JP2839822B2 - Manufacturing method of high flatness wafer - Google Patents

Manufacturing method of high flatness wafer

Info

Publication number
JP2839822B2
JP2839822B2 JP5191483A JP19148393A JP2839822B2 JP 2839822 B2 JP2839822 B2 JP 2839822B2 JP 5191483 A JP5191483 A JP 5191483A JP 19148393 A JP19148393 A JP 19148393A JP 2839822 B2 JP2839822 B2 JP 2839822B2
Authority
JP
Japan
Prior art keywords
wafer
polishing
grinding
etching
high flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5191483A
Other languages
Japanese (ja)
Other versions
JPH0745564A (en
Inventor
均 原田
健一 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP5191483A priority Critical patent/JP2839822B2/en
Publication of JPH0745564A publication Critical patent/JPH0745564A/en
Application granted granted Critical
Publication of JP2839822B2 publication Critical patent/JP2839822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は裏面が平坦に真空吸着さ
れる高平坦度ウェーハの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high flatness wafer whose rear surface is vacuum-sucked flat.

【0002】[0002]

【従来の技術】半導体素子形成用ウェーハの裏面はエッ
チング面のままであり、光沢がないため表裏の区別が目
視および光学装置で容易に識別される。しかしながらウ
ェーハの大口径化と素子の微細化と共に露光時の平坦度
要求が厳しくなり、平坦度が高いウェーハが望まれてい
る。
2. Description of the Related Art The back surface of a wafer for forming a semiconductor element remains an etched surface and has no luster, so that the front and back sides can be easily distinguished visually and optically. However, as the diameter of the wafer becomes larger and the element becomes finer, the flatness requirement at the time of exposure becomes severer, and a wafer having a higher flatness is desired.

【0003】[0003]

【発明が解決しようとする課題】ところで、裏面も研磨
したウェーハは通常のエッチング面を裏面とするウェー
ハに較べ、表裏の区別が難しく、特別の識別マークで区
別する必要がある。更に8インチ以上の大口径ウェーハ
では真空吸着の際にエアの逃げ場がないため通常の真空
チャックではウェーハがエア通路がないため部分的に膨
らみボイドとなり露光によりパターン崩れを生じことが
あり、このため真空吸着をゆっくり行ったり吸着後時間
をおいたりしている。
By the way, it is more difficult to distinguish a front side and a back side of a wafer whose back surface has been polished as compared with a wafer having a normal etched surface as a back surface, and it is necessary to distinguish by a special identification mark. Further, in the case of a large-diameter wafer of 8 inches or more, there is no escape space for air at the time of vacuum suction, and in a normal vacuum chuck, the wafer does not have an air passage, so that the wafer partially expands and becomes a void, which may cause pattern collapse due to exposure. Vacuum suction is performed slowly or time is left after suction.

【0004】また、真空チャックからウェーハを引き離
す際にもエアの通路がないため真空チャックに部分的に
密着するため多数のエアを強く噴出させなければなら
ず、このため真空チャックの形状が複雑となりウェーハ
を表面にこれが転写され平坦度を低下させる欠点があ
る。このため、裏面の凹凸の凸部分のみ研磨除去し、光
沢度を下げ真空吸着時のエアの逃げをエッチング裏面と
同等にしたハーフポリッシュを行った後、表面を片面研
磨したウェーハがある。また、平坦度が高いウェーハの
製造には両面研磨機による両面同時研磨が有効である
が、上記理由によりこの採用が遅れている。
[0004] Also, when the wafer is separated from the vacuum chuck, since there is no air passage, a large amount of air must be jetted strongly to partially adhere to the vacuum chuck, which complicates the shape of the vacuum chuck. There is a disadvantage that the wafer is transferred to the surface and the flatness is reduced. For this reason, there is a wafer in which only the convex portion of the irregularities on the back surface is polished and removed, the glossiness is reduced, the air escape at the time of vacuum suction is half-polished to the same level as the etched back surface, and then the surface is polished on one side. Further, simultaneous double-side polishing by a double-side polishing machine is effective for the production of a wafer having a high flatness.

【0005】本発明は上記事情に鑑みてなされたもの
で、両面同時研磨により高平坦度とし8インチ64Mの
微細素子の露光条件を満足させると共に、裏面のエアの
通路とを形成することにより真空チャックによる吸着お
よび脱着をエッチング裏面より容易にし、かつ真空吸着
時の表面への転写によるパターン不良や平坦度の低下を
低減させた高平坦度ウェーハを製造することを課題とし
ている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and achieves high flatness by simultaneous polishing on both sides to satisfy the exposure conditions of an 8-inch 64M fine element, and to form a vacuum by forming an air passage on the back surface. An object of the present invention is to manufacture a high flatness wafer in which chucking and desorption by a chuck are made easier than on an etched back surface, and a pattern defect and a decrease in flatness due to transfer to a surface during vacuum suction are reduced.

【0006】[0006]

【課題を解決するための手段】本発明に係る高平坦度ウ
ェーハの製造方法は、ウェーハにラップまたは研削加工
後エッチングを施して梨地面にする選択エッチング工程
と、ウェーハの表面側を片面電解研削して梨地面を平滑
面とする片面研削工程と、表面が平滑面で裏面が梨地面
とされたウェーハを、表面側は製品ウェーハとしての規
格を満たし得る面精度となり、かつ、裏面側は梨地面の
凹部が完全に除去されない範囲に研磨量を設定して両面
研磨することによって表面を鏡面化するとともに、裏面
にはエアの通路となる凹部を残留させる両面研磨工程
を具備することを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, there is provided a method of manufacturing a high flatness wafer, which comprises lapping or grinding the wafer.
Selective etching process for post-etching to make matte surface
And one side electrolytic grinding on the front side of the wafer to smooth the matte surface
One-side grinding process to make the surface smooth, the front surface smooth and the back surface matte
Wafers on the front side as product wafers
Surface accuracy that can meet the case, and the back side
Set the polishing amount within the range where the recess is not completely removed
The surface is mirror-finished by polishing, and the back
Is characterized by comprising a double-side polishing step of leaving a concave portion serving as an air passage .

【0007】[0007]

【作用】この方法では、ラッピングまたは研削加工した
ウェーハの両面に選択エッチングを施してエアの通路と
なる溝を含む凹凸を有する梨地面にし、ウェーハ表面を
研削して凹凸を除去し、両面研磨により表面の研削ダメ
ージを除去し鏡面化する一方、ウェーハ裏面には凹部を
残し凸部を研磨除去し、エアの通路となる溝を形成した
ことにより高平坦度で真空チャックが容易にすることが
可能となる。
According to this method, selective etching is performed on both surfaces of a wrapped or ground wafer to form a matte surface having irregularities including grooves serving as air passages, and the wafer surface is ground to remove irregularities, and then subjected to double-side polishing. While removing the grinding damage on the front surface and making it mirror-finished, the concave portion is left on the back surface of the wafer, and the convex portion is polished and removed, and the grooves that serve as air passages are formed, making it easy to vacuum chuck with high flatness Becomes

【0008】[0008]

【実施例】図1は、本発明に係る高平坦度ウェーハの製
造方法の一実施例を示す説明図である。この方法ではま
ず、図1(a)に示すスライス加工後にラッピング加工
したウェーハ1の両面1A,1Bにエッチングを施し、
(b)に示すような多数の凹凸部2Aを有する梨地面2
にする。シリコンのエッチングは硝酸ーフッ酸ー酢酸の
混合液で行われ、硝酸により表面を酸化しフッ酸で溶解
除去し、酢酸で反応を制御する。従来は反応速度を早く
することにより加工ダメージを含む表面層を均一に溶解
除去する組成領域で行うことによりラッピングで形成さ
れた平坦度を崩すことを最小限にし、この組成は硝酸
(50%)ーフッ酸(70%)ー酢酸(90%)の比が
1:6:3が標準であり,この粗さはRmax2μm程
度である。
FIG. 1 is an explanatory view showing one embodiment of a method of manufacturing a high flatness wafer according to the present invention. In this method, first, both surfaces 1A and 1B of the wafer 1 subjected to lapping after the slicing shown in FIG.
Pear surface 2 having a large number of uneven portions 2A as shown in FIG.
To Etching of silicon is performed with a mixed solution of nitric acid, hydrofluoric acid and acetic acid. The surface is oxidized by nitric acid, dissolved and removed by hydrofluoric acid, and the reaction is controlled by acetic acid. Conventionally, the reaction rate is increased so that the surface layer containing the processing damage is uniformly dissolved and removed, thereby minimizing the disruption of the flatness formed by lapping, and the composition is nitric acid (50%). The standard ratio of hydrofluoric acid (70%) to acetic acid (90%) is 1: 6: 3, and the roughness is about Rmax 2 μm.

【0009】選択エッチングに使用するエッチング液
は、酢酸の比率を高め水を加え全体の反応速度を遅くす
るが加工ダメージは選択的にエッチングする領域であ
る。すなわち、ラッピングによる加工ダメージがエッチ
オフされた後凸部は酢酸による反応抑止効果が大きく働
き、凹部のみ強くエッチングされるため僅かな凹凸が強
調され表面は梨地となり、この粗さはRmax4μm程
度となる。
The etchant used for selective etching increases the ratio of acetic acid and adds water to reduce the overall reaction rate, but processing damage is selectively etched in the region. In other words, after the processing damage due to the lapping is etched off, the reaction suppression effect by acetic acid is greatly exerted on the convex portion, and only the concave portion is strongly etched, so that the slight unevenness is emphasized and the surface becomes matte, and the roughness is about Rmax 4 μm. .

【0010】ラッピングによる深い加工ダメージはラッ
ピング加工の際の回転軌跡であるため、ラッピングによ
る加工ダメージは多数の中心部より放物線状に形成され
た回転軌跡となり、しばしばウェーハの端迄達してい
る。これが選択エッチングによる溝となり、エアの通路
となる。
[0010] Since the deep processing damage due to lapping is a rotation locus at the time of lapping, the processing damage due to lapping is a rotation locus formed in a parabolic shape from a large number of central portions, and often reaches the edge of the wafer. This becomes a groove by selective etching, and becomes a passage for air.

【0011】この真空チャックの着脱に好適な溝の数と
長さと深さは研削を用いることによりラッピング加工よ
り容易に制御できる。研削工程では砥石の粒度とウェー
ハの回転と研削砥石の回転を自由に選ぶことにより可能
となる。
The number, length and depth of the grooves suitable for attaching and detaching the vacuum chuck can be controlled more easily by lapping than by using grinding. The grinding process can be performed by freely selecting the grain size of the grinding wheel, the rotation of the wafer, and the rotation of the grinding wheel.

【0012】エッチング液としては、以下の組成のもの
となる。選択エッチング液組成は硝酸(50%)ーフッ
酸(70%)ー酢酸(90%)ー水の比が1:6:5:
1が好適であり温度50℃、時間10分のエッチング条
件でRmax5μm、P−V(山−谷差)10μmとな
る。酢酸の組成比が1:6:4:1以下になれば加工歪
の選択エッチング性が低下し梨地とならず1:6:6:
1以上になれば反応の抑止が大きくなる。また水が1:
6:5:0.5以下では加工歪の選択エッチング性が低
下し梨地とならず1:6:6:2以上になれば反応時間
が著しく長くなる。
The etching solution has the following composition. The composition of the selective etchant is nitric acid (50%)-hydrofluoric acid (70%)-acetic acid (90%)-water ratio of 1: 6: 5:
1 is preferable, and Rmax is 5 μm and PV (peak-valley difference) is 10 μm under the etching conditions of a temperature of 50 ° C. and a time of 10 minutes. When the composition ratio of acetic acid is 1: 6: 4: 1 or less, the selective etching property of the processing strain is reduced, and a matte finish is not obtained.
When the ratio is 1 or more, the suppression of the reaction is increased. And the water is 1:
When the ratio is 6: 5: 0.5 or less, the selective etching property of the processing strain is lowered, and the pattern is not matted. When the ratio is 1: 6: 6: 2 or more, the reaction time is significantly increased.

【0013】選択エッチングにより形成される凹凸は両
面研磨による研削ダメージの除去と鏡面の形成を行う取
り代により凹部2AがP−V値の半分程度になるよう平
均平均深さを限定する。一般的にはエッチング条件を適
宜設定することにより、5〜10μm程度とされること
が望ましい。5μm未満では電解研削を行ってもダメー
ジを完全除去できず、10μmより大では両面研磨量が
増大し、裏面も鏡面化されてしまう。
The average depth of the concaves and convexes formed by the selective etching is limited by removing the grinding damage by double-side polishing and forming a mirror surface so that the concave portion 2A becomes about half the PV value. Generally, it is desirable to set the etching conditions to about 5 to 10 μm by appropriately setting the etching conditions. If it is less than 5 μm, even if electrolytic grinding is performed, damage cannot be completely removed. If it is more than 10 μm, the amount of polishing on both sides increases, and the back surface is also mirror-finished.

【0014】次に、ウェーハ1の表面側1Aを図1
(b)に示すように片面研削し、図1(c)に示すよう
に梨地面2を平滑面4とする。この片面研削には、20
00番の電解研削を用いれば、研削ダメージが3μm未
満であり、5μmの鏡面研磨を行えば良好な鏡面が形成
される。電解研削を使用しなければ研削ダメージが大き
くなり鏡面を形成することが困難になる。片面研削量T
1はウェーハ表面側1Aの梨地面2の凹部2Aを完全に
除去され鏡面が形成できる程度とされる。
Next, the front side 1A of the wafer 1 is shown in FIG.
As shown in FIG. 1B, one side is ground, and as shown in FIG. For this single side grinding, 20
If the electrolytic grinding No. 00 is used, the grinding damage is less than 3 μm, and if a mirror polishing of 5 μm is performed, a good mirror surface is formed. If electrolytic grinding is not used, grinding damage is increased and it becomes difficult to form a mirror surface. Single side grinding amount T
Reference numeral 1 is such that the concave portion 2A of the matte surface 2 on the wafer surface side 1A can be completely removed and a mirror surface can be formed.

【0015】さらに、ウェーハ1を図1(c)に示すよ
うに両面研磨して、図1(d)に示すように表面側1A
の平滑面4を鏡面8とする。その際に使用可能な両面研
磨機は従来と同様のものでよく、対向配置された上定盤
と下定盤の間にキャリアプレートを配置し、キャリアプ
レートの外周に形成されたキャリア孔に各1枚のウェー
ハ1をはめ込み、キャリアプレートを遊星回転させ、ウ
ェーハの両面にコロイダルシリカを懸濁したpH10の
メカノケミカル研磨液を供給しつつ、各定盤の対向面に
固定された研磨布でウェーハの両面を同時に擦ってメカ
ノケミカル研磨する。
Further, the wafer 1 is polished on both sides as shown in FIG. 1C, and the surface 1A is polished as shown in FIG.
Is a mirror surface 8. The double-side polishing machine that can be used at that time may be the same as the conventional one. A carrier plate is arranged between the upper surface plate and the lower surface plate that are opposed to each other, and each one is inserted into a carrier hole formed on the outer periphery of the carrier plate. One wafer 1 is inserted, the carrier plate is planetary-rotated, and a pH 10 mechanochemical polishing solution in which colloidal silica is suspended is supplied to both surfaces of the wafer, and the wafer is polished with a polishing cloth fixed to the opposite surface of each platen. Both sides are rubbed at the same time and polished mechanochemically.

【0016】両面研磨は容易に高平坦度が得られること
は良く知られており、TTV(TotalThickness Value)1
μm以下となる。これに較べ片面研磨ではTTV2μm
がやっとであり、このため真空チャックをチルトさせる
ことにより露光範囲の平坦度を確保し、例えば16Mで
は20×20mmの範囲の平坦度LTV(Total Thickn
ess Value)0.5μm以下とする。TTVが向上すれば
必然的にLTVが向上し露光の際のチルトする手間が低
減され生産性が向上する。またSOI張り合わせウェー
ハはTTV1μm以下が必要となる。
It is well known that double-side polishing can easily obtain high flatness, and TTV (Total Thickness Value) 1
μm or less. Compared to this, TTV 2μm for single side polishing
Therefore, the flatness of the exposure range is ensured by tilting the vacuum chuck. For example, in 16M, the flatness LTV (Total Thickn) in the range of 20 × 20 mm is secured.
ess Value) 0.5 μm or less. If the TTV is improved, the LTV is inevitably improved, and the trouble of tilting during exposure is reduced, and the productivity is improved. Also, the SOI bonded wafer must have a TTV of 1 μm or less.

【0017】このメカノケミカル研磨による研磨量T2
は、ウェーハ表面側1Aの平滑面4を製品ウェーハとし
ての規格を満たすことができる面精度に研磨でき、か
つ、ウェーハ裏面側1Bの梨地面2の凹部2Aを除去し
きれない研磨量に設定される。このため梨地エッチング
でP−V値を10μmとし、片面研削を2000番電解
研削で5μmとした場合、両面鏡面研磨量は5μmとな
り、ウェーハ裏面側1Bには多数の連続溝状凹部6Aを
有する半梨地面6が形成される。この裏面の光沢度は容
易に鏡面と識別でき、光沢度計で測定した結果を表1に
示す。
The polishing amount T2 by this mechanochemical polishing
Is set so that the smooth surface 4 on the wafer front side 1A can be polished to a surface accuracy capable of satisfying the standard as a product wafer, and the concave portion 2A of the matte surface 2 on the wafer back side 1B cannot be completely removed. You. For this reason, when the PV value is set to 10 μm by matte etching and the single-side grinding is set to 5 μm by electrolytic grinding No. 2000, the amount of mirror polishing on both sides is 5 μm, and a half having a large number of continuous groove-shaped recesses 6A is formed on the wafer back side 1B. A pear surface 6 is formed. The glossiness of the back surface can be easily distinguished from the mirror surface, and the result of measurement with a glossmeter is shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】また研削前に100nm程度の酸化膜を付
け、表面研削および両面研磨を実施すれば、裏面の研磨
量が減少し、凸部分の研磨除去量が少なくなる。これに
より溝深さを制御できる。
If an oxide film having a thickness of about 100 nm is formed before grinding and the surface is ground and both surfaces are polished, the amount of polishing on the back surface is reduced, and the amount of polishing removal on the convex portions is reduced. Thereby, the groove depth can be controlled.

【0020】裏面は鏡面と同様に平滑なため、従来は真
空ピンセット跡やベルト搬送跡が目立ち敬遠されてきた
が、この特性は欠点ではなくむしろこれらの付着物がサ
ブミクロン素子製造には有害であるため、このような跡
を最小限にする措置や付いた場合洗浄をすることが肝心
となる。またこの面はパーティクルが付着しにくく、ま
たパーティクルや金属不純物が付着しても容易に洗浄除
去することができる。
Since the back surface is as smooth as the mirror surface, traces of vacuum tweezers and traces of belt conveyance have conventionally been conspicuous and avoided, but this characteristic is not a drawback but rather these deposits are harmful to the production of submicron devices. Therefore, it is important to take measures to minimize such traces and to clean them if they occur. Further, particles hardly adhere to this surface, and even if particles or metal impurities adhere, they can be easily removed by washing.

【0021】[0021]

【発明の効果】本発明に係る高平坦度ウェーハの製造方
法によれば、ラッピングまたは研削加工後ウェーハの両
面に選択エッチングを施して、ラッピングまたは研削に
よる回転軌跡を起点とする多数の凹部溝を有する梨地面
にし、ウェーハ表面を鏡面化して平坦度を向上する一
方、ウェーハ裏面には凹部溝を残すことにより真空チャ
ック時のエアの逃げを容易にする通路を有するから、大
口径ウェーハを使用しステッパによるサブミクロン微細
素子の露光の際には、チャック不良がなく、生産性が良
くなりまたパーティクルや汚染による不良を低減するこ
とが可能である。
According to the method of manufacturing a high flatness wafer according to the present invention, selective etching is performed on both surfaces of the wafer after lapping or grinding to form a large number of concave grooves starting from the rotation locus by lapping or grinding. Use a large-diameter wafer because it has a passage that facilitates the escape of air during vacuum chucking by leaving a concave groove on the back surface of the wafer while leaving a concave groove on the back surface of the wafer while making the surface of the wafer a mirror surface to improve the flatness. When exposing a submicron fine element using a stepper, there is no chuck defect, productivity is improved, and defects due to particles and contamination can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高平坦度ウェーハの製造方法を示す説
明図である。
FIG. 1 is an explanatory view showing a method for manufacturing a high flatness wafer of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコンウェーハ 1A ウェーハ表面側 1B ウェーハ裏面側 2 選択エッチングにより形成された梨地面 2A 凹部溝 4 研削により形成された平滑面 6 研磨後の半梨地面 6A 溝状凹部通路 8 研磨後の鏡面 DESCRIPTION OF SYMBOLS 1 Silicon wafer 1A Wafer front side 1B Wafer back side 2 Pear surface formed by selective etching 2A Recessed groove 4 Smooth surface formed by grinding 6 Semi-polished surface after polishing 6A Groove concave passage 8 Mirror surface after polishing

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/308 H01L 21/308 B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/308 H01L 21/308 B

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ウェーハにラップまたは研削加工後エッチ
ングを施して梨地面にする選択エッチング工程と、ウェ
ーハの表面側を片面電解研削して梨地面を平滑面とする
片面研削工程と、表面が平滑面で裏面が梨地面とされた
ウェーハを、表面側は製品ウェーハとしての規格を満た
し得る面精度となり、かつ、裏面側は梨地面の凹部が完
全に除去されない範囲に研磨量を設定して両面研磨する
ことによって表面を鏡面化するとともに、裏面にはエア
の通路となる凹部を残留させる両面研磨工程とを具備す
ることを特徴とする高平坦度ウェーハの製造方法。
1. A selective etching step in which a wafer is lapped or ground and then subjected to etching to form a matte surface, a single-side grinding process in which the front side of the wafer is electrolytically ground on one side to make the matte surface smooth, and a surface is smooth. Wafer with matte surface on the back side and product wafer on the front side
Surface accuracy, and the back side is completely recessed
Polishing on both sides by setting the polishing amount within the range not completely removed
This makes the front surface mirror-like and the back surface has air
And a double-side polishing step of leaving a concave portion serving as a passage for the wafer.
【請求項2】上記選択エッチングを施す際に使用するエ
ッチング液の組成を、フッ酸−硝酸−酢酸−水の割合で
1:6:(4〜6):(0.5〜2)とすることを特徴
とする請求項1記載の高平坦度ウェーハの製造方法。
2. The composition of an etching solution used for the selective etching is 1: 6: (4-6) :( 0.5-2) in a ratio of hydrofluoric acid-nitric acid-acetic acid-water. The method for manufacturing a high flatness wafer according to claim 1, wherein:
JP5191483A 1993-08-02 1993-08-02 Manufacturing method of high flatness wafer Expired - Lifetime JP2839822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5191483A JP2839822B2 (en) 1993-08-02 1993-08-02 Manufacturing method of high flatness wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191483A JP2839822B2 (en) 1993-08-02 1993-08-02 Manufacturing method of high flatness wafer

Publications (2)

Publication Number Publication Date
JPH0745564A JPH0745564A (en) 1995-02-14
JP2839822B2 true JP2839822B2 (en) 1998-12-16

Family

ID=16275401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191483A Expired - Lifetime JP2839822B2 (en) 1993-08-02 1993-08-02 Manufacturing method of high flatness wafer

Country Status (1)

Country Link
JP (1) JP2839822B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270400A (en) * 1996-01-31 1997-10-14 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer
DE10196115B4 (en) 2000-04-24 2011-06-16 Sumitomo Mitsubishi Silicon Corp. Method for polishing a semiconductor wafer
JP2005039155A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device and method of manufacturing semiconductor substrate used for the device
JP4273943B2 (en) * 2003-12-01 2009-06-03 株式会社Sumco Silicon wafer manufacturing method
JP2006210759A (en) * 2005-01-31 2006-08-10 Sumco Corp Etching liquid for controlling surface profile of silicon wafer, and process for producing silicon wafer using that etching liquid
TWI786672B (en) * 2021-06-09 2022-12-11 環球晶圓股份有限公司 Method of wafer grinding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293813A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Semiconductor substrate
JPH02109332A (en) * 1988-10-19 1990-04-23 Canon Inc Manufacture of semiconductor substrate

Also Published As

Publication number Publication date
JPH0745564A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
US6352927B2 (en) Semiconductor wafer and method for fabrication thereof
JP2839801B2 (en) Wafer manufacturing method
JP3247301B2 (en) Reclaimed semiconductor wafer and reclaiming method
JPH09270400A (en) Method of manufacturing semiconductor wafer
CN113206007B (en) Preparation method of indium phosphide substrate
JP3317330B2 (en) Manufacturing method of semiconductor mirror surface wafer
KR20000017512A (en) Method for reclaiming wafer substrate and polishing solution composition for reclaiming wafer substrate
JPH10135164A (en) Manufacturing semiconductor wafer
JP3447477B2 (en) Method for polishing a semiconductor substrate
US6234873B1 (en) Semiconductor mirror-polished surface wafers and method for manufacturing the same
JP2001358107A (en) Method for transforming from recycled wafer to semiconductor wafer
JP2839822B2 (en) Manufacturing method of high flatness wafer
JP3668647B2 (en) Semiconductor wafer substrate regeneration method and semiconductor wafer substrate regeneration polishing liquid
JPH10135165A (en) Manufacturing semiconductor wafer
JP3943869B2 (en) Semiconductor wafer processing method and semiconductor wafer
JP4066202B2 (en) Manufacturing method of semiconductor wafer
JP2892215B2 (en) Wafer polishing method
JP3430499B2 (en) Semiconductor wafer and method of manufacturing the same
JP2003142434A (en) Method of manufacturing mirror-surface wafer
JPH1116844A (en) Production of epitaxial silicon wafer and material wafer
JP3131968B2 (en) Manufacturing method of semiconductor silicon wafer
JP2000243731A (en) Manufacture of high-flatness wafer
JP3473654B2 (en) Method for manufacturing semiconductor mirror-surface wafer
JP3578238B2 (en) Silicon wafer processing method
JP3584824B2 (en) High flatness semiconductor wafer and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 15

EXPY Cancellation because of completion of term