JP2835709B2 - Manufacturing method of composite tool material in which steel and cemented carbide are joined - Google Patents

Manufacturing method of composite tool material in which steel and cemented carbide are joined

Info

Publication number
JP2835709B2
JP2835709B2 JP8140769A JP14076996A JP2835709B2 JP 2835709 B2 JP2835709 B2 JP 2835709B2 JP 8140769 A JP8140769 A JP 8140769A JP 14076996 A JP14076996 A JP 14076996A JP 2835709 B2 JP2835709 B2 JP 2835709B2
Authority
JP
Japan
Prior art keywords
cemented carbide
steel
composite tool
raw material
outer frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8140769A
Other languages
Japanese (ja)
Other versions
JPH09300024A (en
Inventor
保 明石
孝司 牧
雅人 谷
秀夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP8140769A priority Critical patent/JP2835709B2/en
Publication of JPH09300024A publication Critical patent/JPH09300024A/en
Application granted granted Critical
Publication of JP2835709B2 publication Critical patent/JP2835709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超硬合金と鋼部材
からなる複合工具材に関し、特に、打ち抜き加工や温熱
間鍛造加工に利用する高強度で、信頼性の高い複合工具
材の製造方法を提供しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite tool comprising a cemented carbide and a steel member, and more particularly, to a high-strength and highly-reliable composite tool used for punching and hot forging.
It is intended to provide a method for manufacturing a material .

【0002】[0002]

【従来の技術】従来、この種のものにあっては、下記の
ようなものになっている。打ち抜き工具や回転、鍛造工
具では、優れた耐摩耗性とともに、繰り返し負荷応力、
衝撃荷重、熱衝撃に耐える材料が望まれている。しか
し、このような相反する特性(硬さと靭性)を1つの材
料で満たすことは困難であり、このため、材料の複合化
という観点からの材料開発が進められてきた。超硬合金
は一般の焼き入れ鋼に比べ靭性は劣るが、その硬さは焼
き入れ鋼の硬さをはるかに凌ぎ、優れた耐摩耗性を発揮
する。一方、焼き入れ鋼は硬さの点で超硬合金に及ばな
いが、その靭性(強度)は超硬合金のそれをはるかに上
回る。上記のような工具用途には、被加工物と接する加
工部では高硬度の耐摩耗性の優れた特性が要求される
が、それを支える部分では耐摩耗性よりむしろ、繰り返
し負荷応力や衝撃に耐えられる強度的に優れた特性が要
求される。このような要求を満たすため、この支える部
分を焼き入れ鋼で作り、加工部には超硬合金を直接また
は間接に接合した工具が製造されている。
2. Description of the Related Art Heretofore, this type is as follows. For punching tools, rotating and forging tools, it has excellent wear resistance,
Materials that can withstand impact loads and thermal shocks are desired. However, it is difficult to satisfy such contradictory characteristics (hardness and toughness) with one material, and therefore, material development has been promoted from the viewpoint of compounding the materials. Cemented carbides have lower toughness than ordinary hardened steels, but their hardness far exceeds the hardness of hardened steels and exhibits excellent wear resistance. Hardened steel, on the other hand, is inferior to cemented carbide in terms of hardness, but its toughness (strength) far exceeds that of cemented carbide. For tool applications such as those described above, the machined part that comes into contact with the workpiece requires high hardness and excellent wear resistance, but the parts that support it are more resistant to repeated load stress and impact rather than wear resistance. It is required to be able to withstand excellent strength. In order to satisfy such demands, a tool in which the supporting portion is made of hardened steel and a cemented carbide is directly or indirectly joined to a processed portion is manufactured.

【0003】鋼と超硬合金の接合には、ろー材や金属薄
板を用いた接合が広く用いられ、このほか溶接法や中間
材を用いた焼結接合法、直接接合法がある。機械的な接
合法としてかしめ法があるが、繰り返し荷重や衝撃のか
かる使用用途には不向きである。ろー材を用いた拡散接
合法では、銀ろー、銅ろー、Niろーなどが用いられて
いる。特公平7−12566号には、拡散接合法におい
て、接合後、拡散素材が単相で接合界面に存在しないよ
うにすることによって接合強度を向上させる方法が提案
されている。溶接による接合方法として高エネルギービ
ームを用いた方法が、例えば特公平2−28428号,
特公平4−52180号に提案されている。この方法で
は接合材の間に金属の薄板やフィラーを挿入し、加圧し
ながらレーザービームなどにより接合部近傍の超硬合金
側を加熱し、その熱を挿入材側に伝え、溶融、鋼と接合
する。また、特開昭53−1609号には、鋼と超硬合
金の間に金属成分80%を含むWC粉末を中間層として
配置し、この中間層を焼結しながら両材料を焼結接合す
る方法が提案されている。さらに、特開昭52−509
07号にはCo15%含有する超硬合金を炭素鋼と直接
接合する方法が提案されている。
[0003] For joining steel and cemented carbide, joining using a filler metal or a thin metal plate is widely used, and in addition, there are a welding method, a sintering joining method using an intermediate material, and a direct joining method. Although there is a caulking method as a mechanical joining method, it is unsuitable for use applications where a repeated load or impact is applied. In the diffusion bonding method using a filler material, silver filler, copper filler, Ni filler, and the like are used. Japanese Patent Publication No. 7-12566 proposes a method of improving bonding strength by preventing a diffusion material from existing in a bonding interface in a single phase after bonding in a diffusion bonding method. As a joining method by welding, a method using a high energy beam is disclosed in, for example, Japanese Patent Publication No. 2-28428,
It has been proposed in Japanese Patent Publication No. 4-52180. In this method, a metal thin plate or filler is inserted between the joining materials, and the cemented carbide side near the joint is heated by a laser beam or the like while applying pressure, and the heat is transmitted to the inserted material side to melt and join with the steel I do. JP-A-53-1609 discloses a method in which a WC powder containing 80% of a metal component is disposed as an intermediate layer between steel and a cemented carbide, and the two materials are sintered and joined while sintering the intermediate layer. A method has been proposed. Further, Japanese Patent Application Laid-Open No. 52-509
No. 07 proposes a method of directly joining a cemented carbide containing 15% of Co to carbon steel.

【0004】[0004]

【発明が解決しようとする課題】従来の技術で述べたも
のにあっては、下記のような問題点を有していた。工具
の加工部を構成する超硬合金は、その耐摩耗性を確保す
るため、含有金属結合相量を極力少なくした、高硬度の
超硬合金が利用されている。ろー材や金属薄板を用いた
従来の拡散接合では、このような特性を持つ超硬合金と
高温で溶けたろー材や金属成分との融合性(ぬれ性)が
悪く、結果的に接合強度が出にくいという問題があっ
た。また、他の接合方法にも共通して、鋼と超硬合金の
熱膨張差に基づく接合後の残留応力の発生の問題があっ
た。両者の熱膨張差が大きく、残留応力が超硬合金の引
っ張り強度を越えるようになると、応力解放にともなっ
て、接合面近傍の超硬合金側で割れが発生したり、接合
面で剥れることがあった。このような割れや剥れに至ら
ない場合でも、接合部分にはある大きさの応力が残り、
この残留応力のため接合強度自体が低下したり、使用中
に突発的な破壊を起こすという問題があった。
The above-mentioned prior art has the following problems. As the cemented carbide constituting the machined part of the tool, a cemented carbide of high hardness, in which the amount of contained metal binder phase is minimized, is used in order to secure the wear resistance. In conventional diffusion bonding using filler metal and thin metal sheets, the cementability of the cemented carbide having such properties and the filler metal and metal components melted at high temperatures (wetability) is poor, resulting in a joint strength. There was a problem that it was difficult to come out. Further, in common with other joining methods, there is a problem of generation of residual stress after joining based on a difference in thermal expansion between steel and cemented carbide. If the difference in thermal expansion between the two is large and the residual stress exceeds the tensile strength of the cemented carbide, cracks may occur on the cemented carbide side near the joint surface or peel off at the joint surface with the release of stress. was there. Even when such cracking or peeling does not occur, a certain amount of stress remains at the joint,
Due to the residual stress, there is a problem that the bonding strength itself is reduced or a sudden breakdown occurs during use.

【0005】レーザービームによる局所加熱により接合
時の鋼側の温度上昇を小さくし、鋼側の接合後の収縮量
を減じ、結果的に接合部の残留応力を少なくしようとす
る試みがある。この方法では超硬合金が局所的にまず加
熱される。それも一度に大きなエネルギーを投入して瞬
間的に加熱される。このため、加工部を構成しようとす
る超硬合金部分に熱ショックによるミクロ、マクロな割
れが発生してしまい、超硬合金自体を劣化させてしまう
という問題があった。また、この方法の適用は方法の性
格上小物に限定される。さらに、この方法では、瞬間に
投入されるエネルギーが莫大であり、微妙な温度制御が
難しく、過加熱による脆性化合物の生成や加熱不足によ
る接合力不良などの接合材の品質上の問題があった。
Attempts have been made to reduce the temperature rise on the steel side during welding by local heating with a laser beam, reduce the amount of shrinkage after welding on the steel side, and consequently reduce the residual stress at the joint. In this method, the cemented carbide is first heated locally. It is also heated instantaneously by inputting large energy at once. For this reason, there has been a problem that micro and macro cracks are generated in a cemented carbide portion intended to constitute a processed portion due to a thermal shock, and the cemented carbide itself is deteriorated. The application of this method is limited to small items due to the nature of the method. Furthermore, in this method, the energy supplied instantaneously is enormous, delicate temperature control is difficult, and there are problems in the quality of the bonding material such as generation of a brittle compound due to overheating and bonding strength failure due to insufficient heating. .

【0006】一方、既焼結超硬合金と鋼の直接接合で
は、接合温度に達するまでの両接合面の完全密着が難し
く、加熱段階で接合面が雰囲気で汚染され、その汚染物
質が、双方の拡散を阻害するため、接合力低下の一因と
なっている。また、鋼が軟化して、超硬合金のミクロな
凹凸まで埋めて接合していくには、鋼の融点に近いとこ
ろまでの加熱と加圧が必要であり、接合時における鋼の
変形の問題や、そのような高温下での超硬合金と鉄の反
応による脆性化合物の生成という問題があった。既焼結
超硬合金と鋼の間に金属結合相量80重量%含有のWC
粉末を配置する方法は、上記の密着性を改善するには有
効であるが、含有金属量が多く鋼と超硬合金の間の応力
緩和層としての役割は期待できない。また、この中間層
と鋼側の接合は両材料が類似しているため比較的強い接
合が得られるが、この中間層と既焼結超硬合金との接合
は従来タイプの接合と同様であり、強い接合は得られな
い。以上のように、鋼と超硬合金の従来からの接合方法
には大別して次の2つの問題が残されてきた。 鋼と超硬合金の熱膨張差に起因した残留応力の発生と
そのための接合力の低下、高硬度超硬合金と鋼あるい
は他の金属との融合性の乏しさとそのための接合力低
下、である。
[0006] On the other hand, in the direct joining of a sintered cemented carbide and steel, it is difficult to achieve perfect adhesion between both joining surfaces until the joining temperature is reached, and the joining surfaces are contaminated in the atmosphere during the heating stage, and the contaminants are contaminated by both. In addition, it inhibits the diffusion of the alloy, which is one of the causes of the decrease in the bonding strength. In addition, in order for the steel to soften and fill the micro-roughness of the cemented carbide to join, it is necessary to apply heat and pressure to a point close to the melting point of the steel. Further, there has been a problem that a brittle compound is generated by the reaction between the cemented carbide and iron at such a high temperature. WC containing 80% by weight of metal binder phase between sintered cemented carbide and steel
The method of arranging the powder is effective for improving the above-mentioned adhesion, but has a large metal content and cannot be expected to serve as a stress relaxation layer between the steel and the cemented carbide. In addition, the bonding between the intermediate layer and the steel side is relatively strong because both materials are similar, but the bonding between the intermediate layer and the sintered cemented carbide is the same as that of the conventional type. , Strong joints cannot be obtained. As described above, the conventional two joining methods of steel and cemented carbide have the following two main problems. The generation of residual stress due to the difference in thermal expansion between steel and cemented carbide and the resulting decrease in bonding strength, the lack of fusion between high-hardness cemented carbide and steel or other metals, and the resulting decrease in joint strength. .

【0007】本発明は、これらの課題を解決することを
目的としてなされたものである。すなわち、鋼と接する
部分に、鋼と溶接可能な金属結合相量の多い超硬合金を
配置し、この溶接可能な超硬合金と直接または中間層を
介して高硬度の耐摩耗性の高い超硬合金と接合すること
により、鋼との融合性を確保して接合力を高め、さら
に、この溶接可能な超硬合金と中間層部分を応力緩和層
とすることにより、残留応力の発生を極力少なくすると
共に、その応力を各層に分散し、超硬合金本来の高い硬
さと鋼の持つ高い靭性を合わせ持った強固な複合工具材
を提供しようとするものである。
[0007] The present invention has been made to solve these problems. That is, a cemented carbide having a large amount of a metal bonding phase that can be welded to steel is disposed in a portion in contact with steel, and a superhard and highly wear-resistant superhard alloy is formed directly or through an intermediate layer with the weldable cemented carbide. By joining with a hard alloy, it secures fusibility with steel and increases the joining force.Furthermore, by making this weldable cemented carbide and the intermediate layer part a stress relaxation layer, the generation of residual stress is minimized. An object of the present invention is to reduce the stress and disperse the stress in each layer to provide a strong composite tool material having the high hardness inherent in cemented carbide and the high toughness of steel.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は下記のようになるものである。本発明の発
明者の1人は、金属とセラミックの組合わせよりなる傾
斜材の通電焼結において、その上下パンチ材質を焼結し
ようとする材料の組合わせに応じて適切に選択、組合わ
せることにより、傾斜材をその傾斜組成に合わせた適切
な温度傾斜のもとで無理なく短時間に焼結できることを
見いだし、特公平6−102803号の出願をなした。
また、特公平7−84352号においては、上記と同様
の傾斜材を通電焼結するにあたり、その成形外枠の加圧
軸方向の肉厚を焼結しようとする傾斜材を構成する材料
の熱的性質に応じて調整することにより、必要な温度傾
斜のもとで無理なく焼結する方法を発明した。さらに、
特開平7−300375号においては、優れた耐摩耗性
と鋼への溶接性を兼ね備えた超硬合金系耐摩耗材を発明
し、この超硬合金系耐摩耗材を通電焼結法により製造す
るに当たり、その成形外枠の加圧軸方向の肉厚を焼結し
ようとする原料粉末中の金属結合相量に応じて適切に調
整し、かつ、熱容量差を利用した熱バランスの調節によ
り、該原料粉末をその構成材料に合わせた温度傾斜のも
とで過不足なく焼結できる方法を発明した。
Means for Solving the Problems In order to achieve the above object, the present invention is as follows. One of the inventors of the present invention is to select and combine the upper and lower punch materials appropriately in accordance with the combination of the materials to be sintered in the electric current sintering of the inclined material composed of the combination of metal and ceramic. As a result, it has been found that the gradient material can be sintered in a short time without difficulty under an appropriate temperature gradient according to the gradient composition, and an application of Japanese Patent Publication No. 6-102803 was filed.
Also, in Japanese Patent Publication No. 7-84352, when electrically conducting sintering of the same inclined material as described above, the heat of the material constituting the inclined material whose thickness in the pressing axis direction of the molding outer frame is to be sintered is considered. Invented a method of sintering under the required temperature gradient by adjusting according to the mechanical properties. further,
Japanese Patent Application Laid-Open No. 7-300375 invents a cemented carbide-based wear-resistant material having both excellent wear resistance and weldability to steel. In producing this cemented carbide-based wear-resistant material by an electric current sintering method, The thickness of the molding outer frame in the pressing axis direction is appropriately adjusted in accordance with the amount of the metal binding phase in the raw material powder to be sintered, and the heat balance is adjusted by using the difference in heat capacity to obtain the raw material powder. Has been invented a method of sintering under a temperature gradient suitable for its constituent material without any excess or shortage.

【0009】本発明はこれらの発明をもとに発明したも
のである。すなわち、直接または中間層を介して焼結結
合された金属結合相量20重量%以上、60重量%以下
を含有するWC基超硬合金よりなる溶接可能層1bと、
金属結合相量3重量%以上、20重量%未満を含有する
WC基超硬合金よりなる耐摩耗層1aとからなる加工部
1をもって、鋼に一体に接合された複合工具材を成形外
枠3を用いた通電焼結法により製造する方法において、
該成形外枠の加圧軸方向の肉厚が耐摩耗層原料粉末1a
1側から溶接可能層原料粉末1b1側へ連続またはステ
ップ状に増加するよう構成し、該成形外枠を少なくとも
一つの通電経路とすることにより、通電中に加工部原料
粉末4の加圧軸方向に温度傾斜を形成しながら該加工部
原料粉末を焼結しつつ、鋼2に焼結接合することによ
り、鋼と超硬合金の接合した複合工具材の製造方法を提
供するものである。
The present invention has been made based on these inventions. That is, a weldable layer 1b made of a WC-based cemented carbide containing 20% by weight or more and 60% by weight or less of a metal bonding phase which is sintered and bonded directly or via an intermediate layer;
With a processed part 1 comprising a wear-resistant layer 1a made of a WC-based cemented carbide containing 3% by weight or more and less than 20% by weight of a metal binder phase, a composite tool material integrally joined to steel is formed into an outer frame 3 In the method of manufacturing by the electric current sintering method using
The thickness of the molded outer frame in the direction of the pressing axis is abrasion-resistant layer raw material powder 1a.
By increasing the shape of the molding outer frame from at least one to the side of the weldable layer raw material powder 1b1 continuously or stepwise, and making the formed outer frame at least one energizing path, the pressurized axial direction of the processed part raw material powder 4 during energization The present invention provides a method for producing a composite tool material in which steel and a cemented carbide are joined by sintering and joining to a steel 2 while sintering the raw material powder while forming a temperature gradient in the workpiece.

【0010】この場合、下記のように構成することがで
きる。 耐摩耗層を構成するWC基超硬合金中のWC粒子
の平均粒径が1μm以下である鋼と超硬合金を接合す
る。また、加工部を構成するWC基超硬合金の金属結合
相がCo,Ni,Feの中の1種または2種以上、また
はこれらの金属を含む合金よりなる鋼と超硬合金接合
する
In this case, the following configuration can be adopted.
Wear. Joining a steel having a mean particle size of WC particles of 1 μm or less and a cemented carbide in a WC-based cemented carbide constituting a wear-resistant layer
You. In addition, a steel and a cemented carbide are used in which the metal binding phase of the WC-based cemented carbide constituting the machined part is one or more of Co, Ni, and Fe, or an alloy containing these metals.
I do .

【0011】成形外枠、上下パンチを用いた通常の通電
焼結法では、まず、成形外枠に下パンチをセットした状
態で焼結しようとする粉末を充填した後、上パンチを押
込み上下パンチを介して加圧する。この状態で上下パン
チを通じて直流または交流、あるいはそれらの重畳した
電流を流し、焼結しようとする材料の電気抵抗を利用し
てジュール熱により焼結する。ここで、成形外枠が1つ
の通電経路となるように成形型を設計し、かつ、この成
形外枠の加圧軸方向の肉厚を変化させると、その厚み変
化に対応してそこでの発熱量を制御でき、試料部分の加
圧軸方向に必要に応じて凹凸を含む温度勾配をつけるこ
とができる。成形外枠を他より薄くした部分では電気抵
抗が高くなり、一定電流のもとでの発熱量は多く、高温
となる。一方、厚くした部分では逆に抵抗が低く、発熱
は少なく、低温域を形成する。
In a normal electric sintering method using a forming outer frame and upper and lower punches, first, a powder to be sintered is filled in a state where the lower punch is set in the forming outer frame, and then the upper punch is pushed into the upper and lower punches. Pressurized via In this state, a direct current or an alternating current or a superimposed current is passed through the upper and lower punches, and sintering is performed by Joule heat using the electric resistance of the material to be sintered. Here, when the molding die is designed so that the molding outer frame serves as one energizing path, and the thickness of the molding outer frame in the pressing axis direction is changed, the heat generated there is changed in accordance with the thickness change. The amount can be controlled, and a temperature gradient including irregularities can be provided as needed in the direction of the pressure axis of the sample portion. The electrical resistance is high in the part where the molded outer frame is thinner than the others, the amount of heat generated under a constant current is large, and the temperature is high. On the other hand, in the thickened portion, on the other hand, the resistance is low, the heat generation is small, and a low temperature region is formed.

【0012】この方法により、焼結に高い温度を要する
材料側では、その回りの成形外枠の肉厚を他より薄くす
ることによって温度を高くでき、同時にもう一方の材料
側では必要以上の温度上昇を抑えることができる。ま
た、さらに、大きな温度差が必要な場合には、特公平6
−102803号や特開平7−300375号にあるよ
うな片側に大きな熱容量を持つ冶具を入れ、ヒートシン
クとして利用する方法や、上下パンチとして熱伝導の異
なる材料の組合わせを用いるなどの方法を採用すること
ができる。ここでの成形外枠の肉厚変化の程度は、成形
外枠には低圧ながら圧力容器としての役割があり、その
強度的に許容される範囲であることが必要である。
According to this method, on the material side requiring a high temperature for sintering, the temperature can be increased by making the thickness of the surrounding outer frame thinner than the others, and at the same time, the temperature on the other material side is higher than necessary. The rise can be suppressed. If a large temperature difference is required,
A method in which a jig having a large heat capacity is placed on one side and used as a heat sink, or a method using a combination of materials having different thermal conductivities as upper and lower punches as in JP-A-102803 and JP-A-7-300375 is adopted. be able to. The degree of the change in the thickness of the molded outer frame here needs to be in a range that allows the molded outer frame to function as a pressure vessel while having a low pressure, and that its strength is acceptable.

【0013】[0013]

【発明の実施の形態】発明の実施の形態を実施例に基づ
き図面を参照して説明する。図1は複合工具材の加工部
を金属結合相量の少ない耐摩耗層1aと金属結合相量の
多い溶接可能層1bで構成し、該溶接可能層を用いて鋼
と焼結接合した鋼と超硬合金を接合した複合工具材の縦
断面図である。また、図2は上記両層の間にそれらの中
間的な金属結合相量をもつ超硬合金よりなる中間層1c
を配置し、溶接可能層を用いて鋼と焼結接合した鋼と超
硬合金の接合した複合工具材の縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments with reference to the drawings. FIG. 1 shows that the processed part of the composite tool material is composed of a wear-resistant layer 1a having a small amount of a metal binding phase and a weldable layer 1b having a large amount of a metal binding phase. It is a longitudinal cross-sectional view of the composite tool material which joined the cemented carbide. FIG. 2 shows an intermediate layer 1c made of a cemented carbide having a metal binder phase intermediate between the two layers.
FIG. 3 is a longitudinal sectional view of a composite tool material in which steel and cemented carbide are joined by sintering and joining with steel using a weldable layer.

【0014】加工部を構成する金属結合相量の異なる超
硬合金部分を、直接接合によるか、中間層を入れた接合
にするかは、耐摩耗層1aと溶接可能層1bを構成する
超硬合金中の金属結合相量及びそれらの量の差により、
また、その用途により適宜選択する。一応の目安として
は、両層の金属結合相量の差が15%未満の組合わせに
対しては図1の直接焼結接合を採用することができる。
また、中間層の厚みとステップの数は耐摩耗層と溶接可
能層を構成する超硬合金中の金属結合相量、つまり、両
者の熱膨張差及び使用環境により、適宜決定する。
Whether the cemented carbide portions having different amounts of metal bonding phases constituting the processed portion are formed by direct joining or joining with an intermediate layer is determined by the cemented carbide constituting the wear-resistant layer 1a and the weldable layer 1b. Due to the amount of metal binding phase in the alloy and the difference between them,
Also, it is appropriately selected according to the use. As a rough guide, the direct sintering bonding of FIG. 1 can be adopted for a combination in which the difference between the amounts of the metal binding phases in both layers is less than 15%.
The thickness of the intermediate layer and the number of steps are appropriately determined according to the amount of the metal bonding phase in the cemented carbide constituting the wear-resistant layer and the weldable layer, that is, the thermal expansion difference between the two and the use environment.

【0015】加工部1を構成する超硬合金中の金属結合
相としてCo,Ni,Feの1種または2種以上、ある
いはそれらを含む合金とすることにより、工具加工部の
硬さ、強度を確保でき、かつ、鋼母材との強固な接合を
形成することができる。ここで、加工部を構成する超硬
合金各層中の金属結合相の種類は必ずしも同じである必
要はなく、目的に応じて異なる金属結合相を選択するこ
ともできる。耐摩耗層を構成する超硬合金中の金属結合
相量は、その耐摩耗性、耐食性の観点から、できるだけ
少ない方が望ましいが、実用上ある程度の衝撃強度を合
わせ持つ必要があり、試験の結果、その量は3重量%以
上、20重量%未満を必要であった。好ましくは、5重
量%以上、15重量%以下であった。3重量%以下では
焼結自体難しくなるほか、衝撃荷重に弱くなり、実用的
な工具材が得られない。一方、その量が20重量%以上
では耐欠け性は優れるが、耐摩耗性が劣るようになり、
鋼に超硬合金を接合して工具化して使用する意義が薄れ
る。また、耐摩耗層を構成する超硬合金中のWC粒子の
大きさは1μm以下とすることにより、耐摩耗性の優れ
た加工部を形成できる。
By using one or more of Co, Ni and Fe or an alloy containing them as the metal binder phase in the cemented carbide constituting the machined part 1, the hardness and strength of the tool machined part can be reduced. As a result, a strong bond with the steel base material can be formed. Here, the type of the metal binding phase in each layer of the cemented carbide constituting the processed portion does not necessarily need to be the same, and a different metal binding phase can be selected according to the purpose. It is desirable that the amount of metal binder phase in the cemented carbide constituting the wear-resistant layer be as small as possible from the viewpoint of wear resistance and corrosion resistance, but it is necessary to have a certain level of impact strength in practical use. The amount required was 3% by weight or more and less than 20% by weight. Preferably, the content was 5% by weight or more and 15% by weight or less. If the content is less than 3% by weight, sintering itself becomes difficult, and it becomes weak to impact load, so that a practical tool material cannot be obtained. On the other hand, when the amount is 20% by weight or more, chipping resistance is excellent, but abrasion resistance becomes inferior.
The significance of joining cemented carbide to steel and turning it into a tool is diminished. Further, by setting the size of the WC particles in the cemented carbide constituting the wear-resistant layer to 1 μm or less, a processed portion having excellent wear resistance can be formed.

【0016】鋼との接合のほか、耐摩耗層の超硬合金と
鋼の間の応力緩和層としての役割を担う溶接可能層を構
成する超硬合金中の金属結合相量は20重量%以上、6
0重量%以下とすることが必要であった。好ましくは、
25重量%以上、50重量%であった。金属結合相量が
20重量%未満では、鋼との間の応力緩和層として効果
が発揮できず、しかも鋼との間の強い接合が得られな
い。また、この量が60重量%を越えると、耐摩耗層を
構成する超硬合金との金属結合相量の差が大きくなりす
ぎ、一体での焼結が困難になる他、応力緩和層としても
機能しなくなる。さらに、60重量%以上の金属結合相
を含有する超硬合金の硬さは焼き入れ鋼の硬さにも及ば
ないほど低く、実用的ではない。
In addition to joining with steel, the amount of metal binder phase in the cemented carbide constituting the weldable layer serving as a stress relaxation layer between the cemented carbide of the wear-resistant layer and the steel is 20% by weight or more. , 6
It was necessary to be 0% by weight or less. Preferably,
The content was 25% by weight or more and 50% by weight. If the amount of the metal bonding phase is less than 20% by weight, the effect as a stress relaxation layer between the steel and the steel cannot be exerted, and a strong bond with the steel cannot be obtained. On the other hand, if the amount exceeds 60% by weight, the difference in the amount of the metal bonding phase with the cemented carbide constituting the wear-resistant layer becomes too large, making it difficult to integrally sinter, and also as a stress relaxation layer. Will not work. Further, the hardness of a cemented carbide containing 60% by weight or more of a metal binder phase is so low that it does not reach the hardness of hardened steel, and is not practical.

【0017】図3は本発明の1実施例を説明するための
通電焼結法の概略を示したものである。中間層を介して
耐摩耗層と溶接可能層が、焼結接合してなる加工部の該
溶接可能層を用いて鋼と焼結接合した複合工具材を製造
するための焼結試料構成を示し、金属結合相量の多い、
従って焼結に高温を要しない溶接可能層原料粉末1b1
を下パンチを兼ねた鋼2の上に充填し、その上に中間層
原料粉末1c1,さらに耐摩耗層原料粉末1a1を積層
して充填し、上パンチ5をセットする。成形外枠3はそ
れら各層の必要焼結温度と焼結後の各層の厚みに応じて
加圧軸方向の肉厚が調整されており、本実施例では、下
パンチとしての鋼の回りの成形外枠の肉厚を大きくし、
その上の溶接可能層原料粉末、中間層原料粉末、耐摩耗
層原料粉末の部分の順に肉厚を階段状に小さくした成形
外枠を用いた例を示している。
FIG. 3 schematically shows an electric current sintering method for explaining one embodiment of the present invention. FIG. 3 shows a sintered sample configuration for producing a composite tool material in which a wear-resistant layer and a weldable layer are sinter-bonded via an intermediate layer and which are sinter-bonded to steel using the weldable layer of a processed portion formed by sinter-bonding. , Large amount of metal binding phase,
Therefore, the weldable layer raw material powder 1b1 which does not require high temperature for sintering
Is filled on the steel 2 also serving as the lower punch, and the intermediate layer raw material powder 1c1 and the wear-resistant layer raw material powder 1a1 are stacked and filled thereon, and the upper punch 5 is set. The thickness of the forming outer frame 3 in the pressing axis direction is adjusted according to the required sintering temperature of each layer and the thickness of each layer after sintering. In the present embodiment, the forming around the steel as the lower punch is performed. Increase the thickness of the outer frame,
An example is shown in which a molded outer frame whose wall thickness is reduced stepwise in the order of the weldable layer raw material powder, the intermediate layer raw material powder, and the wear-resistant layer raw material powder is shown.

【0018】焼結接合工程では、上記のように肉厚加工
された成形外枠3に下パンチを兼ねた鋼2をセットし、
耐摩耗層原料粉末1a1、中間層原料粉末1c1、溶接
可能層原料粉末1b1からなる加工部原料粉末4を充填
し、上パンチ5をセットした後、この焼結試料構成を通
電焼結機にセットする。セット後、雰囲気を真空あるい
は不活性雰囲気に調整した後、所定圧力まで加圧する。
その後、上下電極6,7を介して電源8により通電を開
始し、加工部原料粉末4を焼結しながら鋼2と接合す
る。図5は成形外枠3の鋼側にスリーブジグ10を配置
した1実施例を示す。このスリーブジグの配置により、
鋼の接合面と成形外枠との相対位置の固定ができ、ま
た、成形外枠からの熱の逃げを大きくでき、図3の試料
構成より大きな温度勾配を要する場合に用いる。また、
スリーブジグ10の内径を鋼の外形に接するように加
工、配置することにより、加圧しながらの焼結接合中の
鋼の変形を抑えることができ好都合である。ここで、成
形外枠3とスリーブジグ10は一体に製作することもで
きる。また、さらに大きな温度勾配を必要とする場合に
は、図4に示すような試料構成を利用できる。この実施
例では、鋼側に大きな熱容量を持つブロックジグ9を配
置する。
In the sinter joining step, the steel 2 also serving as a lower punch is set on the molded outer frame 3 which has been thickened as described above.
A processing part raw material powder 4 consisting of a wear-resistant layer raw material powder 1a1, an intermediate layer raw material powder 1c1, and a weldable layer raw material powder 1b1 is filled, and an upper punch 5 is set. I do. After setting, the atmosphere is adjusted to a vacuum or inert atmosphere, and then pressurized to a predetermined pressure.
Thereafter, energization is started by the power supply 8 via the upper and lower electrodes 6 and 7, and the raw material powder 4 to be processed is joined to the steel 2 while sintering. FIG. 5 shows an embodiment in which a sleeve jig 10 is arranged on the steel side of the molded outer frame 3. By the arrangement of this sleeve jig,
It is used when the relative position between the steel joint surface and the molding outer frame can be fixed, the heat can escape from the molding outer frame can be increased, and a larger temperature gradient is required than the sample configuration shown in FIG. Also,
By processing and arranging the inner diameter of the sleeve jig 10 so as to be in contact with the outer shape of the steel, deformation of the steel during sintering while pressing is advantageously suppressed. Here, the molded outer frame 3 and the sleeve jig 10 can be manufactured integrally. When a larger temperature gradient is required, a sample configuration as shown in FIG. 4 can be used. In this embodiment, a block jig 9 having a large heat capacity is arranged on the steel side.

【0019】本発明にかかわる方法では、下パンチとし
て鋼が配置できる。鋼は電気抵抗が低く黒鉛に比べ発熱
しづらい上に、熱伝導率が高く熱拡散には好都合であ
り、加工部原料粉末の部分に温度傾斜を形成する上で好
都合である。図4,図5の大きな温度傾斜の得られる焼
結試料構成は、耐摩耗層と溶接可能層を構成する超硬合
金の焼結温度の開きの程度により選択する。しかし、こ
こでは鋼との焼結接合であり、鋼との接合部の上限温度
があることから、この温度を考慮した温度傾斜が必要で
ある。従って、耐摩耗層を構成する超硬合金中の金属結
合相量が少ない場合にはその焼結温度は高くなり、大き
な温度勾配が必要になり、上記2つのような試料構成に
より焼結接合する。
In the method according to the invention, steel can be arranged as the lower punch. Steel has a low electrical resistance and is less likely to generate heat than graphite, and has a high thermal conductivity, which is convenient for heat diffusion, and is convenient for forming a temperature gradient in the portion of the raw material powder in the processed part. 4 and 5 are selected depending on the degree of difference in sintering temperature of the cemented carbide constituting the wear-resistant layer and the weldable layer. However, here, it is a sinter joint with steel, and since there is an upper limit temperature of the joint with the steel, a temperature gradient in consideration of this temperature is necessary. Therefore, when the amount of the metal binder phase in the cemented carbide constituting the wear-resistant layer is small, the sintering temperature is high, and a large temperature gradient is required. .

【0020】成形外枠3の形状は本発明の重要な構成要
素であるが、その素材は耐熱性があり、導電性があれば
特に制約はないが、実用的には黒鉛が適する。また、上
パンチ5、ブロックジグ9、スリーブジグ10も同様で
ある。図6から図9は本発明に利用できる成形外枠3と
加工部原料粉末4の横断面形状の例を示したものであ
り、所望の工具形状に応じて適宜選択できる。本発明に
係る複合工具材の製造方法においては、成形外枠と上パ
ンチ、下パンチとしての鋼との嵌合具合は、目的とした
通電中の温度傾斜を実現する上で特に重要であり、そこ
でのクリアランスは、2/100mm以下、好ましくは
1/100mm以下であった。
Although the shape of the molded outer frame 3 is an important component of the present invention, the material is not particularly limited as long as it has heat resistance and conductivity, but graphite is suitable for practical use. The same applies to the upper punch 5, the block jig 9, and the sleeve jig 10. FIGS. 6 to 9 show examples of the cross-sectional shape of the molded outer frame 3 and the processed part raw material powder 4 which can be used in the present invention, and can be appropriately selected according to a desired tool shape. In the method for manufacturing a composite tool material according to the present invention, the degree of fitting between the formed outer frame and the upper punch, steel as the lower punch is particularly important in achieving the intended temperature gradient during energization, The clearance there was 2/100 mm or less, preferably 1/100 mm or less.

【0021】[0021]

【実施例】実施例について図面を参照して説明する。 実施例1 下パンチを兼ねた鋼としてSKH9のφ20mm、長さ
50mmの丸棒を用い、この一端に、耐摩耗層1a、中
間層1c、溶接可能層1bよりなる加工部10mmを持
つ複合工具材を試作した。図3を参照して、まず、平均
粒径0.7μmのWC粉末に平均粒径1μmのCo粉末
を15重量%加え、混合した粉末を耐摩耗層原料粉末1
a1とし、また、平均粒径1.5μmのWC粉末に平均
粒径3μmのNi粉末を20重量%加え、混合して中間
層原料粉末1c1を得た。さらに、平均粒径10μmの
WC粉末に平均粒径3μmのNi粉末20重量%と5μ
mのFe粉末10重量%を加え、混合して溶接可能層原
料粉末1b1を調整した。通電焼結用の成形外枠3に
は、内径20mm,高さ60mmの黒鉛製の型を用い
た。成形外枠の肉厚は一端から25mmを5mm,25
mmから40mmを9mm,40mmから60mmを1
5mmとした。上パンチ5はφ20mm,長さ40mm
の黒鉛製丸棒を用いた。ここでの成形外枠の内径と上パ
ンチ5、鋼2とのクリアランスは最大1/100mmで
あった。
An embodiment will be described with reference to the drawings. Example 1 A round bar of SKH9 having a diameter of 20 mm and a length of 50 mm was used as a steel also serving as a lower punch, and a composite tool material having a machined portion 10 mm including an abrasion-resistant layer 1 a, an intermediate layer 1 c, and a weldable layer 1 b at one end. Was prototyped. Referring to FIG. 3, first, 15 wt% of Co powder having an average particle diameter of 1 μm was added to WC powder having an average particle diameter of 0.7 μm, and the mixed powder was used as raw material powder 1 for wear-resistant layer.
a1, and 20 wt% of Ni powder having an average particle size of 3 μm was added to WC powder having an average particle size of 1.5 μm and mixed to obtain an intermediate layer raw material powder 1c1. Furthermore, 20% by weight of Ni powder having an average particle diameter of 3 μm and 5 μm of WC powder having an average particle diameter of 10 μm were added.
Then, 10 wt% of Fe powder of m was added and mixed to prepare a weldable layer raw material powder 1b1. A graphite mold having an inner diameter of 20 mm and a height of 60 mm was used as the outer molding frame 3 for electric current sintering. The thickness of the molded outer frame is 25 mm from one end, 5 mm, 25 mm.
9 mm from 40 mm to 40 mm, 1 from 40 mm to 60 mm
5 mm. Upper punch 5 is φ20mm, length 40mm
Was used. Here, the clearance between the inner diameter of the molded outer frame and the upper punch 5 and steel 2 was 1/100 mm at the maximum.

【0022】これらの焼結部品を用いて、まず成形外枠
の肉厚15mmの部分にSKH9丸棒をその先端から2
0mmの位置まで図3のように挿入し固定する。次に、
そのSKH9の上面から、溶接可能層原料粉末9.8
g,中間層原料粉末10.4g,耐摩耗層原料粉末2
2.0gを順に積層充填し、これに上パンチをセットす
る。この焼結試料構成を通電焼結機にセットし、圧力3
00kg/cm2 まで加圧した後、通電を開始した。焼
結接合温度は、焼結終了後の耐摩耗層相当位置と接合面
相当位置で成形外枠外周面から放射温度計を用いて測定
した。耐摩耗層相当位置での測定で1250℃まで約6
分で上昇し、その温度で1.5分保持して通電を停止し
冷却した。この時の接合面相当位置での測定温度は10
70℃であった。
Using these sintered parts, first, a SKH9 round bar was placed on the 15 mm thick portion of the molded outer frame from the tip thereof.
Insert and fix to 0 mm as shown in FIG. next,
From the top surface of the SKH9, 9.8 of the raw material powder of the weldable layer was obtained.
g, intermediate layer raw material powder 10.4 g, wear resistant layer raw material powder 2
2.0 g are sequentially stacked and filled, and an upper punch is set thereon. This sintered sample configuration was set in an electric current sintering machine, and a pressure of 3
After the pressure was increased to 00 kg / cm 2 , energization was started. The sintering joining temperature was measured using a radiation thermometer from the outer peripheral surface of the molded outer frame at a position corresponding to the wear-resistant layer and a position corresponding to the bonding surface after sintering. Approximately 6 up to 1250 ° C measured at the position corresponding to the wear-resistant layer
Then, the temperature was maintained for 1.5 minutes at that temperature, the energization was stopped, and cooling was performed. At this time, the measured temperature at the position corresponding to the bonding surface is 10
70 ° C.

【0023】冷却後回収された複合工具材の長さは約6
0.5mmであった。この複合工具材を加圧軸方向に平
行な面で半分に切断し、断面を研磨し、硬さや組織など
を観察した。加工部は耐摩耗層、中間層、溶接可能層そ
れぞれ、5.2mm,2.6mm,2.7mmよりな
り、硬さはそれぞれ1820、1050、910kg/
mm2であり、いずれの層も真密度相当まで良く焼結が
できていた。また、接合面には割れや微小気孔のような
欠陥は認められず、良好な接合状態が得られていた。加
えて、接合面近傍の微小X線回折による化合物分析では
脆性を持つような金属間化合物の生成は認められなかっ
た。半割にした複合工具材より板状に削り出した試料に
ついて測定した接合部の剪断強度は、55kg/mm2
という高い値が得られ、従来タイプの接合強度の倍以上
の強度を持つものであることが分かった。
The length of the composite tool material recovered after cooling is about 6
0.5 mm. The composite tool material was cut in half by a plane parallel to the direction of the pressure axis, the cross section was polished, and the hardness and the structure were observed. The processed part consists of a wear-resistant layer, an intermediate layer, and a weldable layer of 5.2 mm, 2.6 mm, and 2.7 mm, respectively, and has a hardness of 1820, 1050, and 910 kg /, respectively.
mm 2 , and all the layers were sintered well to the true density. In addition, no defects such as cracks and micropores were observed on the bonding surface, and a good bonding state was obtained. In addition, the formation of brittle intermetallic compounds was not observed in the compound analysis by micro X-ray diffraction near the bonding surface. The shear strength of the joint measured on a sample cut into a plate shape from the halved composite tool material was 55 kg / mm 2
High value was obtained, and it was found that the material had a strength more than twice that of the conventional type.

【0024】実施例2 下パンチを兼ねた鋼としてSKD61、30mm角で高
さ20mmの角材を用い、この一端に加工部12mmを
焼結接合して複合工具材を試作した。図4を参照して、
まず、平均粒径0.5μmのWC粉末に平均粒径1.5
μmのNi粉末を8重量%加え、混合した粉末を耐摩耗
層原料粉末1a1とし、また、平均粒径3μmのWC粉
末に、平均粒径3μmのNi粉末を10重量%と平均粒
径5μmのFe粉末5重量%を加え、混合して上部中間
層原料粉末1c11を、更に、同様のWC粉末に1.5
μmのCo粉末を30重量%加え、混合して下部中間層
原料粉末1c12を作製した。これに、平均粒径9μm
のWC粉末に平均粒径3μmのCo粉末50重量%を加
え、混合して溶接可能層原料粉末1b1を得た。
Example 2 A 30 mm square, 20 mm high square material, SKD61, was used as a steel also serving as a lower punch, and a worked portion 12 mm was sintered and joined to one end of the material to produce a prototype composite tool material. Referring to FIG.
First, WC powder having an average particle size of 0.5 μm was
8% by weight of Ni powder having an average particle diameter of 8% by weight, and the mixed powder is referred to as a wear-resistant layer raw material powder 1a1. Also, 10% by weight of a Ni powder having an average particle diameter of 3 μm and 10% by weight of an 5% by weight of Fe powder was added and mixed to obtain the upper intermediate layer raw material powder 1c11.
30 wt% of a Co powder of μm was added and mixed to prepare a lower intermediate layer raw material powder 1c12. The average particle size is 9 μm
Was added and mixed with WC powder having an average particle size of 3 μm to obtain a weldable layer raw material powder 1b1.

【0025】通電焼結用の成形外枠3には、図4を参照
して、高さ70mmの内部に30mmの角孔をもつ黒鉛
製の型を用いた。成形外枠3は一端から30mmを外径
55mm,他端から20mmを外径85mmとし、その
間を曲率20mmの面で滑らかに接続した。上パンチ5
は30mm角,長さ50mmの黒鉛製丸棒を用いた。こ
こでの成形外枠3と上パンチ5、鋼2とのクリアランス
は最大1/100mmであった。また、図の如くブロッ
クジグ9として、径60mm,高さ30mmの黒鉛製の
ブロックを用いた。これらの焼結部品を用いて、まず成
形外枠3の径85mmの部分にSKD61角材を図4の
ように挿入し、成形外枠と角材の端面がブロックジグ9
上に共に密着するようにセットする。次に、そのSKD
61の上面から、上記溶接可能層原料粉末41.4g,
下部中間層原料粉末22.5g,上部中間層原料粉末2
5.2g,耐摩耗層原料粉末53.6gを順に積層充填
し、これに上パンチ5をセットする。
Referring to FIG. 4, a graphite mold having a height of 70 mm and a square hole of 30 mm inside was used as the molding outer frame 3 for electric current sintering. The molded outer frame 3 had an outer diameter of 55 mm at 30 mm from one end and an outer diameter of 85 mm at 20 mm from the other end, and was smoothly connected between them with a surface having a curvature of 20 mm. Upper punch 5
Used a 30 mm square, 50 mm long graphite round bar. Here, the clearance between the molded outer frame 3, the upper punch 5, and the steel 2 was 1/100 mm at the maximum. As the block jig 9 as shown in the figure, a graphite block having a diameter of 60 mm and a height of 30 mm was used. Using these sintered parts, first, an SKD61 square member is inserted into a portion of the forming outer frame 3 having a diameter of 85 mm as shown in FIG.
Set it so that it adheres to the top. Next, the SKD
61, 41.4 g of the above weldable layer raw material powder,
Lower middle layer raw material powder 22.5 g, upper middle layer raw material powder 2
5.2 g and 53.6 g of the wear-resistant layer raw material powder are sequentially stacked and filled, and the upper punch 5 is set thereon.

【0026】この焼結試料構成を通電焼結機にセット
し、圧力450kg/cm2 まで加圧した後、通電を開
始した。焼結接合温度は、焼結終了後の耐摩耗層相当位
置と接合面相当位置で成形外枠外周面から放射温度計を
用いて測定した。耐摩耗層相当位置での測定で1270
℃まで約8分で昇温し、その温度で1分保持して通電を
停止し冷却した。この時の接合面相当位置での測定温度
は1090℃であった。冷却後回収された複合工具材の
高さは約32.0mmであった。この複合工具材を加圧
軸方向に平行な面で半分に切断し、断面を研磨し硬さや
組織などを観察した。加工部は耐摩耗層、中間層、溶接
可能層はそれぞれ、3.9mm,4.1mm,4.0m
mよりなり、耐摩耗層の硬さは1950kg/mm2
あり、いずれの層も真密度相当まで良く焼結できてい
た。また、接合面には割れや微小気孔のような欠陥は認
められず、良好な接合状態が得られていた。さらに、接
合面近傍の微小X線回折による化合物分析では脆性を持
つような金属間化合物の生成は認められなかった。半割
にした複合工具材より板状に削り出した試料について実
施した接合部の剪断強度測定では、61kg/mm2
いう高い値が得られた。
This sintered sample configuration was set in an electric sintering machine, and after applying pressure to 450 kg / cm 2 , energization was started. The sintering joining temperature was measured using a radiation thermometer from the outer peripheral surface of the molded outer frame at a position corresponding to the wear-resistant layer and a position corresponding to the bonding surface after sintering. 1270 measured at the position corresponding to the wear layer
The temperature was increased to about 8 minutes in about 8 minutes, and the temperature was maintained for 1 minute to stop energization and cool. The measurement temperature at the position corresponding to the bonding surface at this time was 1090 ° C. The height of the composite tool material recovered after cooling was about 32.0 mm. This composite tool material was cut in half on a plane parallel to the direction of the pressure axis, and the cross section was polished to observe the hardness and the structure. The processed part has a wear-resistant layer, an intermediate layer, and a weldable layer of 3.9 mm, 4.1 mm, and 4.0 m, respectively.
m, the hardness of the wear-resistant layer was 1950 kg / mm 2 , and all the layers could be sintered well to the true density. In addition, no defects such as cracks and micropores were observed on the bonding surface, and a good bonding state was obtained. Furthermore, the formation of brittle intermetallic compounds was not observed in the compound analysis by micro X-ray diffraction near the bonding surface. In a shear strength measurement of a joint performed on a sample cut into a plate shape from the halved composite tool material, a high value of 61 kg / mm 2 was obtained.

【0027】実施例3 下パンチを兼ねた鋼としてSKH55の径10mm、長
さ100mmの丸棒を用い、この一端に耐摩耗層と溶接
可能層よりなる加工部20mmを持つ複合工具材を試作
した。図5を参照して、まず、平均粒径0.4μmのW
C粉末に平均粒径1μmのCo粉末を12.5重量%加
え、混合した粉末を耐摩耗層原料粉末1a1とし、ま
た、平均粒径3μmのWC粉末に平均粒径3μmのCo
粉末15重量%と5μmのFe粉末15重量%を加え、
混合して溶接可能層原料粉末1b1を得た。通電焼結用
の成形外枠3には、図5を参照して、内径10mm,高
さ80mmの黒鉛製の型を用いた。成形外枠の肉厚は一
端から45mmを7.5mm,他端から15mmを肉厚
20mmとし、その間を円錐状の面で結んだ。上パンチ
5はφ10mm,長さ60mmの黒鉛製丸棒を用いた。
ここでの成形外枠の内径と上パンチ、鋼とのクリアラン
スは最大1/100mmであった。また、図の如くスリ
ーブジグ10として内径10mm、外径60mm、高さ
85mmの黒鉛製の肉厚スリーブを用いた。これらの焼
結部品を用いて、まずスリーブジグ10の中孔に径10
mmのSKH55丸棒を挿入し、その突き出した15m
mの部分に成形外枠の中孔が入るように成形外枠を図5
のようにセットする。
Example 3 A round tool bar of SKH55 having a diameter of 10 mm and a length of 100 mm was used as a steel serving also as a lower punch, and a composite tool material having a processed portion of 20 mm formed of a wear-resistant layer and a weldable layer at one end was prototyped. . Referring to FIG. 5, first, W having an average particle size of 0.4 μm is formed.
12.5% by weight of a Co powder having an average particle size of 1 μm was added to the C powder, and the mixed powder was used as a wear-resistant layer raw material powder 1a1.
15 wt% of powder and 15 wt% of 5 μm Fe powder are added,
By mixing, a weldable layer raw material powder 1b1 was obtained. Referring to FIG. 5, a graphite mold having an inner diameter of 10 mm and a height of 80 mm was used for the outer molding frame 3 for electric current sintering. The thickness of the molded outer frame was 7.5 mm at 45 mm from one end and 20 mm at 15 mm from the other end, and the gap was connected by a conical surface. As the upper punch 5, a graphite round bar having a diameter of 10 mm and a length of 60 mm was used.
Here, the clearance between the inner diameter of the molded outer frame and the upper punch and steel was 1/100 mm at the maximum. As shown in the figure, a thick sleeve made of graphite having an inner diameter of 10 mm, an outer diameter of 60 mm, and a height of 85 mm was used as the sleeve jig 10. By using these sintered parts, first, the inner diameter of the sleeve jig 10 is
mm SKH55 round bar is inserted and its protruding 15m
Fig. 5
Set as follows.

【0028】次に、そのSKH55丸棒の上面から、上
記溶接可能層原料粉末1b1を4.9g,耐摩耗層原料
粉末1a1を16.6g順に積層充填し、これに上パン
チをセットする。この焼結試料構成を通電焼結機にセッ
トし、圧力250kg/cm2 で加圧した後、通電を開
始した。焼結接合温度は、焼結終了後の耐摩耗層相当位
置と接合面相当位置で成形外枠外周面から放射温度計を
用いて測定した。耐摩耗層相当位置での測定で1220
℃まで約10分で昇温し、その温度で3分保持して通電
を停止し冷却した。この時の接合面相当位置での測定温
度は1060℃であった。冷却後回収された複合工具材
の長さは約120mmであった。この複合工具材を加圧
軸方向に平行な面で半分に切断し、断面を研磨し硬さや
組織などを観察した。加工部は耐摩耗層、溶接可能層そ
れぞれ、15.0mm,5.0mmよりなり、硬さはそ
れぞれ1780、950kg/mm2 であり、いずれの
層も真密度相当まで良く焼結できていた。また、接合面
には割れや微小気孔のような欠陥は認められず、良好な
接合状態が得られていた。さらに、接合面近傍の微小X
線回折による化合物分析では脆性を持つような金属間化
合物の生成は認められなかった。半割にした複合工具材
より板状に削り出した試料について実施した接合部の剪
断強度では、52kg/mm2 であった。
Next, from the upper surface of the SKH55 round bar, 4.9 g of the weldable layer raw material powder 1b1 and 16.6 g of the wear-resistant layer raw material powder 1a1 are stacked and charged in this order, and an upper punch is set thereon. This sintered sample configuration was set in an electric current sintering machine, and after applying a pressure of 250 kg / cm 2 , energization was started. The sintering joining temperature was measured using a radiation thermometer from the outer peripheral surface of the molded outer frame at a position corresponding to the wear-resistant layer and a position corresponding to the bonding surface after sintering. 1220 measured at the position corresponding to the wear-resistant layer
The temperature was raised to about 10 minutes in about 10 minutes, and the temperature was maintained for 3 minutes, the energization was stopped, and the temperature was cooled. The measurement temperature at the position corresponding to the bonding surface at this time was 1060 ° C. The length of the composite tool material recovered after cooling was about 120 mm. This composite tool material was cut in half on a plane parallel to the direction of the pressure axis, and the cross section was polished to observe the hardness and the structure. The processed portion was composed of a wear-resistant layer and a weldable layer of 15.0 mm and 5.0 mm, respectively, and had a hardness of 1780 and 950 kg / mm 2 , respectively. In addition, no defects such as cracks and micropores were observed on the bonding surface, and a good bonding state was obtained. Furthermore, a minute X near the joining surface
The formation of brittle intermetallic compounds was not observed in the compound analysis by line diffraction. The shear strength of the joint performed on a sample cut into a plate shape from the halved composite tool material was 52 kg / mm 2 .

【0029】[0029]

【発明の効果】本発明は、上述の通り構成されているの
で次に記載する効果を奏する。この発明によれば、加工
部を構成する超硬合金の本来の特性を犠牲にすることな
く、鋼と融合性を高めることができる。また、鋼との熱
膨張差による残留応力を緩和、分散でき、超硬合金原料
粉末を焼結しながら鋼と同時接合することにより、信頼
性の高い、高品位の複合工具材を低コストで安定して製
造することができる。この方法により、優れた耐摩耗性
と強靭性を兼ね備えた鋼と超硬合金の接合した複合工具
材を広く提供できる。
Since the present invention is configured as described above, the following effects can be obtained. According to the present invention, the fusibility with steel can be enhanced without sacrificing the original characteristics of the cemented carbide constituting the processed portion. In addition, it can reduce and disperse the residual stress due to the difference in thermal expansion with steel, and by sintering the cemented carbide raw material powder and joining it with steel at the same time, it is possible to produce highly reliable, high-grade composite tool materials at low cost. It can be manufactured stably. According to this method, a composite tool material in which steel having excellent wear resistance and toughness is combined with a cemented carbide can be widely provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼と超硬合金の接合した複合工具材の実施例の
縦断面図である。
FIG. 1 is a longitudinal sectional view of an embodiment of a composite tool material in which steel and a cemented carbide are joined.

【図2】鋼と超硬合金の接合した複合工具材の他の実施
例の縦断面図である。
FIG. 2 is a longitudinal sectional view of another embodiment of a composite tool material in which steel and a cemented carbide are joined.

【図3】実施例1での鋼と超硬合金の接合した複合工具
材の製造方法を説明するための縦断面図である。
FIG. 3 is a longitudinal sectional view for explaining a method for manufacturing a composite tool material in which steel and cemented carbide are joined in Example 1.

【図4】実施例2での鋼と超硬合金の接合した複合工具
材の製造方法を説明するための縦断面図である。
FIG. 4 is a longitudinal sectional view for explaining a method of manufacturing a composite tool material in which steel and a cemented carbide are joined in Example 2.

【図5】実施例3での鋼と超硬合金の接合した複合工具
材の製造方法を説明するための縦断面図である。
FIG. 5 is a longitudinal sectional view for illustrating a method for manufacturing a composite tool material in which steel and a cemented carbide are joined in Example 3.

【図6】A−A線拡大断面図である。FIG. 6 is an enlarged sectional view taken along line AA.

【図7】A−A線における他の実施例の拡大断面図であ
る。
FIG. 7 is an enlarged sectional view of another embodiment taken along line AA.

【図8】A−A線における他の実施例の拡大断面図であ
る。
FIG. 8 is an enlarged sectional view of another embodiment taken along line AA.

【図9】A−A線における他の実施例の拡大断面図であ
る。
FIG. 9 is an enlarged sectional view of another embodiment taken along line AA.

【符号の説明】[Explanation of symbols]

1 加工部 2 鋼 3 成形外枠 4 加工部原料粉末 5 上パンチ 6 上電極 7 下電極 8 電源 9 ブロックジグ 10 スリーブジグ 1a 耐摩耗層 1b 溶接可能層 1c 中間層 1a1 耐摩耗層原料粉末 1b1 溶接可能層原料粉末 1c1 中間層原料粉末 1c11 上部中間層原料粉末 1c12 下部中間層原料粉末 Reference Signs List 1 processed part 2 steel 3 molded outer frame 4 processed part raw material powder 5 upper punch 6 upper electrode 7 lower electrode 8 power supply 9 block jig 10 sleeve jig 1a wear-resistant layer 1b weldable layer 1c intermediate layer 1a1 wear-resistant layer raw material powder 1b1 welding Possible layer raw material powder 1c1 Middle layer raw material powder 1c11 Upper middle layer raw material powder 1c12 Lower middle layer raw material powder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B32B 15/01 C22C 29/08 C22C 29/08 B22F 3/10 N (72)発明者 安藤 秀夫 北海道赤平市字赤平594番地の1 住友 石炭鉱業株式会社 北海道技術研究所内 (56)参考文献 特開 平7−300375(JP,A) 特開 平3−94930(JP,A) 特公 平6−102803(JP,B2) 特公 平7−84352(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B21D 28/14 B21D 37/01 B21D 37/20 B22F 3/10──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI B32B 15/01 C22C 29/08 C22C 29/08 B22F 3/10 N (72) Inventor Hideo Ando 594 Akahira, Akahira-shi, Hokkaido 1 Sumitomo Coal Mining Co., Ltd. Hokkaido Research Institute (56) References JP-A-7-300375 (JP, A) JP-A-3-94930 (JP, A) JP 6-102803 (JP, B2) JP Hei 7-84352 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B21D 28/14 B21D 37/01 B21D 37/20 B22F 3/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直接または中間層を介して焼結結合され
た金属結合相量20重量%以上、60重量%以下を含有
するWC基超硬合金よりなる溶接可能層(1b)と、金
属結合相量3重量%以上、20重量%未満を含有するW
C基超硬合金よりなる耐摩耗層(1a)とからなる加工
部(1)をもって、鋼に一体に接合された複合工具材を
成形外枠(3)を用いた通電焼結法により製造する方法
において、該成形外枠の加圧軸方向の肉厚が耐摩耗層原
料粉末(1a1)側から溶接可能層原料粉末(1b1)
側へ連続またはステップ状に増加するよう構成し、該成
形外枠を少なくとも一つの通電経路とすることにより、
通電中に加工部原料粉末の加圧軸方向に温度傾斜を形成
しながら該加工部原料粉末を焼結しつつ、鋼に焼結接合
することを特徴とする鋼と超硬合金の接合した複合工具
の製造方法
1. Sinter-bonded directly or via an intermediate layer
Metal binder phase content of 20% by weight or more and 60% by weight or less
Weldable layer (1b) made of WC-based cemented carbide
W containing at least 3% by weight and less than 20% by weight
Working with wear-resistant layer (1a) made of C-base cemented carbide
With the part (1), the composite tool material integrally joined to the steel
Method for manufacturing by electric current sintering method using molded outer frame (3)
In the above, the thickness of the molding outer frame in the pressing axis direction is
Raw material powder (1b1) weldable from the powder (1a1) side
Side to increase continuously or stepwise.
By making the outer frame at least one energizing path,
A temperature gradient is formed in the direction of the pressing axis of the raw material powder during energization
While sintering the raw material powder, sinter bonding to steel
A method for producing a composite tool material in which steel and a cemented carbide are joined.
【請求項2】 耐摩耗層を構成するWC基超硬合金中の
WC粒子の平均粒径が1μm以下である請求項1記載の
鋼と超硬合金の接合した複合工具材の製造方法
2. The composite tool material according to claim 1, wherein the average particle size of the WC particles in the WC-based cemented carbide constituting the wear-resistant layer is 1 μm or less . Manufacturing method .
【請求項3】 加工部を構成するWC基超硬合金の金属
結合相がCo,Ni,Feの中の1種または2種以上、
またはこれらの金属を含む合金よりなる請求項1記載の
鋼と超硬合金の接合した複合工具材の製造方法
3. The WC-based cemented carbide forming the working portion has one or more of Co, Ni, and Fe metal binder phases;
2. The method for producing a composite tool material according to claim 1, wherein the composite tool material is made of an alloy containing these metals.
JP8140769A 1996-05-10 1996-05-10 Manufacturing method of composite tool material in which steel and cemented carbide are joined Expired - Fee Related JP2835709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8140769A JP2835709B2 (en) 1996-05-10 1996-05-10 Manufacturing method of composite tool material in which steel and cemented carbide are joined

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8140769A JP2835709B2 (en) 1996-05-10 1996-05-10 Manufacturing method of composite tool material in which steel and cemented carbide are joined

Publications (2)

Publication Number Publication Date
JPH09300024A JPH09300024A (en) 1997-11-25
JP2835709B2 true JP2835709B2 (en) 1998-12-14

Family

ID=15276328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8140769A Expired - Fee Related JP2835709B2 (en) 1996-05-10 1996-05-10 Manufacturing method of composite tool material in which steel and cemented carbide are joined

Country Status (1)

Country Link
JP (1) JP2835709B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325355B1 (en) * 1999-08-16 2002-03-06 신현준 A method for brazing WC-Co and tool steel
JP4529185B2 (en) * 2006-03-30 2010-08-25 日本電気硝子株式会社 Glass fiber cutting blade, manufacturing method thereof and cutting apparatus
RU2499069C2 (en) * 2008-06-02 2013-11-20 ТиДиУай ИНДАСТРИЗ, ЭлЭлСи Composite materials - cemented carbide-metal alloy
CN104959616B (en) * 2015-06-23 2017-09-29 中南钻石有限公司 Sandwich type dimond synneusis composite sheet and preparation method thereof and bonding agent used

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394930A (en) * 1989-09-08 1991-04-19 Tanaka Kikinzoku Kogyo Kk Punch tool for piercing spinning hole
JP2611934B2 (en) * 1994-04-28 1997-05-21 住友石炭鉱業株式会社 Cemented carbide-based wear-resistant material and method for producing the same

Also Published As

Publication number Publication date
JPH09300024A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
CN105665908B (en) Using the point of resistance welding steel and aluminium workpiece of electrode package
US8956478B2 (en) Process for joining refractory ceramic parts by spark plasma sintering (SPS)
EP0106929B1 (en) Wear-resistant and shock-resistant tools and method of manufacture thereof
KR20160133455A (en) Compound roll
JPH09194909A (en) Composite material and its production
US6443352B1 (en) Electrical resistance based object consolidation
WO1992001528A1 (en) Hot diffusion welding
JP2835709B2 (en) Manufacturing method of composite tool material in which steel and cemented carbide are joined
JP2611934B2 (en) Cemented carbide-based wear-resistant material and method for producing the same
CN105499778A (en) Spot welding electrode
EP0389625A1 (en) Process for resistance diffusion junction
JP2601284B2 (en) Sintered diamond composite and manufacturing method thereof
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JPH09300104A (en) Complex tool material of super-hard alloy system
KR20220152215A (en) Solid state point joining method and solid state point joining device
JPH09315873A (en) Sintered hard alloy based wear resistant material and its production
JP4891786B2 (en) Carbide composite metal body and method for producing the same
JP4039725B2 (en) Bonding material of cemented carbide and steel and manufacturing method thereof
Chernenko Friction welding AD1 aluminium to 12Kh18N10T steel
JP2807874B2 (en) WC-based cemented carbide-based wear-resistant material and method for producing the same
JPH1136005A (en) Compound die material for press forming, its production, and press forming die consisting of the material
US7393193B1 (en) Techniques for making a metallic product utilizing electric current in a consolidation process
JPS5890385A (en) Manufacture of composite wear resistance member
Chandru et al. Friction Stir Welding of Aluminum Sponge by Non-Porous Edge Retention
JP2906030B2 (en) Ceramic-carbide composite sintered body and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees