JP2935611B2 - Manufacturing method of ferroalloys in electric furnaces - Google Patents

Manufacturing method of ferroalloys in electric furnaces

Info

Publication number
JP2935611B2
JP2935611B2 JP15351192A JP15351192A JP2935611B2 JP 2935611 B2 JP2935611 B2 JP 2935611B2 JP 15351192 A JP15351192 A JP 15351192A JP 15351192 A JP15351192 A JP 15351192A JP 2935611 B2 JP2935611 B2 JP 2935611B2
Authority
JP
Japan
Prior art keywords
ore
melting
temperature
raw material
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15351192A
Other languages
Japanese (ja)
Other versions
JPH05345908A (en
Inventor
茂樹 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15351192A priority Critical patent/JP2935611B2/en
Publication of JPH05345908A publication Critical patent/JPH05345908A/en
Application granted granted Critical
Publication of JP2935611B2 publication Critical patent/JP2935611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気炉での合金鉄の製
造方法に関し、詳細には、電気炉により原料鉱石を溶
解、還元して合金鉄を製造するに際し、予め原料鉱石の
溶融開始温度及び溶融温度幅を調べ、それらが的確な原
料鉱石を溶解原料鉱石として使用し、操業性の安定化等
を図る電気炉での合金鉄の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ferroalloys in an electric furnace, and more particularly, to starting melting of raw ores in advance when melting or reducing raw ores by an electric furnace to produce ferroalloys. The present invention relates to a method for producing ferroalloys in an electric furnace for examining a temperature and a melting temperature range, using the raw material ore having the proper temperature as a molten raw material ore, and stabilizing operability.

【0002】[0002]

【従来の技術】電気炉での合金鉄の製造は、電気炉に塊
鉱石、焼結鉱、ペレット等の原料鉱石及びコークスを投
入し、次いで電極間の抵抗加熱により加熱して原料鉱石
を溶解し、コークスにより還元して合金鉄を得る方法に
より行われる。この溶解、還元後のものは溶融状態であ
り、モールドに注入され、冷却されて固化状態の合金鉄
となる。
2. Description of the Related Art In the manufacture of ferroalloys in an electric furnace, raw ores and coke such as lump ore, sintered ore, and pellets are put into an electric furnace, and then heated by resistance heating between electrodes to melt the raw ore. Then, it is carried out by a method of obtaining alloyed iron by reduction with coke. The melted and reduced product is in a molten state, injected into a mold, and cooled to become a solid ferromagnetic iron.

【0003】このとき、塊鉱石は焼結等の処理がなされ
ることなく、通常そのままの状態、即ち、生鉱の状態で
電気炉に投入される。但し、塊鉱石の水分含有量が多い
場合にはそれを低減するために、或いは、電気炉への持
ち込み熱量を高めるために、電気炉への投入前にロータ
リーキルン等の乾燥装置により乾燥することがある。し
かし、電気炉の安定操業や各原単位の改善を目的とする
塊鉱石の事前評価や、塊鉱石の改質は行われていない。
これは、それら評価方法や改質方法が未だ開発されてい
ないためであると考えられる。
[0003] At this time, the lump ore is usually put into an electric furnace in a state without any treatment such as sintering, that is, in a raw ore state. However, when the lump ore has a high moisture content, it may be dried with a drying device such as a rotary kiln before charging it into the electric furnace in order to reduce it or to increase the amount of heat brought into the electric furnace. is there. However, there is no prior evaluation of lump ore and improvement of lump ore for the purpose of stable operation of electric furnaces and improvement of each basic unit.
This is considered to be because those evaluation methods and modification methods have not been developed yet.

【0004】[0004]

【発明が解決しようとする課題】前記従来の電気炉での
合金鉄の製造方法においては、前述の如く、電気炉の安
定操業や各原単位の改善を目的とする塊鉱石の事前評価
や、塊鉱石の改質が行われていないため、原料鉱石(塊
鉱石の生鉱、乾燥目的で乾燥した塊鉱石)によっては電
気炉操業が不安定になったり、各種原単位が悪化したり
するという問題点がある。即ち、原料鉱石の一部又は殆
どについて溶融温度幅等の特性が不明であるため、原料
鉱石によっては軟化融着帯が広くなり、従って、電気炉
内原料の電気抵抗値が低くなり、電極が浮き、電力負荷
がかかり難くなる等の現象が生じて、電気炉の操業が不
安定になったり、各種原単位が悪化したりするという問
題点に遭遇することがある。
In the conventional method for producing ferromagnetic iron in an electric furnace, as described above, prior evaluation of lump ore for the purpose of stable operation of the electric furnace and improvement of each basic unit, Since the lump ore is not modified, the operation of the electric furnace becomes unstable or the various basic units deteriorate, depending on the raw ore (raw ore of lump ore, lump ore dried for drying). There is a problem. That is, since the properties such as the melting temperature width of a part or most of the raw ore are unknown, the softening cohesive zone is widened depending on the raw ore, and therefore, the electric resistance value of the raw material in the electric furnace is reduced, and the electrode is Phenomena such as floating and difficulty in applying an electric load may occur, and the operation of the electric furnace may become unstable, or various basic units may be deteriorated.

【0005】例えば、主要原料鉱石として使用されるマ
ンガン焼結鉱は、通常、溶融開始温度が1350℃以上で、
溶融温度幅が200 ℃以内であるが、これに対してマンガ
ン塊鉱石Aは溶融温度幅が広い上に溶融温度域が低温側
にずれているので、原料鉱石としてマンガン焼結鉱にマ
ンガン塊鉱石Aを配合(混合)したものを用いると、軟
化融着帯が広くなる。そのため、電気炉内原料の電気抵
抗値が低くなり、電極が浮き、電力負荷がかかり難くな
って、電気炉の操業が不安定になるという支障が生じ易
い。この対策としては、マンガン塊鉱石Aの配合量を減
少する必要があり、そのようにすればよいが、その使用
量が制限されるので、鉱石の需給政策上問題となる。
For example, a manganese sintered ore used as a main raw material ore usually has a melting start temperature of 1350 ° C. or more,
The melting temperature range is within 200 ° C. On the other hand, the manganese lump ore A has a wide melting temperature range and the melting temperature range is shifted to the low temperature side. When a mixture of A is used (mixed), the softened cohesive zone is widened. Therefore, the electric resistance value of the raw material in the electric furnace becomes low, the electrodes float, the electric load is hardly applied, and the operation of the electric furnace becomes unstable. As a countermeasure, it is necessary to reduce the blending amount of the manganese lump ore A, and it is sufficient to do so. However, since the amount of the ore is limited, there is a problem in the supply and demand policy of the ore.

【0006】本発明はこのような問題点の解消を図るた
めに成されたものであり、本発明の目的は、操業性の安
定化及び各原単位の向上を図り得る電気炉での合金鉄の
製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and an object of the present invention is to provide a ferroalloy in an electric furnace capable of stabilizing operability and improving each basic unit. It is to provide a manufacturing method of.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る電気炉での合金鉄の製造方法は次のよ
うな構成としている。即ち、請求項1記載の方法は、電
気炉により原料鉱石を溶解、還元して合金鉄を製造する
に際し、予め原料鉱石について高温荷重試験により溶融
開始温度及び溶け落ち終了温度を測定することによって
溶融開始温度が1300〜1500℃で、且つ溶融温度幅が200
℃以内である原料鉱石を選定し、該原料鉱石を溶解原料
鉱石の総量に対して85%以上含有させて溶解することを
特徴とする電気炉での合金鉄の製造方法である。
Means for Solving the Problems In order to achieve the above object, a method for producing ferromagnetic iron in an electric furnace according to the present invention has the following configuration. That is, in the method according to claim 1, when the raw material ore is melted and reduced by an electric furnace to produce ferroalloys, the raw material ore is melted by measuring a melting start temperature and a burn-through end temperature by a high temperature load test in advance. Starting temperature is 1300 ~ 1500 ℃ and melting temperature range is 200
A method for producing ferroalloys in an electric furnace, comprising selecting a raw material ore within a temperature of ° C. and melting the raw material ore in an amount of 85% or more based on the total amount of the molten raw material ore.

【0008】請求項2記載の方法は、溶融開始温度:13
00〜1500℃且つ溶融温度幅:200 ℃以内の条件を充たさ
ない原料鉱石を、単独あるいは他の鉱石と混合して、そ
の溶融温度以上に加熱することにより、該条件を充たす
原料鉱石に調整した後、前記85%以上含有させる原料鉱
石として使用する請求項1記載の電気炉での合金鉄の製
造方法である。
[0008] The method according to claim 2 is characterized in that the melting start temperature is 13
Raw material ore that does not satisfy the condition of 00 to 1500 ° C and melting temperature range: 200 ° C or less is adjusted to a raw material ore that satisfies the condition by heating alone or mixed with other ores to the melting temperature or higher. 2. The method for producing ferromagnetic iron in an electric furnace according to claim 1, wherein the iron ore is used as a raw material ore containing 85% or more.

【0009】[0009]

【作用】本発明者は電気炉の安定操業や各原単位の改善
を目的とする原料鉱石の事前評価法及び改質法について
種々実験及び検討を行い、その結果、原料鉱石について
高温荷重試験により溶融開始温度及び溶け落ち終了温度
を測定し得るという知見を得た。即ち、一定荷重を負荷
した状態で原料鉱石を加熱し、温度と圧損との関係を測
定することにより、原料鉱石の溶融開始温度及び溶け落
ち終了温度を比較的正確に求めることができ、又、その
ため溶融温度幅を求め得るという知見を得た。更に、原
料鉱石を単独あるいは他の鉱石と混合して、溶融温度以
上に加熱することにより好適に改質し得るという知見を
得た。本発明は、主にこれら知見に基づき完成されたも
のである。
The present inventor conducted various experiments and examinations on a preliminary evaluation method and a reforming method of raw ore for the purpose of stable operation of the electric furnace and improvement of each basic unit. As a result, the raw ore was subjected to a high temperature load test. It has been found that the melting start temperature and the burn-through end temperature can be measured. That is, by heating the raw ore under a constant load, and measuring the relationship between the temperature and pressure loss, the melting start temperature and the burn-through end temperature of the raw ore can be obtained relatively accurately, Therefore, it has been found that the melting temperature range can be determined. Further, the present inventors have found that a raw material ore can be suitably reformed by heating alone or in combination with another ore and heating it to a melting temperature or higher. The present invention has been completed mainly based on these findings.

【0010】即ち、本発明に係る電気炉での合金鉄の製
造方法は、電気炉により原料鉱石を溶解、還元して合金
鉄を製造するに際し、先ず、上記高温荷重試験により原
料鉱石の溶融開始温度及び溶け落ち終了温度を比較的正
確に求め得るという知見に基づき、予め原料鉱石につい
て高温荷重試験により溶融開始温度及び溶け落ち終了温
度を測定するようにしている。その結果、これら溶融開
始温度と溶け落ち終了温度との差より溶融温度幅が簡単
に求められ、その値も比較的正確である。
That is, in the method for producing ferroalloys in an electric furnace according to the present invention, in producing ferroalloys by melting and reducing raw ores by an electric furnace, first, melting of raw ores is started by the above-mentioned high temperature load test. Based on the knowledge that the temperature and the burn-through end temperature can be relatively accurately determined, the melting start temperature and the burn-through end temperature of the raw ore are previously measured by a high-temperature load test. As a result, the melting temperature range is easily obtained from the difference between the melting start temperature and the burn-through end temperature, and the value is relatively accurate.

【0011】次に、上記溶融開始温度及び溶融温度幅の
データより、溶融開始温度が1300〜1500℃で、且つ溶融
温度幅が200 ℃以内である原料鉱石を選定し、該原料鉱
石を溶解原料鉱石の総量に対して85%以上含有させて溶
解するようにしている。従って、溶解に供する原料鉱石
の殆どは溶融温度幅が200 ℃以内であって狭いので、電
気炉内原料鉱石は軟化融着帯が狭く、その結果、電気炉
内原料の電気抵抗値低下、電極が浮くこと、電力負荷が
かかり難くなること等の現象が生じ難くなり、故に操業
性の安定化及び各原単位の向上を図り得るようになる。
Next, based on the data of the melting start temperature and the melting temperature range, a raw material ore having a melting start temperature of 1300 to 1500 ° C. and a melting temperature range of 200 ° C. or less is selected, and the raw material ore is dissolved in the raw material ore. 85% or more of the total amount of ore is dissolved. Therefore, most of the raw ore to be melted has a melting temperature range of less than 200 ° C and is narrow, so that the raw ore in the electric furnace has a narrow softening cohesive zone. As a result, the electric resistance of the raw material in the electric furnace decreases, Phenomena such as floating and difficulty in applying a power load are less likely to occur, so that operability can be stabilized and each basic unit can be improved.

【0012】前記選定する原料鉱石の溶融開始温度を13
00〜1500℃にすると共に溶融温度幅を200 ℃以内として
いるのは、主要原料鉱石として多用されるマンガン焼結
鉱の溶融開始温度(1350℃以上)及び溶融温度幅(200
℃以内)と溶融温度幅及び溶融温度域を対応(略一致)
させることにより、前記の如く軟化融着帯を確実に狭く
して操業性の安定化及び各原単位の向上を図るためであ
る。即ち、溶融開始温度を1300℃未満又は1500℃超にす
ると、たとえ溶融温度幅を200 ℃以内にしても、溶融温
度域がマンガン焼結鉱のそれに対して低温側又は高温側
にずれて軟化融着帯が広くなって具合が悪い。一方、溶
融温度幅を200 ℃超にすると、たとえ溶融開始温度を13
00〜1500℃にしても、軟化融着帯が広くなって支障を来
すからである。
[0012] The melting start temperature of the selected raw material ore is 13
The reason why the melting temperature range is set to 00 to 1500 ° C and the melting temperature range is set to 200 ° C or less is that the melting start temperature (1350 ° C or more) and the melting temperature range (200
(Within ° C) and melting temperature range and melting temperature range (approximately match)
By doing so, as described above, the softened cohesive zone is reliably narrowed, thereby stabilizing the operability and improving each basic unit. That is, if the melting start temperature is less than 1300 ° C or more than 1500 ° C, even if the melting temperature range is within 200 ° C, the melting temperature range shifts to the low or high temperature side with respect to that of manganese sintered ore, and The wearing is wide and the condition is bad. On the other hand, if the melting temperature range exceeds 200 ° C, even if the melting
This is because even at 00 to 1500 ° C., the softened cohesive zone is widened, causing trouble.

【0013】又、この原料鉱石(選定された原料鉱石)
の配合割合(電気炉内溶解原料鉱石の総量に対する割
合)を85%以上にしているのは、85%以上にすると、た
とえ他の原料鉱石の特性が不明でも該鉱石の量が15%以
下であって少ないので、軟化融着帯が狭くてよいが、こ
の原料鉱石を85%未満にすると、軟化融着帯が広くなっ
て支障を来すことがあるからである。
The raw ore (selected raw ore)
The reason why the mixing ratio (the ratio to the total amount of raw material ore dissolved in the electric furnace) is 85% or more is that if the ratio is 85% or more, even if the characteristics of other raw material ores are unknown, the amount of the ore is 15% or less. This is because the softening cohesive zone may be narrow because it is too small. However, if the raw material ore is less than 85%, the softening cohesive zone becomes wide and may cause trouble.

【0014】前記溶融開始温度及び溶融温度幅のデータ
より選定されず、除外された原料鉱石、即ち、溶融開始
温度:1300〜1500℃且つ溶融温度幅:200 ℃以内の条件
を充たさない原料鉱石については、生鉱の状態で多量使
用すると支障が生じる。しかし、該原料鉱石を単独ある
いは他の鉱石と混合して、その溶融温度以上に加熱する
ことにより、上記条件を充たす原料鉱石に調整し得、改
質されるという知見が得られた。そこで、かかる調整
(改質)をした後であれば、前記85%以上含有させる原
料鉱石として充分に使用することができ、そうすること
により原単位をより一層向上し得ると共に原料鉱石を有
効利用できてよい。尚、上記加熱は焼結機やペレット等
を用いて行える。
The raw ore which is not selected and excluded from the data of the melting start temperature and the melting temperature range, that is, the raw ore which does not satisfy the conditions of the melting start temperature: 1300 to 1500 ° C. and the melting temperature range: 200 ° C. or less. If used in large quantities in the state of raw ore, problems will occur. However, it has been found that the raw ore can be adjusted to a raw ore satisfying the above conditions by alone or mixed with another ore and heated to a temperature equal to or higher than its melting temperature, and the ore can be reformed. Therefore, after such adjustment (reforming), the ore can be sufficiently used as a raw ore containing the above 85% or more, and by doing so, the basic unit can be further improved and the raw ore is effectively used. You can do it. The heating can be performed using a sintering machine, pellets, or the like.

【0015】[0015]

【実施例】本発明の実施例に係る高温荷重試験装置を図
1に示す。図1においてAは測定対象試料である原料鉱
石(以降、試料鉱石という)を示すものであり、この試
料鉱石に一定荷重を負荷した状態で試料鉱石を加熱し
て、温度と圧損との関係を測定することにより、試料鉱
石の溶融開始温度及び溶け落ち終了温度を求め、更にこ
れらより溶融温度幅を求める。このとき、上記温度と圧
損との関係において、図2に例示する如く、圧損値が急
激に上昇する温度(圧損急上昇温度)を溶融開始温度と
して求め、更に高温において圧損値が減少し、上記圧損
急上昇温度での圧損値と等しくなる温度が存在するが、
この温度を溶け落ち終了温度として求め得る。そして、
これら両者の温度差より溶融温度幅が求められる。
FIG. 1 shows a high-temperature load test apparatus according to an embodiment of the present invention. In FIG. 1, A represents a raw material ore (hereinafter, referred to as a sample ore) which is a sample to be measured. The sample ore is heated while a constant load is applied to the sample ore, and the relationship between the temperature and the pressure loss is determined. By measuring, the melting start temperature and the burn-through end temperature of the sample ore are obtained, and the melting temperature width is obtained from these. At this time, in the relationship between the temperature and the pressure loss, as shown in FIG. 2, a temperature at which the pressure loss value sharply rises (pressure loss rapid rise temperature) is determined as a melting start temperature, and the pressure loss value decreases at a higher temperature, and the pressure loss increases. There is a temperature that is equal to the pressure drop value at the sudden rise temperature,
This temperature can be determined as the burn-through end temperature. And
The melting temperature width is determined from the temperature difference between the two.

【0016】上記高温荷重試験の条件は本実施例では次
のようにした。試料鉱石の粒の大きさは9.52〜12.7mm、
試料鉱石の量は87.0±0.1g、試料鉱石への荷重は1kg/c
m2とし、試料室には雰囲気ガスとしてN2:70%-CO:30% 混
合ガスを流量7.2 リットル/min で流した。加熱昇温速
度は、1000℃迄は10℃/min、それ以降の昇温速度は5℃
/min、溶け落ち終了後は徐冷とした。尚、前記溶融開始
温度及び溶け落ち終了温度の他、10%収縮温度や、最大
圧損値及び最大圧損等も測定した。
The conditions of the above-mentioned high-temperature load test were as follows in the present embodiment. The size of the sample ore is 9.52 to 12.7 mm,
The amount of sample ore is 87.0 ± 0.1g, load on sample ore is 1kg / c
m 2, and a mixed gas of N 2 : 70% -CO: 30% was passed through the sample chamber as an atmosphere gas at a flow rate of 7.2 liter / min. Heating rate: 10 ° C / min up to 1000 ° C, 5 ° C thereafter
/ min, and slowly cooled after the burn-through was completed. In addition, the 10% shrinkage temperature, the maximum pressure loss value, the maximum pressure loss, and the like were measured in addition to the melting start temperature and the burn-through end temperature.

【0017】マンガン焼結鉱、マンガン塊鉱石C、マン
ガン塊鉱石B、マンガン塊鉱石A、及び、マンガン塊鉱
石A焼成鉱(マンガン塊鉱石Aをその溶融温度以上に加
熱した後、冷却して焼成したもの)についての高温荷重
試験結果を表1に示す。
Sintered manganese ore, manganese lump ore C, manganese lump ore B, manganese lump ore A, and manganese lump ore A calcined ore (heat manganese lump ore A above its melting temperature, then cool and fire ) Are shown in Table 1.

【0018】表1から判る如く、マンガン焼結鉱は溶融
開始温度:1411℃、溶け落ち終了温度:1535℃であり、
溶融温度幅が123 ℃と狭い。これに対し、マンガン塊鉱
石Cは溶融開始温度が1392℃、溶融温度幅が157 ℃であ
り、マンガン焼結鉱との対応性が良くて略一致している
が、マンガン塊鉱石Aは溶融開始温度が1292℃と低く、
溶融温度幅が206 ℃と広く、マンガン焼結鉱との対応性
が悪く不一致であり、又、マンガン塊鉱石Bは更に対応
性が悪い。ところが、マンガン塊鉱石A焼成鉱は対応性
が良く、マンガン塊鉱石Aでも焼成により改質されるこ
とがわかる。
As can be seen from Table 1, the manganese sintered ore has a melting start temperature of 1411 ° C. and a burn-through end temperature of 1535 ° C.
The melting temperature range is as narrow as 123 ° C. On the other hand, the manganese lump ore C has a melting start temperature of 1392 ° C and a melting temperature range of 157 ° C, and has good compatibility with the manganese sinter ore. The temperature is as low as 1292 ° C,
The melting temperature range is as wide as 206 ° C., and the compatibility with the manganese sintered ore is poor, which is inconsistent, and the manganese lump ore B is even worse. However, it can be seen that the manganese lump ore A calcined ore has good compatibility, and that the manganese lump ore A is also modified by calcination.

【0019】次に、原料鉱石として種々の鉱石を使用
し、電気炉により合金鉄の製造を行った。原料鉱石とし
てマンガン焼結鉱にマンガン塊鉱石Cを配合(混合)し
たものを使用した場合、上記の如く両者は対応性がよい
ので、何ら支障なく、安定して操業し得た。これに対
し、マンガン焼結鉱にマンガン塊鉱石Aを配合したもの
を使用した場合、その配合量が100kg/T(即ち10%)の
とき電極が浮き、安定操業し難く、又、250kg/T(即ち
25%)のとき電極が浮き(出湯後のホルダー位置が上昇
しており)、溶解電力原単位が悪化した。一方、マンガ
ン焼結鉱にマンガン塊鉱石A焼成鉱を配合したものを使
用した場合、その配合量が100kg/T、115kg/Tのいづれ
のときも、何ら支障なく、安定して操業し得た。
Next, various ores were used as raw material ores, and ferroalloys were produced by an electric furnace. When a mixture of manganese ore C and manganese ore C was used (mixed) as a raw material ore, both were well compatible as described above, so that they could be operated stably without any problem. On the other hand, when a mixture of manganese ore A and manganese sinter is used, when the compounding amount is 100 kg / T (that is, 10%), the electrode floats, it is difficult to operate stably, and 250 kg / T (Ie
(25%), the electrode floated (the position of the holder after tapping was rising), and the unit power of melting power deteriorated. On the other hand, when the mixture of manganese ore A and calcined ore in manganese sintered ore was used, the operation could be stably performed without any trouble regardless of whether the compounding amount was 100 kg / T or 115 kg / T. .

【0020】前記高温荷重試験で試験した鉱石の中、最
も対応性が悪かったマンガン塊鉱石Bをシリコマンガン
(SiMn)用に配合したものを使用した場合、その配合量
が50kg/Tのときは何ら支障なく安定操業し得たが、10
0 kg/Tのとき操業成績(Si歩留り、スラグロスMn%、
溶解電力原単位)が悪化した。更に、200 kg/Tにした
ときには、かかる操業成績の悪化がより一層進み、又、
出湯の際にスラグを排出し難く、多量のコークスがスラ
グと共に排出され、出湯作業が非常に困難であった。
Among the ores tested in the above-mentioned high-temperature load test, when manganese lump ore B, which has the poorest compatibility, is used for silicomanganese (SiMn), when the amount is 50 kg / T, Although stable operation was possible without any problems, 10
Operating results at 0 kg / T (Si yield, slag loss Mn%,
(Dissolution power unit) deteriorated. Further, when the pressure is set to 200 kg / T, the deterioration of the operation results further progresses,
It was difficult to discharge slag at the time of tapping, a large amount of coke was discharged together with the slag, and tapping work was extremely difficult.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明に係る電気炉での合金鉄の製造方
法は、高温荷重試験により原料鉱石の溶融開始温度及び
溶融温度幅を求め、溶融開始温度が1300〜1500℃で且つ
溶融温度幅が200 ℃以内である原料鉱石を選定し、該原
料鉱石を溶解原料鉱石の総量に対して85%以上含有させ
て溶解するので、溶解に供する原料鉱石の殆どは溶融温
度幅が200 ℃以内であって狭いので、電気炉内原料鉱石
は軟化融着帯が狭く、その結果、電気炉内原料の電気抵
抗値低下、電極が浮くこと、電力負荷がかかり難くなる
こと等の現象が生じ難くなり、従って、操業性の安定化
及び各原単位の向上を図り得るようになるという効果を
奏する。
According to the method for producing ferroalloys in an electric furnace according to the present invention, the melting start temperature and the melting temperature range of the raw ore are determined by a high temperature load test, and the melting starting temperature is 1300 to 1500 ° C and the melting temperature range is Ore is selected within the range of 200 ° C, and the ore is melted by containing 85% or more of the total amount of the dissolved ore, so that most of the ore used for melting has a melting temperature range of 200 ° C or less. The ore in the electric furnace has a narrow softening cohesive zone because it is narrow, and as a result, phenomena such as a decrease in the electric resistance value of the raw material in the electric furnace, floating of the electrode, and difficulty in applying the electric power load are less likely to occur. Therefore, there is an effect that the operability can be stabilized and each basic unit can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る高温荷重試験装置の概要
を示す側断面図である。
FIG. 1 is a side sectional view schematically showing a high-temperature load test apparatus according to an embodiment of the present invention.

【図2】高温荷重試験における鉱石に係る温度と収縮率
及び圧損との関係を例示する図である。
FIG. 2 is a diagram exemplifying a relationship between a temperature of an ore, a shrinkage ratio, and a pressure loss in a high-temperature load test.

【符号の説明】[Explanation of symbols]

A--試料鉱石 A-Sample ore

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気炉により原料鉱石を溶解、還元して
合金鉄を製造するに際し、予め原料鉱石について高温荷
重試験により溶融開始温度及び溶け落ち終了温度を測定
することによって溶融開始温度が1300〜1500℃で、且つ
溶融温度幅が200 ℃以内である原料鉱石を選定し、該原
料鉱石を溶解原料鉱石の総量に対して85%以上含有させ
て溶解することを特徴とする電気炉での合金鉄の製造方
法。
When a raw ore is melted and reduced by an electric furnace to produce ferroalloys, a melting start temperature and a melting end temperature of a raw ore are measured in advance by a high-temperature load test so that a melting start temperature of 1300 to 1300 is obtained. An alloy in an electric furnace, wherein a raw material ore having a melting temperature range of not more than 200 ° C. at 1500 ° C. is selected, and the raw material ore is contained by melting at least 85% of the total amount of the molten raw material ore. Iron manufacturing method.
【請求項2】 溶融開始温度:1300〜1500℃且つ溶融温
度幅:200 ℃以内の条件を充たさない原料鉱石をその溶
融温度以上に加熱することにより、該条件を充たす原料
鉱石に調整した後、前記85%以上含有させる原料鉱石と
して使用する請求項1記載の電気炉での合金鉄の製造方
法。
2. A raw material ore that does not satisfy the conditions of a melting start temperature: 1300 to 1500 ° C. and a melting temperature range: 200 ° C. or less is heated to a melting temperature or higher to adjust the raw material ore to satisfy the conditions. The method for producing ferro-alloy in an electric furnace according to claim 1, wherein the iron ore is used as a raw material ore containing 85% or more.
JP15351192A 1992-06-12 1992-06-12 Manufacturing method of ferroalloys in electric furnaces Expired - Fee Related JP2935611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15351192A JP2935611B2 (en) 1992-06-12 1992-06-12 Manufacturing method of ferroalloys in electric furnaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15351192A JP2935611B2 (en) 1992-06-12 1992-06-12 Manufacturing method of ferroalloys in electric furnaces

Publications (2)

Publication Number Publication Date
JPH05345908A JPH05345908A (en) 1993-12-27
JP2935611B2 true JP2935611B2 (en) 1999-08-16

Family

ID=15564146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15351192A Expired - Fee Related JP2935611B2 (en) 1992-06-12 1992-06-12 Manufacturing method of ferroalloys in electric furnaces

Country Status (1)

Country Link
JP (1) JP2935611B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU763233B2 (en) * 2000-08-08 2003-07-17 Nippon Denko Co., Ltd. Apparatus for testing the high temperature properties of a raw material to/be reformed in an electric furnace and a manganese-containing sintered ore to be reformed in an electric furnace and a method of producing the same

Also Published As

Publication number Publication date
JPH05345908A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
JP2935611B2 (en) Manufacturing method of ferroalloys in electric furnaces
US3304175A (en) Nitrogen-containing alloy and its preparation
JP3166536B2 (en) Method for producing sintered ore of high crystal water ore
KR950012409B1 (en) Making method of ladie slag
KR100361932B1 (en) method of steel manufacture slag modifier
JPH1143710A (en) Operation of blast furnace when injecting a large quantity of pulverized fine coal
JP3643929B2 (en) Manganese-containing sintered ore for electric furnace smelting and method for producing the same
JP3720225B2 (en) Manufacturing method of manganese alloy iron in electric furnace
KR100872906B1 (en) Deoxidation agent of slag having enhanced reactivity
AU763233B2 (en) Apparatus for testing the high temperature properties of a raw material to/be reformed in an electric furnace and a manganese-containing sintered ore to be reformed in an electric furnace and a method of producing the same
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
US1932252A (en) Process of producing alloys
JP4196613B2 (en) High-depot ratio blast furnace operation method
KR101403581B1 (en) Flux and the method thereof
KR100420108B1 (en) The method of manufacturing a synthetic flux with high specific gravity containing iron for refining
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP4964371B2 (en) Manufacturing method of high carbon steel wire
SU985112A1 (en) Charge for melting carnonaceous ferromanganese
AU2003204317B2 (en) Apparatus for testing the high temperature properties of a raw material to/be reformed in an electric furnace and a manganese-containing sintered ore to be reformed in an electric furnace and a method
JPH08120322A (en) Flux for dephosphorizing refinery in arc furnace
JP2747031B2 (en) Method for producing low phosphorus chromium alloy
JPH01152223A (en) Manufacture of sintered ore
JP4016912B2 (en) Manufacturing method of high strength sintered ore.
SU1749910A1 (en) Electroinsulating filling agent and method of manufacture
JP2003171713A (en) Carbonizing material, and steel making method using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees