JP2807275B2 - Synthetic resin container thickness measuring device - Google Patents

Synthetic resin container thickness measuring device

Info

Publication number
JP2807275B2
JP2807275B2 JP1214707A JP21470789A JP2807275B2 JP 2807275 B2 JP2807275 B2 JP 2807275B2 JP 1214707 A JP1214707 A JP 1214707A JP 21470789 A JP21470789 A JP 21470789A JP 2807275 B2 JP2807275 B2 JP 2807275B2
Authority
JP
Japan
Prior art keywords
light
container
visible laser
inspection
inspection light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1214707A
Other languages
Japanese (ja)
Other versions
JPH0377004A (en
Inventor
宏明 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP1214707A priority Critical patent/JP2807275B2/en
Publication of JPH0377004A publication Critical patent/JPH0377004A/en
Application granted granted Critical
Publication of JP2807275B2 publication Critical patent/JP2807275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9072Investigating the presence of flaws or contamination in a container or its contents with illumination or detection from inside the container
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9081Inspection especially designed for plastic containers, e.g. preforms

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種飲料製品を充填するための有底筒体状
を有する合成樹脂製容器(以下、容器という。)の肉厚
を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention measures the thickness of a synthetic resin container (hereinafter, referred to as a container) having a bottomed cylindrical shape for filling various beverage products. Related to the device.

〔従来の技術〕[Conventional technology]

最近では、各種飲料製品は比較的大型の容器に充填し
て販売されている。そして、容器への各種飲料製品の充
填は、一般的には飲料製品を85℃程度の温度に保った状
態で行なわれ、充填の際あるいは充填後比較的すみやか
に容器に蓋がされる。このため、容器内の飲料製品が冷
えると容器の内部圧力が低下するが、この場合、容器の
壁部の肉厚が不均一であり、容器強度にバラツキがある
と、肉厚の薄い部分に内方への陥没が生じるおそれがあ
る。このことは、特に長尺の大型容器にあっては一層生
じ易い。この変形防止のため、肉厚を均一にして強度の
向上を図ることが考えられている。
Recently, various beverage products have been sold in relatively large containers. The filling of the container with various beverage products is generally performed while the beverage product is kept at a temperature of about 85 ° C., and the container is closed at the time of filling or relatively quickly after filling. For this reason, when the beverage product in the container cools, the internal pressure of the container decreases, but in this case, if the thickness of the wall of the container is uneven and the strength of the container varies, the thickness of the thin portion is reduced. An inward depression may occur. This is more likely to occur especially in long large containers. To prevent this deformation, it has been considered to improve the strength by making the wall thickness uniform.

ここで、容器は連続自動製造ラインにより作られるた
め、肉厚の測定法としては非接触、非破壊法が採用され
る。
Here, since the container is made by a continuous automatic production line, a non-contact, non-destructive method is adopted as a method of measuring the wall thickness.

従来、非接触、非破壊法による肉厚測定装置は、特定
波長の検査光を容器の壁面に放射し、容器壁面を透過し
た検査光を受光部で受光して電気信号に変換するもので
あった。そして、PET系樹脂容器の肉厚測定装置におけ
る検査光は、外乱ノイズの影響を受けないこと、PET系
樹脂の肉厚の変化に対する検査光の透過量の応答が敏感
であること等により、波長が2.6μm近傍の赤外光が用
いられる。このように検査光が赤外光であるために、検
査光を目視することはできず、このため容器の肉厚測定
点の位置出しは、装置寸法、及び容器の位置関係を基に
計算して行なっていた。また、PET系樹脂容器の測定点
を破壊もしくは遮閉して、検査光の光量変化の検出によ
り測定点の位置出しを行なっていた。
Conventionally, a non-contact, non-destructive method for measuring a wall thickness radiates inspection light of a specific wavelength to the wall surface of a container, receives the inspection light transmitted through the container wall surface at a light receiving unit, and converts the inspection light into an electric signal. Was. The inspection light in the PET resin container thickness measuring device is not affected by disturbance noise, and the response of the transmission amount of the inspection light to a change in the thickness of the PET resin is sensitive. Is used near 2.6 μm. As described above, since the inspection light is infrared light, the inspection light cannot be visually observed. Therefore, the position of the thickness measuring point of the container is calculated based on the apparatus dimensions and the positional relationship of the container. I was doing it. Further, the measurement point of the PET resin container is destroyed or closed, and the measurement point is located by detecting a change in the amount of inspection light.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、従来の肉厚測定装置における測定点の
位置出しは、複数の装置寸法の測定、及び計算、あるい
はPET系樹脂容器の破壊もしくは遮閉作業及び光量変化
検出による演算が必要であり、多大の時間を要するとい
う問題があった。さらに、上述のように計算、測定によ
り測定位置を類推するため、正確さに欠けるという問題
があった。
However, locating measurement points in a conventional thickness measuring device requires measurement and calculation of a plurality of device dimensions, or calculation by destruction or closure of a PET-based resin container and detection of a change in light amount, which requires a great deal of time. There was a problem that it took time. Furthermore, since the measurement position is estimated by calculation and measurement as described above, there is a problem that accuracy is lacking.

本発明は、このような事情に鑑み創案されたものであ
り、検査光とともに、この検査光と光軸が一致した可視
レーザー光を容器に放射して肉厚を測定することによ
り、検査光の光軸を可視化し、容易に肉厚測定点の位置
出しができる合成樹脂製容器の肉厚測定装置を提供する
ことを目的とする。
The present invention has been devised in view of such circumstances, and emits a visible laser light having an optical axis coincident with the inspection light to the container together with the inspection light to measure the wall thickness. It is an object of the present invention to provide a thickness measuring apparatus for a synthetic resin container that visualizes an optical axis and can easily locate a thickness measuring point.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、少なくとも一端が開口された透明または半
透明の合成樹脂製容器の壁面に検査光を放射し、前記容
器を透過した検査光を測定することにより前記容器の肉
厚を測定する装置において、検査光を発生するための光
源部と、可視レーザー光を発生するための可視レーザー
光源部と、前記検査光は反射するが、前記可視レーザー
光は透過するミキシングミラーと、前記検査光と前記可
視レーザー光とを互いの光路を一致させた状態で前記容
器の壁面の被検査点に放射する投光器と、前記投光器に
対向し前記容器を透過した検査光を受光して電気信号に
変換する受光器と、前記投光器と前記受光器のうち何れ
か一方を昇降し、前記容器の内部に挿入するための昇降
装置とを備え、前記ミキシングミラーは前記検査光と前
記可視レーザー光とを互いの光軸を一致させた状態で前
記投光器に導くように構成した。
The present invention provides an apparatus for measuring the thickness of the container by radiating inspection light on a wall surface of a transparent or translucent synthetic resin container having at least one end opened, and measuring the inspection light transmitted through the container. A light source unit for generating inspection light, a visible laser light source unit for generating visible laser light, a mixing mirror that reflects the inspection light, but transmits the visible laser light, A light emitter that emits a visible laser beam to a point to be inspected on the wall surface of the container in a state where their optical paths are aligned with each other, and a light receiver that receives the inspection light transmitted through the container facing the light emitter and converting the inspection light into an electric signal. And a lifting device for lifting and lowering one of the light emitter and the light receiver, and inserting the same into the container, wherein the mixing mirror includes the inspection light and the visible laser light. And configured to direct the projector in a state of being matched optical axis of each other.

〔作用〕[Action]

光源部にて発生しミキシングミラーで反射された検査
光と、可視レーザー光源部にて発生し、前記ミキシング
ミラーを透過した可視レーザー光とは、互いの光軸が一
致した状態で投光器へ導かれ、この投光器から容器の同
一点に投光され、容器を透過した検査光が受光部で相応
する電気信号に変換される。このため、検査光とともに
測定点に放射された可視レーザー光により検査光の光軸
は可視化され、検査光が容器を透過する点、すなわち測
定点は、目視により簡単に、かつ正確に位置出しを行な
うことができる。
The inspection light generated at the light source unit and reflected by the mixing mirror and the visible laser light generated at the visible laser light source unit and transmitted through the mixing mirror are guided to the projector with their optical axes aligned. The inspection light emitted from the projector to the same point of the container and transmitted through the container is converted into a corresponding electric signal by the light receiving unit. For this reason, the optical axis of the inspection light is visualized by the visible laser light emitted to the measurement point together with the inspection light, and the point at which the inspection light passes through the container, that is, the measurement point, can be easily and accurately located by visual inspection. Can do it.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の合成樹脂製容器の肉厚測定装置の概
略断面図である。第1図において、合成樹脂製容器の肉
厚測定装置1は検査光12を発生するための光源部11と、
可視レーザー光22を発生するための可視レーザー光源部
21と、検査光12と可視レーザー光22とを複合し、互いの
光軸が一致し同一の光路をとる複合光Cを作るためのミ
キシングミラー31と、複合光Cを容器2の壁面に放射す
るための投光器41と、容器2を透過した複合光Cの中の
検査光のみを検出するための受光器51とを備えている。
FIG. 1 is a schematic sectional view of an apparatus for measuring the thickness of a synthetic resin container according to the present invention. In FIG. 1, a thickness measuring device 1 for a synthetic resin container includes a light source unit 11 for generating an inspection light 12;
Visible laser light source section for generating visible laser light 22
A mixing mirror 31 for compounding the inspection light 12 and the visible laser light 22 to form a composite light C having the same optical path and the same optical path, and radiating the composite light C to the wall surface of the container 2 And a light receiver 51 for detecting only the inspection light in the composite light C transmitted through the container 2.

光源部11は光源13と、この光源13を介してミキシング
ミラー31を対向するように光源の上方に位置する凹面鏡
14と、光源13の側方(図示例では右方)に位置するチョ
ッパ15とを備えて構成されている。光源13には、例えば
ニクロム線等の測定光として赤外光を発光するものを用
いる。赤外光は波長2〜5μm、好ましくは2.6μm近
傍のものを用いるものが好ましい。これは、波長の長い
赤外光を用いるとレンズ系で構成される光路が長くなっ
て後述する光ガイド部が長くなり、装置構成の点で実用
上支障をきたすこと、および例えば15〜18μmの赤外光
だと黒体炉が必要となって高価になること、等の難点を
回避するためである。
The light source unit 11 includes a light source 13 and a concave mirror positioned above the light source so as to face the mixing mirror 31 via the light source 13.
14 and a chopper 15 located on the side (right side in the illustrated example) of the light source 13. As the light source 13, for example, a light source that emits infrared light as measurement light such as a nichrome line is used. It is preferable to use infrared light having a wavelength of 2 to 5 μm, preferably around 2.6 μm. This is because the use of infrared light having a long wavelength lengthens the optical path formed by the lens system and the light guide section described later becomes longer, which causes a practical problem in terms of the device configuration, and, for example, 15 to 18 μm. This is because infrared light requires a black-body furnace and is expensive, thus avoiding difficulties such as that.

凹面鏡14は光源13からの赤外光を集光して前記ミキシ
ングミラー31に入射させるためのものである。
The concave mirror 14 is for condensing infrared light from the light source 13 and making it incident on the mixing mirror 31.

チョッパ15は凹面鏡14により反射されてミキシングミ
ラー31に進む光をチョッピングすることにより断続的な
形(すなわち、交播波形)とするためのものである。こ
のチョッピングは、後述する受光器5に設けられる光電
変換素子の特性上ドリフトおよびオフセットが生じ、こ
れらの変動要因を除去して高精度な測定を行なうために
必要である。そのために、一旦交播波形に変換してドリ
フトおよびオフセットを打消し、再度直流に変換するも
のである。チョッパの形式としては、光源13に与える電
気信号をチョッピングする電気式のものと、本実施例の
ように光源13からの発光は一定とし、その光をチョッパ
板16をモーター15により所定回転数で回転させて断続的
に遮光する機械式とが考えられる。
The chopper 15 is used for chopping the light reflected by the concave mirror 14 and traveling to the mixing mirror 31 so as to form an intermittent shape (that is, a crossing waveform). This chopping causes a drift and an offset due to the characteristics of a photoelectric conversion element provided in the photodetector 5 described later, and is necessary for removing these fluctuation factors and performing highly accurate measurement. For this purpose, the waveform is temporarily converted to a crossing waveform to cancel the drift and offset, and then converted to DC again. As a form of the chopper, an electric type for chopping an electric signal given to the light source 13 and a constant light emission from the light source 13 as in this embodiment, and the light is transmitted to the chopper plate 16 by the motor 15 at a predetermined rotation speed. A mechanical type that rotates and intermittently shields light is considered.

可視レーザー光源部21は、ミキシングミラー31の検査
光12が入射する面と反対側の面に可視レーザー光22を入
射させるためのものである。使用される可視レーザー光
は、後述するミキシングミラー31の光学特性に応じて適
宜決定することができる。また、可視レーザー光を発生
するレーザーは使用する可視レーザー光の波長に応じて
決定することができ、例えば波長670nm近傍の可視レー
ザー光を発生する場合は、半導体レーザーを用いること
ができる。
The visible laser light source unit 21 is for causing the visible laser light 22 to be incident on the surface of the mixing mirror 31 opposite to the surface on which the inspection light 12 is incident. The visible laser light to be used can be appropriately determined according to the optical characteristics of the mixing mirror 31 described later. The laser that generates visible laser light can be determined according to the wavelength of the visible laser light to be used. For example, a semiconductor laser can be used to generate visible laser light having a wavelength near 670 nm.

ミキシングミラー31は光源部11から入射した検査光12
を反射し、かつ可視レーザー光源部21から入射した可視
レーザー光22を透過する光学特性を有している。第2図
は、検査光12の波長が2.6μm、可視レーザー光の波長
が670nmの場合のミキシングミラー31の光学特性(透過
性)を示す図である。第2図において、ミキシングミラ
ー31は、検査光12の波長域(2.6μm=2600nm)では透
過量はほぼ0であり、高い反射性を示し、可視レーザー
光の波長域(670nm)では透過量が数パーセントながら
も透過性を示している。したがって、第1図に示される
ように、ミキシングミラー31に入射した検査光12は反射
され、可視レーザー光22はその一部がミキシングミラー
31を透過し、ミキシングミラー31に反射された検査光と
複合されて複合光Cとなる。
The mixing mirror 31 is used for the inspection light 12 incident from the light source unit 11.
And has an optical property of transmitting visible laser light 22 incident from the visible laser light source unit 21. FIG. 2 is a view showing the optical characteristics (transmittance) of the mixing mirror 31 when the wavelength of the inspection light 12 is 2.6 μm and the wavelength of the visible laser light is 670 nm. In FIG. 2, the transmission amount of the mixing mirror 31 is almost 0 in the wavelength range of the inspection light 12 (2.6 μm = 2600 nm), showing high reflectivity, and the transmission amount in the wavelength range of visible laser light (670 nm). It shows permeability although it is a few percent. Therefore, as shown in FIG. 1, the inspection light 12 incident on the mixing mirror 31 is reflected, and a part of the visible laser light 22 is mixed with the mixing mirror 31.
The composite light C is combined with the inspection light transmitted through the mirror 31 and reflected by the mixing mirror 31 to form a composite light C.

投光器41は投光ガイド部42と、投光ガイド部42の上部
に設けられた入射用反射鏡43と投光ガイド部42の下部に
設けられた出射用反射鏡44と、投光ガイド部42を昇降す
るための駆動装置45とを備えている。ミキシングミラー
31によって複合された複合光Cは、入射用反射鏡43で反
射されて投光ガイド部42内を出射用反射鏡44へ導かれ、
出射用反射鏡44で反射されて容器2の壁面に向けて投光
される。したがって、検査光と可視レーザー光が容器2
の同一点に投光されることになり、可視レーザー光によ
って光軸が可視化された検査光を目視で認識できること
になる。
The light projector 41 includes a light emitting guide part 42, an incident reflecting mirror 43 provided above the light emitting guide part 42, an emitting reflecting mirror 44 provided below the light emitting guide part 42, and a light emitting guide part 42. And a driving device 45 for moving up and down. Mixing mirror
The composite light C compounded by 31 is reflected by the incident reflecting mirror 43 and guided inside the light emitting guide section 42 to the emitting reflecting mirror 44,
The light is reflected by the emission reflecting mirror 44 and is projected toward the wall surface of the container 2. Therefore, the inspection light and the visible laser light are
And the inspection light whose optical axis is visualized by the visible laser light can be visually recognized.

受光器51は投光器41の出射用反射鏡44の出射光軸上に
あって投光器41に対向して設置されている。この受光器
51は干渉フィルタ52と光電変換素子53とを備えている。
干渉フィルタ52は、光電変換素子53の分光特性と組み合
わせることにより、容器2を透過した複合光Cの中から
検査光12のみを検出し、他の外乱ノイズの不要波長およ
び可視レーザー光を遮断する。第3図は、検査光の波長
が2.6μmの場合の干渉フィルタ52の透過性を示す図で
あり、干渉フィルタ52は2.6μmをピークとするフィル
タ特性を有する。
The light receiver 51 is located on the exit optical axis of the exit reflector 44 of the projector 41 and is opposed to the projector 41. This receiver
51 includes an interference filter 52 and a photoelectric conversion element 53.
The interference filter 52 detects only the inspection light 12 from the composite light C transmitted through the container 2 by combining with the spectral characteristic of the photoelectric conversion element 53, and blocks other unnecessary wavelengths of disturbance noise and visible laser light. . FIG. 3 is a diagram showing the transmittance of the interference filter 52 when the wavelength of the inspection light is 2.6 μm. The interference filter 52 has a filter characteristic having a peak at 2.6 μm.

光電変換素子53は、常温にて使用可能であり、SN比を
向上させるために検査光に対応して波長2〜5μmにお
ける分光特性がピークとなるものが好ましい。そのよう
な光電変換素子としてはPbS(鉛・イオウ)光電変換素
子の使用が可能である。第4図は第3図と同様に検査光
の波長が2.6μmの場合の光電変換素子53の分光特性を
示す図であり、2.5μmをピークとして3.1μmまでの感
度を有している。したがって、上記の干渉フィルタ52と
光電変換素子53とを組み合わせることにより、可視レー
ザー光22(670nm)を含めた可視光全域の外乱を受けず
に容器2を透過してきた検査光12を受光器51で受光でき
る。そして、光電変換素子53で変換された信号が図示し
ない電気信号処理系において演算処理されて容器の肉厚
が示される。
The photoelectric conversion element 53 can be used at room temperature, and preferably has a peak spectral characteristic at a wavelength of 2 to 5 μm corresponding to the inspection light in order to improve the SN ratio. As such a photoelectric conversion element, a PbS (lead / sulfur) photoelectric conversion element can be used. FIG. 4 is a diagram showing the spectral characteristics of the photoelectric conversion element 53 when the wavelength of the inspection light is 2.6 μm, as in FIG. 3, and has a sensitivity of up to 3.1 μm with a peak at 2.5 μm. Therefore, by combining the interference filter 52 and the photoelectric conversion element 53, the inspection light 12 transmitted through the container 2 without being affected by the disturbance of the entire visible light including the visible laser light 22 (670 nm) is received by the light receiving device 51. Can be received. The signal converted by the photoelectric conversion element 53 is subjected to arithmetic processing in an electric signal processing system (not shown) to indicate the thickness of the container.

なお、受光器51の配設位置は、投光器41が下降して肉
厚を測定する位置に予め設定されている。
The arrangement position of the light receiver 51 is set in advance to a position where the light projector 41 descends to measure the wall thickness.

次に、一連の測定動作について説明する。 Next, a series of measurement operations will be described.

まず、測定対象となる容器2を図示しない容器保持手
段により保持する。次いで、昇降装置45により投光器41
を下降させて容器2内に挿入する。投光器41が所定の測
定位置で停止した後、光源部11から検査光12を発生し、
このとき、チョッパ16によって検査光12をチョッピング
する。その検査光12はミキシングミラー31に入射する。
一方、可視レーザー光源部21から可視レーザー光22がミ
キシングミラー31の検査光12の入射側と反対側の面に照
射される。そして、ミキシングミラー31において、検査
光12は反射し、可視レーザー光22は一部透過することに
より、検査光12と可視レーザー光22とは複合して光軸が
一致した複合光Cとなって投光器41の入射用反射鏡43に
入射して反射される。この複合光Cは投光ガイド部42を
進み、出射用反射鏡44で反射されて容器2の壁面に照射
される。このとき、複合光は可視レーザー光22を含むた
め、容器2に照射された検査光12の光軸が可視化され、
肉厚測定点が容易に確認される。容器2を透過した複合
光Cは受光器51に入射する。ここで複合光Cの内、検査
光12以外の外乱ノイズの不要波長および可視レーザー光
は干渉フィルタ52によって遮断され、検査光12のみが光
電変換素子53によって電気信号に変換され、図示しない
電気処理手段によって演算処理されて容器の肉厚が求め
られる。また、容器は通常回転されながら上述の測定を
受けるものであり、容器2の回転位置(すなわち、容器
2の周方向位置)ごとの肉厚が検査され、周方向の厚み
分布が求められる。さらに、容器2の軸方向において測
定点を複数設けることにより、軸方向の厚み分布を求め
ることができる。
First, the container 2 to be measured is held by container holding means (not shown). Next, the projector 41 is moved by the elevating device 45.
Is lowered and inserted into the container 2. After the projector 41 stops at the predetermined measurement position, the inspection light 12 is generated from the light source unit 11,
At this time, the inspection light 12 is chopped by the chopper 16. The inspection light 12 enters the mixing mirror 31.
On the other hand, visible laser light 22 is emitted from the visible laser light source unit 21 to the surface of the mixing mirror 31 on the side opposite to the side on which the inspection light 12 is incident. Then, in the mixing mirror 31, the inspection light 12 is reflected, and the visible laser light 22 is partially transmitted, so that the inspection light 12 and the visible laser light 22 are combined to form a composite light C having the same optical axis. The light enters the reflecting mirror 43 for incidence of the light projector 41 and is reflected. The composite light C travels through the light emitting guide section 42, is reflected by the output reflecting mirror 44, and irradiates the wall surface of the container 2. At this time, since the composite light includes the visible laser light 22, the optical axis of the inspection light 12 applied to the container 2 is visualized,
The thickness measurement point is easily confirmed. The composite light C transmitted through the container 2 enters the light receiver 51. Here, of the composite light C, unnecessary wavelengths of disturbance noise and visible laser light other than the inspection light 12 are cut off by the interference filter 52, and only the inspection light 12 is converted into an electric signal by the photoelectric conversion element 53. The thickness of the container is obtained by arithmetic processing by means. In addition, the container is subjected to the above-described measurement while being normally rotated, and the thickness at each rotational position of the container 2 (that is, the circumferential position of the container 2) is inspected, and the thickness distribution in the circumferential direction is obtained. Further, by providing a plurality of measurement points in the axial direction of the container 2, the thickness distribution in the axial direction can be obtained.

なお、上記実施例では、投光器41を容器2の内部に挿
入し、受光器51を容器2の外部に配置した場合について
述べたが、本発明は投光器41を容器2の外部に配置し、
受光器51を容器2の内部に挿入するものであってもよ
い。
In the above embodiment, the case where the light emitter 41 is inserted inside the container 2 and the light receiver 51 is arranged outside the container 2 has been described, but the present invention arranges the light emitter 41 outside the container 2,
The light receiver 51 may be inserted into the container 2.

〔発明の効果〕〔The invention's effect〕

本発明によれば、検査光が可視レーザー光と複合され
て容器に照射されて肉厚が測定されるため、検査光の光
軸が可視化され、検査光が容器を透過する点、すなわち
測定点の位置出しを容器かつ正確に行なうことができる
という効果が奏される。
According to the present invention, since the inspection light is combined with the visible laser light and applied to the container to measure the thickness, the optical axis of the inspection light is visualized, and the point at which the inspection light passes through the container, that is, the measurement point The effect is that the positioning of the container can be accurately performed in the container.

【図面の簡単な説明】 第1図は本発明の合成樹脂製容器の肉厚測定装置の概略
断面図、第2図は本発明の合成樹脂製容器の肉厚測定装
置に用いるミキシングミラーの波長特性を示す図、第3
図は本発明の合成樹脂製容器の肉厚測定装置に用いる干
渉フィルタの波長特性図、第4図は本発明の合成樹脂製
容器の肉厚測定装置に用いる光電変換素子の分光感度特
性図である。 1……肉厚測定装置、2……容器、11……光源部、21…
…可視レーザー光源部、31……ミキシングミラー、41…
…投光器、51……受光器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a thickness measuring apparatus for a synthetic resin container of the present invention, and FIG. 2 is a wavelength of a mixing mirror used in the thickness measuring apparatus for a synthetic resin container of the present invention. Diagram showing characteristics, third
FIG. 4 is a wavelength characteristic diagram of an interference filter used in the synthetic resin container thickness measuring device of the present invention, and FIG. 4 is a spectral sensitivity characteristic diagram of a photoelectric conversion element used in the synthetic resin container thickness measuring device of the present invention. is there. DESCRIPTION OF SYMBOLS 1 ... Thickness measuring device, 2 ... Container, 11 ... Light source part, 21 ...
… Visible laser light source, 31… Mixing mirror, 41…
... light emitter, 51 ... light receiver.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一端が開口された透明または半
透明の合成樹脂製容器の壁面に検査光を放射し、前記容
器を透過した検査光を測定することにより前記容器の肉
厚を測定する装置において、検査光を発生するための光
源部と、可視レーザー光を発生するための可視レーザー
光源部と、前記検査光は反射するが、前記可視レーザー
光は透過するミキシングミラーと、前記検査光と前記可
視レーザー光とを互いの光路を一致させた状態で前記容
器の壁面の被検査点に放射する投光器と、前記投光器に
対向し前記容器を透過した検査光を受光して電気信号に
変換する受光器と、前記投光器と前記受光器のうち何れ
か一方を昇降し、前記容器の内部に挿入するための昇降
装置とを備え、前記ミキシングミラーは前記検査光と前
記可視レーザー光とを互いの光軸を一致させた状態で前
記投光器に導くことを特徴とする合成樹脂製容器の肉厚
測定装置。
An apparatus for radiating inspection light to a wall surface of a transparent or translucent synthetic resin container having at least one end opened, and measuring the thickness of the container by measuring the inspection light transmitted through the container. In, a light source unit for generating inspection light, a visible laser light source unit for generating visible laser light, a mixing mirror that reflects the inspection light but transmits the visible laser light, and the inspection light A light emitter that emits the visible laser light to a point to be inspected on the wall surface of the container with the optical paths thereof aligned with each other, and receives the inspection light transmitted through the container facing the light emitter and converts the light into an electric signal. A light receiving device, and a lifting device for lifting and lowering one of the light emitting device and the light receiving device and inserting the light into the container, wherein the mixing mirror includes the inspection light and the visible laser light. Mutual thickness measuring device of a synthetic resin container, characterized in that leads to the projector in a state of being matched optical axis.
JP1214707A 1989-08-21 1989-08-21 Synthetic resin container thickness measuring device Expired - Lifetime JP2807275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214707A JP2807275B2 (en) 1989-08-21 1989-08-21 Synthetic resin container thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214707A JP2807275B2 (en) 1989-08-21 1989-08-21 Synthetic resin container thickness measuring device

Publications (2)

Publication Number Publication Date
JPH0377004A JPH0377004A (en) 1991-04-02
JP2807275B2 true JP2807275B2 (en) 1998-10-08

Family

ID=16660281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214707A Expired - Lifetime JP2807275B2 (en) 1989-08-21 1989-08-21 Synthetic resin container thickness measuring device

Country Status (1)

Country Link
JP (1) JP2807275B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612010A (en) * 1984-06-15 1986-01-08 Hoya Corp Detecting non-contact device for displacement
JPS62183969A (en) * 1986-02-07 1987-08-12 Hitachi Ltd Detecting device for welding position
JPH01158306A (en) * 1987-12-16 1989-06-21 Dainippon Printing Co Ltd Thickness measuring apparatus of tubular container with bottom

Also Published As

Publication number Publication date
JPH0377004A (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JPS63298115A (en) Apparatus for generating output indicating distance to separated surface
JPS6223245B2 (en)
CZ301960B6 (en) Method of measuring thickness between surfaces of a hot-formed glass articles and apparatus for measuring wall thickness of molded hollow glass articles
HU226346B1 (en) Optical inspection of transparent containers using infrared and polarized visible light
JPS628124B2 (en)
JPH0220930B2 (en)
GB2077421A (en) Displacement sensing
US11585905B2 (en) Laser scanner
JP2807275B2 (en) Synthetic resin container thickness measuring device
US8253942B2 (en) Optical gas detector
JPS6186621A (en) Method and apparatus for simultaneously measuring emissivity and temperature
JPH0228541A (en) Optical concentration detector
CN113483996A (en) Device and method for measuring high transmissivity and high reflectivity of optical element
CN106198398B (en) Definition measuring device
JP2874795B2 (en) Orientation flat detector
JPS6226079B2 (en)
JPS637327B2 (en)
JP2003307448A (en) Boundary location detection apparatus and boundary location detection method
JPS5853449B2 (en) Hanshiyagata Koden Switch
CN215893966U (en) High-transmissivity and high-reflectivity measuring device for optical element
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
JPH0499925A (en) Infrared radiation measuring apparatus
JP2779316B2 (en) Inspection method for uneven thickness of colored layer of colored optical fiber
JP3024516B2 (en) Temperature detector
JPH04155288A (en) Method for detecting presence or absence of transparent film