation in film thickness can be suppressed to within ± 10%, and a film can be formed on a large substrate. An object of the present invention is to provide a plasma CVD apparatus capable of forming a high-quality thin film with good reproducibility.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するため
に、反応ガス供給源に接続されて内部に反応ガスが導入
される反応管と、この反応管に貫通されるマイクロ波の
導波管と、反応管と導波管の交差部分に3次元形状の基
体を設置する基体ホルダとを具備してなるプラズマCVD
装置であって、前記基体ホルダが基体を回転する回転軸
を備えてなり、基体ホルダの回路軸の中心軸に対し、導
波管の中心軸を傾斜させて設け、基体ホルダを基体ホル
ダの回転軸の中心軸まわりに回転自在に設けるととも
に、前記反応管内に前記マイクロ波の導波管が生成させ
るプラズマを前記基体に対して傾斜状態に生成自在とす
るように前記マイクロ波の導波管を傾斜させてなること
を特徴とする。
Means for Solving the Problems According to the invention described in claim 1, in order to solve the problems, a reaction tube connected to a reaction gas supply source and into which a reaction gas is introduced, and a reaction tube penetrating the reaction tube are provided. Plasma CVD comprising a microwave waveguide to be formed, and a substrate holder for setting a three-dimensional substrate at the intersection of the reaction tube and the waveguide.
An apparatus, wherein the substrate holder comprises a rotation axis for rotating the substrate, the central axis of the waveguide is provided to be inclined with respect to the central axis of the circuit axis of the substrate holder, and the substrate holder is rotated by the rotation of the substrate holder. The microwave waveguide is provided so as to be rotatable about a central axis of the shaft, and the microwave waveguide is generated in the reaction tube so that the plasma generated by the microwave waveguide can be freely generated in an inclined state with respect to the substrate. It is characterized by being inclined.

請求項2に記載した発明は前記課題を解決するため
に、マイクロ波の発振器が接続された導波管と、この導
波管の内部を仕切って設けられた反応容器と、この反応
容器の内部を減圧するポンプと、反応容器内に設けられ
て3次元形状の基体を設置する基体ホルダとを具備して
なるプラズマCVD装置であって、前記基体ホルダが基体
を回転する回転軸を備えてなり、前記導波管の中心軸に
対し、基体ホルダの回転軸の中心軸を傾斜させて設け、
基体ホルダを基体ホルダの回転軸の中心軸まわりに回転
自在に設けてなるとともに、前記反応管内に前記マイク
ロ波の導波管が生成させるプラズマを前記基体に対して
傾斜状態に生成自在とするように前記マイクロ波の導波
管を傾斜させてなることを特徴とする。
In order to solve the above problem, the invention described in claim 2 is a waveguide to which a microwave oscillator is connected, a reaction vessel provided to partition the inside of the waveguide, and an inside of the reaction vessel. 1. A plasma CVD apparatus comprising: a pump for reducing pressure; and a substrate holder provided in a reaction vessel for installing a three-dimensional substrate, wherein the substrate holder comprises a rotating shaft for rotating the substrate. , The central axis of the rotation axis of the substrate holder is provided to be inclined with respect to the central axis of the waveguide,
The substrate holder is provided so as to be rotatable around the central axis of the rotation axis of the substrate holder, and the plasma generated by the microwave waveguide is generated in the reaction tube so as to be tiltable with respect to the substrate. The microwave waveguide is inclined.

請求項3に記載した発明は前記課題を解決するため
に、反応ガス導入管と排気管が接続された反応容器と、
マイクロ波発振器が接続された導波管と、反応容器内部
を減圧する減圧ポンプと、反応容器内に設けられて3次
元形状の基体を設置する基体ホルダとを具備してなるプ
ラズマCVD装置であって、前記導波管が2分割構造であ
り、前記反応容器の相対する同軸上の位置に導波管接続
用孔を設け、この導波管接続用孔に導波管を接続し、前
記導波管と前記反応容器の接続部にマイクロ波導入窓を
設け、前記基体ホルダが基体を回転する回転軸を備えて
なり、導波管の中心軸に対し、基体ホルダの回転軸の中
心軸を傾斜させて設け、基体ホルダを基体ホルダの回転
軸の中心軸回りに回転自在に設けてなるとともに、前記
反応管内に前記マイクロ波の導波管が生成させるプラズ
マを前記基体に対して傾斜状態に生成自在とするように
前記マイクロ波の導波管を傾斜させてなることを特徴と
する。
In order to solve the above problem, the invention according to claim 3 includes a reaction vessel having a reaction gas introduction pipe and an exhaust pipe connected thereto,
A plasma CVD apparatus comprising: a waveguide connected to a microwave oscillator; a decompression pump for depressurizing the inside of a reaction vessel; and a substrate holder provided in the reaction container and on which a three-dimensional substrate is placed. The waveguide has a two-part structure, and a waveguide connection hole is provided at a position on the opposite coaxial side of the reaction vessel, and the waveguide is connected to the waveguide connection hole. A microwave introduction window is provided at a connection portion between the wave tube and the reaction vessel, and the substrate holder includes a rotation axis for rotating the substrate, and a center axis of the rotation axis of the substrate holder is set with respect to a center axis of the waveguide. The substrate holder is provided so as to be rotatable around the central axis of the rotation axis of the substrate holder, and the plasma generated by the microwave waveguide in the reaction tube is inclined with respect to the substrate. The microwave is guided so that it can be freely generated. Characterized by comprising by tilting the tube.

「作用」 プラズマが導波管の長さ方向に沿って生成し、このプ
ラズマの中心のプラズマの強い部分が基体に対して傾斜
状態に位置するので、基体を回転させることで基体表面
の各部分とプラズマの強い部分との位置関係が変動し、
プラズマによる加熱が基体表面において均一化する。従
って基体全体が均一加熱された状態で基体表面に成膜が
進行する。
"Operation" A plasma is generated along the length of the waveguide, and the strong part of the plasma at the center of the plasma is inclined with respect to the substrate. And the positional relationship between the strong part of the plasma and
The heating by the plasma becomes uniform on the substrate surface. Therefore, film formation proceeds on the surface of the substrate while the entire substrate is uniformly heated.

また、導波管の内部を仕切って反応部を形成すると、
導波管を反応管が貫通する従来構成とは異なり、電磁波
漏洩の問題を生じないので、反応部を大きく形成でき、
大きな基体に成膜できるようになる。
Also, when the reaction part is formed by partitioning the inside of the waveguide,
Unlike the conventional configuration where the reaction tube penetrates the waveguide, there is no problem of electromagnetic wave leakage, so the reaction part can be formed large,
A film can be formed on a large substrate.

さらにまた、導波管を2分割とし、反応容器に接続す
る構造とすると、反応容器の大きさと形状は任意とな
り、さらに大きな基体に成膜できるようになる。
Furthermore, if the waveguide is divided into two and connected to the reaction vessel, the size and shape of the reaction vessel are arbitrary, and a film can be formed on a larger substrate.

「実施例」 第1図は、本願発明の第1実施例を示すもので、この
実施例のプラズマCVD装置は、鉛直に設けられた反応管1
0と、この反応管10によって中央部を貫通されるととも
に、反応管10に対し傾斜して設けられた導波管11を主体
として構成されている。
Embodiment FIG. 1 shows a first embodiment of the present invention, and a plasma CVD apparatus of this embodiment includes a reaction tube 1 provided vertically.
And a waveguide 11 penetrated through the central portion by the reaction tube 10 and provided at an angle to the reaction tube 10.

前記反応管10と導波管11の交差部分が反応容器16とな
り、この反応容器16の内部には基体ホルダ12が設けられ
ている。この基体ホルダ12は反応管10内に鉛直に設けら
れた回転軸14により水平に回転自在に支持されている。
この回転軸14の下端部は、図示略のモータなどの駆動装
置に接続されていて、駆動装置の始動により基体ホルダ
12は水平は面内で回転できるようになっている。また、
反応管10は図示略の反応ガス供給源に接続されていて各
種の反応ガスを反応容器16に導入できるようになってい
る。
The intersection of the reaction tube 10 and the waveguide 11 forms a reaction vessel 16, and a base holder 12 is provided inside the reaction vessel 16. The substrate holder 12 is horizontally rotatably supported by a rotating shaft 14 provided vertically in the reaction tube 10.
The lower end of the rotating shaft 14 is connected to a driving device such as a motor (not shown), and the base device holder is started by starting the driving device.
12 is designed to rotate horizontally in the plane. Also,
The reaction tube 10 is connected to a reaction gas supply source (not shown) so that various reaction gases can be introduced into the reaction vessel 16.

前記導波管11は、マイクロ波発生装置(発振器)に接
続されていて導波管11の内部にマイクロ波を導入するこ
とで導波管11の内部にプラズマを発生させて基体ホルダ
12およびその周囲を加熱することができるようになって
いる。
The waveguide 11 is connected to a microwave generator (oscillator), and generates microwaves inside the waveguide 11 by introducing microwaves into the waveguide 11, thereby forming a substrate holder.
12 and its surroundings can be heated.

そして、導波管11は、反応管10に対し互いの中心軸線
を45゜程度傾斜させた状態で、即ち、基体ホルダ12に対
して傾斜した状態で反応管10を貫通して設けられてい
る。なおここで、反応管10と導波管11のなす角度は0゜
より大きく、90゜より小さければ、自由な角度を選択し
て差し支えない。
The waveguide 11 is provided so as to penetrate the reaction tube 10 in a state where the center axes of the waveguides 11 are inclined by about 45 ° with respect to the reaction tube 10, that is, in a state where the waveguides 11 are inclined with respect to the base holder 12. . Here, if the angle between the reaction tube 10 and the waveguide 11 is larger than 0 ° and smaller than 90 °, a free angle may be selected.

一方、前記基体ホルダ12の上には、半球状、ドーム
状、あるいはその他の3次元的立体形状をなす基体15が
設置されている。この基体15の構成材料は、表面に形成
される薄膜が堆積しやすいものが好ましく、また、成膜
後に必要に応じて薄膜を基体15から分離することが容易
な材料を選択することが好ましい。なお、基体15から薄
膜を分離するには、基体15を化学的に溶解して除去する
方法などを採用することができる。
On the other hand, on the base holder 12, a base 15 having a hemispherical shape, a dome shape, or another three-dimensional three-dimensional shape is provided. As a constituent material of the base 15, it is preferable that a thin film formed on the surface is easily deposited, and it is preferable to select a material that facilitates separation of the thin film from the base 15 as needed after film formation. In order to separate the thin film from the base 15, a method of chemically dissolving and removing the base 15 or the like can be adopted.

次に前記構成の装置を用いて基体15の表面に成膜する
場合について説明する。
Next, a case where a film is formed on the surface of the base 15 using the apparatus having the above-described configuration will be described.

反応容器16の内部の基体ホルダ12上にドーム状の基体
15を設置するとともに、反応容器16の内部に反応ガスを
ガス供給源から導入する。続いて反応容器16内にマイク
ロ波の発振器によってプラズマを発生させる。この際に
反応管10と導波管11とが傾斜しているので、基体15の上
方ではプラズマPが第2図に示すように傾斜状態で生成
する。この状態で基体ホルダ12を水平に回転させつつ成
膜する。
Domed substrate on substrate holder 12 inside reaction vessel 16
15 is installed, and a reaction gas is introduced into the reaction vessel 16 from a gas supply source. Subsequently, plasma is generated in the reaction vessel 16 by a microwave oscillator. At this time, since the reaction tube 10 and the waveguide 11 are inclined, the plasma P is generated above the substrate 15 in an inclined state as shown in FIG. In this state, a film is formed while rotating the substrate holder 12 horizontally.

第2図に示すように基体15に対してプラズマPが傾斜
状態で対向したままで基体15が回転すると、基体15の全
部が従来より均一に加熱される。ここで第2図に示すド
ーム状の基体15の頂点部分(一側部分)からプラズマP
までの距離と、ドーム状の基体15の周面底部側部分(他
側部分)からプラズマPまでの距離を比較すると、それ
らの距離差は第16図に示す従来例のプラズマ5と基体4
との場合に比べて小さくなる。換言すると、図16に示す
従来例の基体4の頂点部分からプラズマ5までの距離
と、基体4の周面底部側部分からプラズマ5までの距離
との差異は、第2図に示す本実施例の場合よりも大きく
なる。このため、この状態で成膜を行えば基体15の全面
に均一な厚さの薄膜が形成される。
As shown in FIG. 2, when the substrate 15 is rotated while the plasma P is opposed to the substrate 15 in an inclined state, the entire substrate 15 is heated more uniformly than before. Here, the plasma P is applied from the top (one side) of the dome-shaped base 15 shown in FIG.
Is compared with the distance from the bottom (the other side) of the peripheral surface of the dome-shaped substrate 15 to the plasma P, the difference between them is that the conventional plasma 5 and the substrate 4 shown in FIG.
It becomes smaller than the case of. In other words, the difference between the distance from the apex portion of the base 4 of the conventional example shown in FIG. 16 to the plasma 5 and the distance from the bottom side portion of the base 4 to the plasma 5 in the conventional example shown in FIG. It becomes larger than the case. Therefore, if a film is formed in this state, a thin film having a uniform thickness is formed on the entire surface of the base 15.

第3図は本願発明の第2実施例の装置を示すもので、
この実施例の装置においては、導波管11が前記実施例と
同等に基体ホルダ12に対し傾斜されていて、反応容器16
が導波管11内部に設けられた例である。
FIG. 3 shows an apparatus according to a second embodiment of the present invention.
In the apparatus of this embodiment, the waveguide 11 is inclined with respect to the base holder 12 similarly to the above-described embodiment, and the reaction vessel 16
Is an example provided inside the waveguide 11.

この実施例においても基体ホルダ12に対して導波管11
が傾斜しているので、前記第1実施例の装置と同等の効
果を得ることができる。
Also in this embodiment, the waveguide 11 is
Is inclined, so that the same effect as the device of the first embodiment can be obtained.

一方、第7図は本願発明の第3実施例の装置を示すも
のである。この例の装置においては、20がマイクロ波の
発振器、21が前記発振器20に接続された導波管を示し、
この導波管21の一部には、石英等からなる容器壁22,22
により仕切られて反応容器(反応部)23が形成されてい
る。
FIG. 7 shows a device according to a third embodiment of the present invention. In the device of this example, 20 is a microwave oscillator, 21 is a waveguide connected to the oscillator 20,
Container walls 22, 22 made of quartz or the like are provided on a part of the waveguide 21.
To form a reaction vessel (reaction section) 23.

この反応容器23には、反応ガスの供給源に接続するた
めのガス導入管24が導波管21の周壁を貫通して接続さ
れ、更に、排気ポンプ25に接続するための排気管26が導
波管21の周壁を貫通して接続されている。なお、前記ガ
ス導入管24と排気管26は、電磁波の漏洩を少なくする目
的で、できる限り径の小さいものを用いることが好まし
い。
A gas introduction pipe 24 for connecting to a reaction gas supply source is connected to the reaction vessel 23 through the peripheral wall of the waveguide 21, and an exhaust pipe 26 for connecting to an exhaust pump 25 is also provided. It is connected through the peripheral wall of the wave tube 21. It is preferable that the gas introduction pipe 24 and the exhaust pipe 26 be as small as possible in diameter in order to reduce leakage of electromagnetic waves.

更に、反応容器23には、導波管21の中心軸に対して傾
斜された状態で導波管21の周壁を貫通したパイプ28が接
続され、このパイプ28には、先端部を反応容器23内に入
れ、基端部を反応容器23の外に出した回転軸29が挿通さ
れている。そして、この回転軸29の先端部に、前記第1
実施例で用いたものと同等の基体ホルダ12が取り付けら
れ、回転軸29の基端部側がモータ30の回転軸に接続され
ている。また、導波管21からの電磁波の漏洩を防止する
ために、パイプ28の径を小さくすことは勿論である。な
お、第7図中符号31はプランジャを示している。
Further, a pipe 28 that penetrates the peripheral wall of the waveguide 21 in a state inclined with respect to the central axis of the waveguide 21 is connected to the reaction vessel 23, and a tip of the pipe 28 is connected to the reaction vessel 23. A rotating shaft 29 whose base end is put out of the reaction vessel 23 is inserted therethrough. The first end of the rotating shaft 29 is
The base holder 12 equivalent to that used in the embodiment is attached, and the base end side of the rotating shaft 29 is connected to the rotating shaft of the motor 30. Further, in order to prevent leakage of the electromagnetic wave from the waveguide 21, it is a matter of course to reduce the diameter of the pipe 28. In FIG. 7, reference numeral 31 denotes a plunger.

第7図に示す構成のCVD装置においても先に説明した
装置と同様に、基体15を基体ホルダ12に装着して基体15
を回転させ、プラズマを反応容器23内に発生させて反応
ガスを導入することで基体15上に成膜することができ
る。
In the CVD apparatus having the configuration shown in FIG. 7, the substrate 15 is mounted on the substrate holder 12 in the same manner as the apparatus described above.
Is rotated to generate a plasma in the reaction vessel 23 and introduce a reaction gas, whereby a film can be formed on the substrate 15.

また、この実施例の装置においても回転軸29が導波管
21の中心軸線に対して傾斜しているので、基体15の上面
全部に均一な厚さの薄膜を形成することができる。更
に、この実施例の装置では、導波管21の内部を仕切って
反応容器23を形成しているので、反応容器23を大きく形
成しても従来装置のような電磁波漏洩の問題は生じな
い。従って反応容器23を大きく形成することができ、大
きな基体15であっても反応容器23内で成膜することがで
きるようになる。また、導波管21を貫通する回転軸29は
第1実施例の装置に比較して短く形成できるので、基体
15を回転させる際に、回転軸の首振りにより生じる偏差
が、長い回転軸に比べて小さくなる。よって基体ホルダ
12の回転状態が安定し、繰り返し成膜した場合の再現性
が良好になる。
Also, in the apparatus of this embodiment, the rotation axis 29 is a waveguide.
Since it is inclined with respect to the central axis of 21, a thin film having a uniform thickness can be formed on the entire upper surface of the base 15. Further, in the apparatus of this embodiment, since the reaction vessel 23 is formed by partitioning the inside of the waveguide 21, even if the reaction vessel 23 is formed large, the problem of electromagnetic wave leakage unlike the conventional apparatus does not occur. Therefore, the reaction container 23 can be formed large, and a large substrate 15 can be formed in the reaction container 23. Further, since the rotating shaft 29 penetrating through the waveguide 21 can be formed shorter than the device of the first embodiment,
When rotating 15, the deviation caused by the swing of the rotating shaft is smaller than that of a long rotating shaft. Therefore, the base holder
The rotation state of 12 is stable, and the reproducibility when the film is repeatedly formed is improved.

第8図(a)は本願発明の第4実施例の装置を示すも
のである。この例の装置においては、31が図示略のマイ
クロ波の発振器に接続された導波管を示し、33が反応容
器(反応部)を示している。この実施例の構造において
は、箱状の反応容器3の両側壁部に設けられた導波管接
続用孔にそれぞれ導波管31が接続され、反応容器33の導
波管接続用孔に反応容器33の密閉構造を可能とする石英
などからなるマイクロ波導入窓32が設けられている。34
はガス導入管、36は排気管をそれぞれ示している。
FIG. 8 (a) shows an apparatus according to a fourth embodiment of the present invention. In the apparatus of this example, 31 indicates a waveguide connected to a microwave oscillator (not shown), and 33 indicates a reaction vessel (reaction unit). In the structure of this embodiment, the waveguides 31 are respectively connected to the waveguide connection holes provided on both side walls of the box-shaped reaction vessel 3, and the waveguide 31 is connected to the waveguide connection holes of the reaction vessel 33. A microwave introduction window 32 made of quartz or the like that enables a closed structure of the container 33 is provided. 34
Denotes a gas introduction pipe and 36 denotes an exhaust pipe.

この実施例の装置においても先に説明した第2実施例
の装置と同等の効果を得ることができる。
In the apparatus of this embodiment, the same effect as that of the apparatus of the second embodiment can be obtained.

第8図(b)は本願発明の第5実施例の装置を示すも
のである。この例の装置においては、31′が図示略のマ
イクロ波の発振器に接続された導波管を示し、33′が反
応容器(反応部)を示している。この実施例の構造にお
いては、円筒状の反応容器33′の側壁部に設けられた導
波管接続用孔にそれぞれ導波管31′が接続され、反応容
器33′の導波管接続用孔よりも若干離れた部分であって
導波管31′の内側に反応容器33の密閉構造を可能とする
石英などからなるマイクロ波導入窓32′が設けられてい
る。
FIG. 8 (b) shows an apparatus according to a fifth embodiment of the present invention. In the apparatus of this example, 31 'indicates a waveguide connected to a microwave oscillator (not shown), and 33' indicates a reaction vessel (reaction section). In the structure of this embodiment, the waveguides 31 'are connected to the respective waveguide connection holes provided on the side walls of the cylindrical reaction vessel 33', and the waveguide connection holes of the reaction vessel 33 'are formed. A microwave introduction window 32 ′ made of quartz or the like, which is a part slightly distant from the inside and inside the waveguide 31 ′, enables the hermetic structure of the reaction vessel 33 to be provided.

この実施例の装置においても先に説明した第2実施例
の装置と同等の効果を得ることができる。
In the apparatus of this embodiment, the same effect as that of the apparatus of the second embodiment can be obtained.

「製造例1」 第1図に示す構造であって、反応管と導波管の傾斜角
度を45゜に形成したプラズマCVD装置を使用してダイヤ
モンド薄膜の作製を行った。
"Production Example 1" A diamond thin film was produced using a plasma CVD apparatus having a structure shown in FIG. 1 and having a tilt angle of 45 ° between a reaction tube and a waveguide.

プラズマ発生条件として、反応管にH2ガスを200cc/
分、CH4ガスを1cc/分の各量導入するとともに、ガス圧
力を50Torrに設定し、マイクロ波(2450MHz)の搬入電
力を350Wに設定した。
As a plasma generating condition, the H 2 gas into the reaction tube 200 cc /
And CH 4 gas were introduced at an amount of 1 cc / min, the gas pressure was set to 50 Torr, and the power of microwave (2450 MHz) was set to 350 W.

反応管内の基体ホルダに設置する基体として、単結晶
シリコンからなる半径10mmの半球状の基体を用いるとと
もに、基体温度を850℃、基体の回転数を10rpm、反応時
間を200時間に設定して成膜することで基体表面にダイ
ヤモンド薄膜を形成した。
A semi-spherical substrate with a radius of 10 mm made of single-crystal silicon was used as the substrate to be placed in the substrate holder in the reaction tube. By forming the film, a diamond thin film was formed on the substrate surface.

ダイヤモンド薄膜が形成された半球状の基体を半球の
底面(円)の中心を通る面に沿って切断し、切断後の半
円状の断面(第4図の半円を参照。)の外周縁各部の膜
厚を測定した。その結果を第5図に示す。第5図におい
て角度αは第4図に示す断面の半円の中心からの角度を
示している。
The hemispherical substrate on which the diamond thin film is formed is cut along a plane passing through the center of the bottom surface (circle) of the hemisphere, and the outer peripheral edge of the cut semicircular cross section (see the semicircle in FIG. 4). The film thickness of each part was measured. The results are shown in FIG. In FIG. 5, the angle α indicates the angle from the center of the semicircle of the cross section shown in FIG.

第5図から明らかなように、本願発明に係る装置を用
いて基体上にダイヤモンド薄膜を成膜することで、膜厚
変動の少ない、均一な厚さのダイヤモンド薄膜を形成す
ることができた。また、膜厚の偏差は平均値に対し、±
10%以内であった。
As is apparent from FIG. 5, a diamond thin film having a small thickness variation and a uniform thickness was formed by forming a diamond thin film on a substrate using the apparatus according to the present invention. The deviation of the film thickness was ±
It was within 10%.

一方、第6図は、反応管と導波管を直角に交差させて
形成した従来のプラズマCVD装置を使用し、前記と同等
の成膜条件で前記と同等の基体上に成膜した場合、得ら
れた薄膜の膜厚測定を行った結果を示す。
On the other hand, FIG. 6 shows a case where a conventional plasma CVD apparatus formed by crossing a reaction tube and a waveguide at right angles is used, and a film is formed on the same substrate under the same film forming conditions as above, The results of measuring the thickness of the obtained thin film are shown.

第6図においては、最も厚い部分と薄い部分の膜厚比
は4:1になっていた。
In FIG. 6, the thickness ratio between the thickest part and the thinnest part was 4: 1.

以上のことから、本願発明に係る装置を用いて3次元
形状の基体上に成膜することで、±10%以内の膜厚変動
であって、従来より膜厚の一定した堆積膜を得ることが
できることが明らかになった。
From the above, by forming a film on a three-dimensional substrate using the apparatus according to the present invention, it is possible to obtain a deposited film having a film thickness variation within ± 10% and a film thickness more constant than before. It became clear that we could do it.

「製造例2および比較例」 第7図に示す構造であって導波管規格WRT−2に準じ
た形状の反応容器(長さ130mm)を作製し、プランジャ
ーと発振器との間に配置してプラズマCVD装置を作製し
た後、前記反応容器内に平板状のSi基体(直径60mm)を
設置し、反応容器を排気ポンプにより真空に排気した。
その後、H2ガスとCH4ガスとをCH4が0.5体積%となるよ
うに混合してなる反応ガスを反応容器に導入し、反応容
器内の圧力を20Torrに調整した。
"Manufacturing Example 2 and Comparative Example" A reaction vessel (130 mm in length) having a structure shown in Fig. 7 and conforming to the waveguide standard WRT-2 was prepared, and placed between the plunger and the oscillator. After the plasma CVD apparatus was manufactured, a flat Si substrate (60 mm in diameter) was set in the reaction vessel, and the reaction vessel was evacuated to a vacuum by an exhaust pump.
Thereafter, a reaction gas obtained by mixing H 2 gas and CH 4 gas so that CH 4 became 0.5% by volume was introduced into the reaction vessel, and the pressure in the reaction vessel was adjusted to 20 Torr.

次に、2.45GHzのマイクロ波を発振器により投入した
ところ、反応容器内のほぼ全域にプラズマを発生させる
ことができた。また、その際に基体表面の温度は800℃
以上まで、他の補助加熱手段を用いることなく上昇させ
ることができた。この状態で100時間成膜したところSi
基体上にダイヤモンド薄膜を形成することができた。
Next, when a microwave of 2.45 GHz was applied by an oscillator, plasma was generated in almost the entire region of the reaction vessel. At that time, the temperature of the substrate surface was 800 ° C.
As described above, the temperature can be increased without using other auxiliary heating means. After filming for 100 hours in this state, Si
A diamond thin film could be formed on the substrate.

以上のように得られたダイヤモンド薄膜のX線回折試
験結果を第11図に、ラマン分光結果を第12図に、SIMS
(2次イオン質量分析法)による測定結果を第13図にそ
れぞれ示す。
Fig. 11 shows the X-ray diffraction test results of the diamond thin film obtained as described above, and Fig. 12 shows the Raman spectroscopy results.
The measurement results obtained by (secondary ion mass spectrometry) are shown in FIG.

第11図〜第13図に示す結果から、基体全面に不純物を
含まないダイヤモンド薄膜が生成していることを確認で
きた。
From the results shown in FIGS. 11 to 13, it was confirmed that a diamond thin film containing no impurities was formed on the entire surface of the substrate.

次に、ドーム状のSi基体(平面直径60mm、高さ16mm)
を前記プラズマCVD装置の反応容器内に、電磁波の進行
方向に対し30゜傾斜するように配置し、前記と同等の条
件でプラズマを発生させ、250時間かけてダイヤモンド
薄膜を基体上に形成した。その際に、基体を50rpmで回
転させたが、基体表面の温度は850℃±10℃になってい
た。以上のように製造されたダイヤモンド薄膜における
各部の厚さを測定した結果を第9図に示す。第9図か
ら、本願発明の装置によってドーム状の基体上に均一な
厚さの膜を形成できることが明らかになった。
Next, a dome-shaped Si substrate (plane diameter 60 mm, height 16 mm)
Was placed in the reaction vessel of the plasma CVD apparatus so as to be inclined by 30 ° with respect to the traveling direction of the electromagnetic wave, plasma was generated under the same conditions as above, and a diamond thin film was formed on the substrate over 250 hours. At that time, the substrate was rotated at 50 rpm, and the temperature of the substrate surface was 850 ° C. ± 10 ° C. FIG. 9 shows the results of measuring the thickness of each part in the diamond thin film manufactured as described above. From FIG. 9, it has been clarified that a film having a uniform thickness can be formed on a dome-shaped substrate by the apparatus of the present invention.

また、比較のために、第10図に示す構成の従来装置を
用いて前記Si基板と同等の材料からなる外径25mmのドー
ム状の基体に成膜を行った。第10図に示す装置におい
て、40はマイクロ波の発振器、41は導波管、42は導波管
41を貫通して設けられた反応管、43はモータ、44は回転
軸45は排気装置、46は基体、47はプランジャをそれぞれ
示している。
For comparison, a conventional apparatus having the configuration shown in FIG. 10 was used to form a film on a dome-shaped substrate having an outer diameter of 25 mm and made of the same material as the Si substrate. In the apparatus shown in FIG. 10, 40 is a microwave oscillator, 41 is a waveguide, and 42 is a waveguide.
A reaction tube provided through 41, 43 is a motor, 44 is a rotary shaft 45 is an exhaust device, 46 is a base, and 47 is a plunger.

この構成の装置を用い、前記と同等のプラズマ発生条
件と同等の反応ガスを用いて成膜を行った結果、ダイヤ
モンド薄膜を形成することができたが、このダイヤモン
ド薄膜の膜厚分布(比較例1)は第9図の鎖線で示す結
果となり、膜厚が均一ではないことが判明した。なお、
第10図に示す装置では、最大直径40mmまでのドーム状の
基体を処理できるが、第7図に示す本願構成の装置では
直径60mmのドーム状基体を処理することができる。
As a result of forming a film using the apparatus having the above-described configuration and using the same reaction gas under the same plasma generation conditions as described above, a diamond thin film could be formed. 1) is the result shown by the chain line in FIG. 9, and it was found that the film thickness was not uniform. In addition,
While the apparatus shown in FIG. 10 can process a dome-shaped substrate having a maximum diameter of 40 mm, the apparatus of the present invention shown in FIG. 7 can process a dome-shaped substrate having a diameter of 60 mm.

ところで、前記第3実施例の装置を用い、マイクロ波
の方向に対し基体を90゜傾斜させた状態で他の条件を前
記と同一に設定してダイヤモンド薄膜の成膜を行った。
この場合のダイヤモンド薄膜の膜厚分布(比較例2)は
第9図の1点鎖線に示すようになり、膜厚変動を起こす
ことが判明した。
By the way, using the apparatus of the third embodiment, a diamond thin film was formed under the same conditions as above except that the substrate was inclined by 90 ° with respect to the microwave direction.
In this case, the film thickness distribution of the diamond thin film (Comparative Example 2) was as shown by the one-dot chain line in FIG. 9, and it was found that the film thickness fluctuated.

従って以上の結果から、マイクロ波の方向に対し、基
体の角度を傾斜させたことによって膜厚分布を平均化で
きることが明らかになった。
Therefore, from the above results, it was clarified that the film thickness distribution can be averaged by inclining the angle of the base with respect to the direction of the microwave.

なお、以上説明した構成のプラズマCVD装置によって
ドーム状の基体上に成膜し、成膜後に基体を化学的に溶
解除去するなどの手段をとって膜状体からなるドーム状
構造物を得ることができ、この構造物はスピーカの振動
板などとして使用することができる。そして、この場
合、膜厚の均一なドーム状のスピーカ用振動板を得るこ
とができる。
Note that a film is formed on a dome-shaped substrate by the plasma CVD apparatus having the above-described configuration, and a dome-shaped structure made of a film-like body is obtained by, for example, chemically dissolving and removing the substrate after film formation. This structure can be used as a diaphragm of a speaker or the like. In this case, a dome-shaped speaker diaphragm having a uniform film thickness can be obtained.

「発明の効果」 以上説明したように本願発明は、基体を支持する基体
ホルダを回転させる回転軸に対して導波管を傾斜させて
設け、基体に対してプラズマを傾斜状態で発生させるこ
とができ、基体の一側部分とプラズマまでの距離と、基
体の他側部分とプラズマまでの距離の差を従来装置より
も均等化したので、基体ホルダを回転させることによっ
て基体を均一にプラズマ加熱することができる。従って
反応管に供給した反応ガスをプラズマで分解して基体上
に堆積させる場合、基体の全面に従来より均一に薄膜を
堆積させることができる。このため、±10%以内の極め
て膜厚変動の少ない堆積膜を得ることができる効果があ
る。
[Effect of the Invention] As described above, according to the present invention, the waveguide can be provided to be inclined with respect to the rotation axis for rotating the substrate holder that supports the substrate, and the plasma can be generated in an inclined state with respect to the substrate. As a result, the difference between the distance between one side of the base and the plasma and the distance between the other side of the base and the plasma is equalized as compared with the conventional apparatus, so that the base is heated uniformly by rotating the base holder. be able to. Therefore, when the reaction gas supplied to the reaction tube is decomposed by plasma and deposited on the substrate, a thin film can be deposited more uniformly on the entire surface of the substrate than before. Therefore, there is an effect that a deposited film having a very small variation in film thickness within ± 10% can be obtained.

また、導波管の内部に反応容器を形成するならば、導
波管を反応管が貫通する構成の従来装置に比べてマイク
ロ波漏洩の問題が生じないので、反応容器を大きく形成
することができるようになる。このため、従来より大き
な基体に成膜できるようになる。
Further, if the reaction vessel is formed inside the waveguide, the problem of microwave leakage does not occur as compared with the conventional apparatus in which the reaction pipe penetrates the waveguide, so that the reaction vessel can be formed large. become able to. For this reason, it becomes possible to form a film on a substrate larger than before.

一方、導波管を2分割とし、反応容器に接続する構造
とすると、反応容器の大きさと形状を任意に設定するこ
とができるようになるので、反応容器を大きく形成する
ことができるようになる。このため、従来より大きな基
体に成膜できるようになる。
On the other hand, if the waveguide is divided into two and connected to the reaction vessel, the size and shape of the reaction vessel can be arbitrarily set, so that the reaction vessel can be made large. . For this reason, it becomes possible to form a film on a substrate larger than before.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本願発明の第1実施例の装置を示す側面図、 第2図は前記装置の基体とプラズマの位置関係を示す説
明図、 第3図は本願発明の第2実施例の装置を示す側面図、 第4図は膜厚を測定した位置(角度)を示す説明図、 第5図は第1実施例の装置で製造された薄膜の厚さ分布
を示すグラフ、 第6図は従来装置で製造された薄膜の厚さ分布を示すグ
ラフ、 第7図は本願発明の第3実施例の装置を示す構成図、 第8図(a)は本願発明の第4実施例の装置を示す構成
図、 第8図(b)は本願発明の第5実施例の装置を示す構成
図、 第9図は第3実施例の装置と従来装置で製造された薄膜
の厚さ分布を示すグラフ、 第10図は従来装置の他の例を示す構成図、 第11図はダイヤモンド薄膜のX線回折図、 第12図はダイヤモンド薄膜のラマンスペクトルグラフ、 第13図はダイヤモンド薄膜のSIMS測定結果を示すグラ
フ、 第14図は従来のCVD装置の一例を示す構成図、 第15図は従来のCVD装置の他の例を示す構成図、 第16図は第14図に示す構成のCVD装置におけるプラズマ
と基体の関係を示す図、 第17図は基体上に形成された薄膜の断面図である。 10……反応管(反応部)、11導波管、12……基体ホル
ダ、14……回転軸、15……基体、16……反応容器、P…
…プラズマ、20……発振器、21……導波管、22……容器
壁、23……反応容器(反応部)、24……導入管、25……
排気ポンプ、26……排気管、28……パイプ、29……回転
軸、30……モータ、31,31′……導波管、32,32′……マ
イクロ波導入窓、33,33′……反応部。
FIG. 1 is a side view showing an apparatus according to a first embodiment of the present invention, FIG. 2 is an explanatory view showing a positional relationship between a substrate of the apparatus and plasma, and FIG. 3 is an apparatus according to a second embodiment of the present invention. FIG. 4 is an explanatory view showing the position (angle) at which the film thickness was measured, FIG. 5 is a graph showing the thickness distribution of a thin film manufactured by the apparatus of the first embodiment, and FIG. FIG. 7 is a graph showing a thickness distribution of a thin film manufactured by the apparatus, FIG. 7 is a configuration diagram showing an apparatus of a third embodiment of the present invention, and FIG. 8 (a) is an apparatus of a fourth embodiment of the present invention. FIG. 8 (b) is a block diagram showing an apparatus of a fifth embodiment of the present invention, FIG. 9 is a graph showing a thickness distribution of thin films manufactured by the apparatus of the third embodiment and a conventional apparatus, FIG. 10 is a block diagram showing another example of the conventional device, FIG. 11 is an X-ray diffraction diagram of the diamond thin film, and FIG. FIG. 13 is a graph showing the result of SIMS measurement of a diamond thin film, FIG. 14 is a configuration diagram showing an example of a conventional CVD device, FIG. 15 is a configuration diagram showing another example of a conventional CVD device, FIG. The figure shows the relationship between the plasma and the substrate in the CVD apparatus having the configuration shown in FIG. 14. FIG. 17 is a cross-sectional view of the thin film formed on the substrate. 10 ... reaction tube (reaction part), 11 waveguide, 12 ... substrate holder, 14 ... rotating shaft, 15 ... substrate, 16 ... reaction vessel, P ...
... Plasma, 20 ... Oscillator, 21 ... Waveguide, 22 ... Container wall, 23 ... Reaction vessel (reaction part), 24 ... Introduction pipe, 25 ...
Exhaust pump, 26 ... Exhaust pipe, 28 ... Pipe, 29 ... Rotary shaft, 30 ... Motor, 31, 31 '... Waveguide, 32, 32' ... Microwave introduction window, 33, 33 ' ... Reaction part.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応ガス供給源に接続されて内部に反応ガ
スが導入される反応管と、この反応管に貫通されるマイ
クロ波の導波管と、反応管と導波管の交差部分に3次元
形状の基体を設置する基体ホルダとを具備してなるプラ
ズマCVD装置であって、 前記基体ホルダが基体を回転する回転軸を備えてなり、
基体ホルダの回路軸の中心軸に対し、導波管の中心軸を
傾斜させて設け、基体ホルダを基体ホルダの回転軸の中
心軸まわりに回転自在に設けるとともに、前記反応管内
に前記マイクロ波の導波管が生成させるプラズマを前記
基体に対して傾斜状態に生成自在とするように前記マイ
クロ波の導波管を傾斜させてなることを特徴とするプラ
ズマCVD装置。
A reaction tube connected to a reaction gas supply source and into which a reaction gas is introduced, a microwave waveguide penetrating the reaction tube, and an intersection of the reaction tube and the waveguide. What is claimed is: 1. A plasma CVD apparatus comprising: a substrate holder on which a three-dimensionally shaped substrate is placed; wherein the substrate holder includes a rotating shaft for rotating the substrate;
The central axis of the waveguide is provided to be inclined with respect to the central axis of the circuit axis of the substrate holder, and the substrate holder is rotatably provided around the central axis of the rotation axis of the substrate holder. A plasma CVD apparatus characterized in that the microwave waveguide is inclined so that plasma generated by the waveguide can be freely generated in an inclined state with respect to the substrate.
【請求項2】マイクロ波の発振器が接続された導波管
と、この導波管の内部を仕切って設けられた反応容器
と、この反応容器の内部を減圧するポンプと、反応容器
内に設けられて3次元形状の基体を設置する基体ホルダ
とを具備してなるプラズマCVD装置であって、 前記基体ホルダが基体を回転する回転軸を備えてなり、
前記導波管の中心軸に対し、基体ホルダの回転軸の中心
軸を傾斜させて設け、基体ホルダを基体ホルダの回転軸
の中心軸まわりに回転自在に設けてなるとともに、前記
反応管内に前記マイクロ波の導波管が生成させるプラズ
マを前記基体に対して傾斜状態に生成自在とするように
前記マイクロ波の導波管を傾斜させてなることを特徴と
するプラズマCVD装置。
2. A waveguide to which a microwave oscillator is connected, a reaction vessel provided for partitioning the inside of the waveguide, a pump for reducing the pressure inside the reaction vessel, and a pump provided in the reaction vessel. A plasma CVD apparatus comprising: a substrate holder on which a substrate having a three-dimensional shape is placed; wherein the substrate holder includes a rotating shaft for rotating the substrate;
The center axis of the rotation axis of the base holder is provided to be inclined with respect to the center axis of the waveguide, and the base holder is rotatably provided around the center axis of the rotation axis of the base holder. A plasma CVD apparatus characterized in that the microwave waveguide is inclined so that plasma generated by the microwave waveguide can be freely generated in an inclined state with respect to the substrate.
【請求項3】反応ガス導入管と排気管が接続された反応
容器と、マイクロ波発振器が接続された導波管と、反応
容器内部を減圧する減圧ポンプと、反応容器内に設けら
れて3次元形状の基体を設置する基体ホルダとを具備し
てなるプラズマCVD装置であって、 前記導波管が2分割構造であり、前記反応容器の相対す
る同軸上の位置に導波管接続用孔を設け、この導波管接
続用孔に導波管を接続し、前記導波管と前記反応容器の
接続部にマイクロ波導入窓を設け、前記基体ホルダが基
体を回転する回転軸を備えてなり、導波管の中心軸に対
し、基体ホルダの回転軸の中心軸を傾斜させて設け、基
体ホルダを基体ホルダの回転軸の中心軸回りに回転自在
に設けてなるとともに、前記反応管内に前記マイクロ波
の導波管が生成させるプラズマのを前記基体に対して傾
斜状態に生成自在とするように前記マイクロ波の導波管
を傾斜させてなることを特徴とするプラズマCVD装置。
3. A reaction vessel to which a reaction gas introduction pipe and an exhaust pipe are connected, a waveguide to which a microwave oscillator is connected, a decompression pump for depressurizing the inside of the reaction vessel, and a pump provided in the reaction vessel. A plasma CVD apparatus comprising: a substrate holder on which a three-dimensional substrate is placed; wherein the waveguide has a two-part structure, and a waveguide connection hole is provided at a position on the opposite coaxial side of the reaction vessel. Is provided, a waveguide is connected to the waveguide connection hole, a microwave introduction window is provided at a connection portion between the waveguide and the reaction vessel, and the substrate holder includes a rotating shaft for rotating the substrate. The central axis of the rotation axis of the substrate holder is provided to be inclined with respect to the central axis of the waveguide, and the substrate holder is provided so as to be rotatable around the central axis of the rotation axis of the substrate holder. The plasma generated by the microwave waveguide is A plasma CVD apparatus characterized in that the microwave waveguide is inclined so that it can be generated in an inclined state with respect to a substrate.
JP2150313A 1990-03-08 1990-06-08 Plasma CVD equipment Expired - Lifetime JP2973472B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2150313A JP2973472B2 (en) 1990-03-08 1990-06-08 Plasma CVD equipment
US07/665,580 US5234502A (en) 1990-03-08 1991-03-06 Microwave plasma chemical vapor deposition apparatus comprising an inclined rotating substrate holder
DE4107543A DE4107543A1 (en) 1990-03-08 1991-03-08 CHEMICAL VAPOR SEPARATION DEVICE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5751790 1990-03-08
JP2-57517 1990-03-08
JP2150313A JP2973472B2 (en) 1990-03-08 1990-06-08 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH03277776A JPH03277776A (en) 1991-12-09
JP2973472B2 true JP2973472B2 (en) 1999-11-08

Family

ID=26398576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150313A Expired - Lifetime JP2973472B2 (en) 1990-03-08 1990-06-08 Plasma CVD equipment

Country Status (3)

Country Link
US (1) US5234502A (en)
JP (1) JP2973472B2 (en)
DE (1) DE4107543A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691035B1 (en) * 1992-05-07 1994-06-17 France Telecom CHEMICAL PROCESSING PLASMA DEVICE AND MACHINE AND METHOD USING THE SAME.
US5387288A (en) * 1993-05-14 1995-02-07 Modular Process Technology Corp. Apparatus for depositing diamond and refractory materials comprising rotating antenna
JPH08259386A (en) * 1995-03-20 1996-10-08 Matsushita Electric Ind Co Ltd Production of oxide thin film and chemical deposition apparatus therefor
US8633648B2 (en) 2011-06-28 2014-01-21 Recarbon, Inc. Gas conversion system
US10357920B2 (en) 2017-01-17 2019-07-23 Obsidian Advanced Manufacturing, Llc Gas phase integrated multimaterial printhead for additive manufacturing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434188A (en) * 1981-12-17 1984-02-28 National Institute For Researches In Inorganic Materials Method for synthesizing diamond
US4818561A (en) * 1985-09-24 1989-04-04 Machine Technology, Inc. Thin film deposition apparatus and method
EP0230959A3 (en) * 1986-01-21 1989-07-12 Energy Conversion Devices, Inc. Fabrication of atomically alloyed synthetic materials
JPH075905B2 (en) * 1986-07-10 1995-01-25 コスモ石油株式会社 Flame retardant lubricant
JPH0676664B2 (en) * 1986-12-09 1994-09-28 キヤノン株式会社 Apparatus for forming functional deposited film by microwave plasma CVD method
JPH01222060A (en) * 1988-02-29 1989-09-05 Sumitomo Electric Ind Ltd Formation of thin film and photosensitive body
JPH01242775A (en) * 1988-03-23 1989-09-27 Hitachi Ltd Formation of thin film and device therefor
JPH01257196A (en) * 1988-04-02 1989-10-13 Idemitsu Petrochem Co Ltd Method and device for synthesizing diamond
JPH0223613A (en) * 1988-07-12 1990-01-25 Tokyo Ohka Kogyo Co Ltd Plasma reactor
US5130111A (en) * 1989-08-25 1992-07-14 Wayne State University, Board Of Governors Synthetic diamond articles and their method of manufacture

Also Published As

Publication number Publication date
US5234502A (en) 1993-08-10
JPH03277776A (en) 1991-12-09
DE4107543A1 (en) 1991-09-12

Similar Documents

Publication Publication Date Title
EP0283311A2 (en) Thin film forming method and thin film forming apparatus
JPH0216732A (en) Plasma reactor
JP2748213B2 (en) Plasma film forming equipment
JP2973472B2 (en) Plasma CVD equipment
JPS61213377A (en) Method and apparatus for plasma deposition
WO1992014861A1 (en) Microwave plasma cvd device, and method for synthesizing diamond by device thereof
JPH03283425A (en) Microwave plasma cvd device
US7815969B2 (en) Diamond shell with a geometrical figure and method for fabrication thereof
KR100262745B1 (en) Surface processing apparatus
JPH05239655A (en) Diamond film synthesis device by microwave plasma cvd method
JP7304280B2 (en) CVD equipment for diamond synthesis
JPS6240380A (en) Deposited film forming device by plasma cvd method
US4228452A (en) Silicon device with uniformly thick polysilicon
JP2000173797A (en) Microwave plasma treating device
JPH05295544A (en) Diamond film synthesizing device
JPH07118860A (en) Counter electrode type microwave plasma treating device and treating method therefor
JPH10106796A (en) Plasma treatment device
JPS63301517A (en) Dry type thin film processor
JP3621730B2 (en) Microwave plasma chemical vapor deposition system
JPS6312377B2 (en)
US5635241A (en) Method for producing thin film and apparatus therefor
JP2003303775A (en) Plasma treatment device
JP2964610B2 (en) Manufacturing method of diamond fine particles
JPH0543097Y2 (en)
JPS63290278A (en) Formation of thin film