JP2792322B2 - Transmission power control type control system - Google Patents

Transmission power control type control system

Info

Publication number
JP2792322B2
JP2792322B2 JP4086519A JP8651992A JP2792322B2 JP 2792322 B2 JP2792322 B2 JP 2792322B2 JP 4086519 A JP4086519 A JP 4086519A JP 8651992 A JP8651992 A JP 8651992A JP 2792322 B2 JP2792322 B2 JP 2792322B2
Authority
JP
Japan
Prior art keywords
distance
transmission power
flying object
control
control station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4086519A
Other languages
Japanese (ja)
Other versions
JPH05249226A (en
Inventor
秀則 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4086519A priority Critical patent/JP2792322B2/en
Publication of JPH05249226A publication Critical patent/JPH05249226A/en
Application granted granted Critical
Publication of JP2792322B2 publication Critical patent/JP2792322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ロケット打上管制シス
テム、極軌道衛星追跡管制システム等の地上管制局に利
用し、制御指令波の送信電力を飛行体の位置と距離に対
応して制御する送信電力制御式管制システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for ground control stations such as a rocket launch control system and a polar orbit satellite tracking control system, and controls the transmission power of a control command wave in accordance with the position and distance of an air vehicle. The present invention relates to a transmission power control type control system.

【0002】[0002]

【従来の技術】従来のロケット打上管制システム、極軌
道衛星追跡管制システム等の地上管制局では、ロケット
あるいは衛星を追跡して制御指令波をパラボラアンテナ
を通じて送信している。この場合、制御指令波の電力は
一定、すなわち、送信機からの送信電力は一定である。
2. Description of the Related Art Ground control stations such as a conventional rocket launch control system and a polar orbit satellite tracking control system track a rocket or a satellite and transmit a control command wave through a parabolic antenna. In this case, the power of the control command wave is constant, that is, the transmission power from the transmitter is constant.

【0003】[0003]

【発明が解決しようとする課題】このように従来のロケ
ット打上管制システム、極軌道衛星追跡管制システム等
における地上管制局からの送信電力は一定である。した
がって、ロケットあるいは衛星に搭載する無線装置の受
信機では、強電界強度時のクロスモジュレーション、弱
電界強度時の高増幅を考慮して高周波信号処理系のダイ
ミナックレンジを広くする必要がある。この場合、受信
機の構成、設計に困難を伴う問題がある。さらに、この
受信機が地上管制局から送信される隣接チャネル、高調
波(スプリアス)等の不要波を補捉して誤制御を行わな
いように地上管制局からの制御指令波とともに送信され
る不要波のレベルを十分に抑圧する必要がある。この場
合、送信電力出力系の構成が複雑化する問題がある。こ
のようにダイミナックレンジが狭く、さらに不要波の抑
圧が十分でない場合、ロケットあるいは衛星との間の良
好な回線品質が維持できないという問題がある。
As described above, the transmission power from the ground control station in the conventional rocket launch control system, polar orbit satellite tracking control system, and the like is constant. Therefore, in a receiver of a wireless device mounted on a rocket or a satellite, it is necessary to widen the diminic range of a high-frequency signal processing system in consideration of cross-modulation at a strong electric field strength and high amplification at a weak electric field strength. In this case, there is a problem that the configuration and design of the receiver are difficult. Furthermore, this receiver captures unnecessary waves such as adjacent channels and harmonics (spurious) transmitted from the ground control station, and does not need to be transmitted together with a control command wave from the ground control station so that erroneous control is not performed. It is necessary to sufficiently suppress the wave level. In this case, there is a problem that the configuration of the transmission power output system is complicated. As described above, when the diminic range is narrow and the suppression of unnecessary waves is not sufficient, there is a problem that good line quality between the rocket and the satellite cannot be maintained.

【0004】本発明は、このような従来の技術における
問題を解決するものであり、飛行体に搭載する受信機に
おける高周波処理系のダイミナックレンジと地上管制局
からの送信電力における不要波抑圧とを特に考慮する必
要がなく、その構成が容易になるとともに良好な回線品
質が維持できる送信電力制御式管制システムを提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves such problems in the prior art, and suppresses unnecessary waves in a diminic range of a high-frequency processing system in a receiver mounted on an air vehicle and transmission power from a ground control station. It is an object of the present invention to provide a transmission power control type control system which can be easily configured and maintain good channel quality without having to consider the above.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、飛行体に少なくとも制御指令波を送信
し、かつ、飛行体からの電波を受信して飛行体を追跡す
る地上管制局に設けられる送信電力制御式管制システム
であって、飛行体追跡中の電波の往復時間にもとづいて
飛行体と地上管制局との間の距離及び距離変化率データ
を得る距離・距離変化率測定手段と、距離及び距離変化
率データにもとづいて地上管制局から送信する制御指令
波が飛行体に到達する飛行位置と、この飛行位置と地上
管制局との間の距離を予測し、この予測距離における電
波伝播損失を計算する計算手段と、この電波伝播損失の
計算結果にもとづいて飛行体での受信電界強度が実質的
同一となるように地上管制局からの制御指令波の送信電
力を減衰させる可変抵抗減衰器とを備えた構成としてあ
る。
In order to achieve the above object, the present invention provides a ground control system for transmitting at least a control command wave to an air vehicle and receiving a radio wave from the air vehicle to track the air vehicle. A transmission power control type control system provided in a station, wherein a distance and a distance change rate measurement for obtaining a distance and a distance change rate data between an air vehicle and a ground control station based on a round-trip time of radio waves during tracking of the air vehicle. Means, a flight position at which a control command wave transmitted from the ground control station reaches the flying object based on the distance and the distance change rate data, and a distance between the flight position and the ground control station, and the predicted distance Calculating means for calculating the radio wave propagation loss in the above, and attenuating the transmission power of the control command wave from the ground control station so that the received electric field strength at the flying object becomes substantially the same based on the calculation result of the radio wave propagation loss variable Configuration and a anti-attenuator entirety in
You.

【0006】[0006]

【作用】このような構成からなる本発明の送信電力制御
式管制システムは、飛行体の位置と地上管制局との距離
を予測し、この間における電波伝播損失(自由空間損
失)の計算結果にもとづいて飛行体での受信電界強度が
実質的に同一となるように地上管制局からの制御指令波
の送信電力を制御するようにしているので、飛行体に搭
載する受信機の高周波処理系のダイミナックレンジと地
上管制局からの送信電力における不要波抑圧とを特に考
慮する必要がなくなり、その構成が容易になるとともに
良好な回線品質を維持できる。
The transmission power control type control system of the present invention having such a configuration predicts the distance between the position of the air vehicle and the ground control station and calculates the radio wave propagation loss (free space loss) between them. The transmission power of the control command wave from the ground control station is controlled so that the received electric field strength at the flying object is substantially the same, so that the high-frequency processing system die of the receiver mounted on the flying object is controlled. It is not necessary to particularly consider the MINAC range and the suppression of unnecessary waves in the transmission power from the ground control station, so that the configuration is simplified and good line quality can be maintained.

【0007】[0007]

【実施例】以下、本発明の送信電力制御式管制システム
の実施例を図面にもとづいて説明する。図1は本発明の
送信電力制御式管制システムを用いたロケット打上管制
局システムの構成例である。図1において、この例は、
ロケット打上管制システムにおける地上管制局10と、
送信電力制御装置12とから概略構成されている。地上
管制局10は、ロケットRの飛行仰角に追従して制御指
令波を送信し、また、ロケットRからのデータ信号波、
反射波を受信するパラボラアンテナ22と、パラボラア
ンテナ22からの受信信号を処理してデータ信号を出力
する受信機24とを有している。さらに、ロケットRと
地上管制局10との間の距離及び距離変化率を測定する
距離・距離変化率測定装置26と、制御指令信号を出力
する制御指令信号発生装置28と、送信機30とを有し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a transmission power control type control system according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration example of a rocket launch control station system using a transmission power control type control system of the present invention. In FIG. 1, this example is:
A ground control station 10 in the rocket launch control system;
And a transmission power control device 12. The ground control station 10 transmits a control command wave following the flight elevation angle of the rocket R, and also outputs a data signal wave from the rocket R,
It has a parabolic antenna 22 that receives a reflected wave, and a receiver 24 that processes a signal received from the parabolic antenna 22 and outputs a data signal. Further, a distance / distance change rate measuring device 26 for measuring a distance and a distance change rate between the rocket R and the ground control station 10, a control command signal generating device 28 for outputting a control command signal, and a transmitter 30 Have.

【0008】送信電力制御装置12は、距離・距離変化
率測定装置26で得られた距離及び距離変化率をもと
に、以降に説明する演算処理及び指示制御を行う電子計
算機32と、送信機30からの送信電力を電子計算機3
2からの指示制御により減衰量を変化させる可変抵抗減
衰器34とが設けられている。
[0008] The transmission power control device 12 is based on the distance and the rate of change of distance obtained by the distance / distance change rate measuring device 26, and includes an electronic computer 32 for performing arithmetic processing and instruction control described below; The transmission power from the computer 30
And a variable resistance attenuator 34 for changing the amount of attenuation by the instruction control from the control unit 2.

【0009】次に、この構成における動作について説明
する。先ず、制御指令信号発生装置28、送信機30、
可変抵抗減衰器34及びパラボラアンテナ22を通じて
距離・距離変化率測定のための電波Waを送信し、ロケ
ットRからの反射、あるいは搭載したトランスポンダな
どからの応答返送波Wbをパラボラアンテナ22で受信
する。さらに、受信機24からの受信信号Srが距離・
距離変化率測定装置26に入力される。距離・距離変化
率測定装置26では、送信機30からの送信電力の送出
開始時刻と受信信号Srの入力時刻、すなわち、電波W
aと応答返送波Wbとの往復に要する時間と、公知の電
波伝播距離(30万Km)/秒とから時刻T1における
ロケットRと地上管制局10との間の距離L1と距離変
化率ΔL1とを算出、測定する。
Next, the operation in this configuration will be described. First, the control command signal generator 28, the transmitter 30,
A radio wave Wa for distance / distance change rate measurement is transmitted through the variable resistance attenuator 34 and the parabolic antenna 22, and the parabolic antenna 22 receives a reflection wave from the rocket R or a response return wave Wb from a mounted transponder or the like. Further, the reception signal Sr from the receiver 24
It is input to the distance change rate measuring device 26. In the distance / distance change rate measuring device 26, the transmission start time of the transmission power from the transmitter 30 and the input time of the reception signal Sr, that is, the radio wave W
The distance L1 and the distance change rate ΔL1 between the rocket R and the ground control station 10 at time T1 are calculated based on the time required for reciprocation between “a” and the response return wave Wb and the known radio wave propagation distance (300,000 km) / sec. Is calculated and measured.

【0010】次に、後で送信される制御指令波Wcがロ
ケットRに到達する時刻T2は、 T2=T1+(送信電力制御装置12の動作時間)+(電波伝搬時間) …(1) で表わすことができる。電子計算機32では、式(1)
で求めた時刻T2におけるロケットRと地上管制局10
との距離L2を、 L2=L1+ΔL1(T2−T1) …(2) として計算し、さらに式(2)で求めた距離L2と送信
周波数とから制御指令波Wcの電波伝播損失である自由
空間損失Loを計算する。自由空間損失Loは送信周波
数が一定であり距離L2が離れると大きくなる。この自
由空間損失LoにもとづいてロケットRに搭載された図
示しない受信機での受信電界強度が予め定める一定の所
定値になるように電子計算機32が可変抵抗減衰器34
の減衰量を指示、制御してパラボラアンテナ22からの
制御指令波Wcの送信電力を調整する。すなわち、ロケ
ットRと地上管制局10との間の距離L2が小さい場合
は電子計算機32は可変抵抗減衰器34の減衰量を大き
く指示し、制御してパラボラアンテナ22からの制御指
令波Wcの送信電力を低下させる。
Next, the time T2 at which the control command wave Wc transmitted later reaches the rocket R is represented by T2 = T1 + (operating time of the transmission power control device 12) + (radio wave propagation time) (1) be able to. In the electronic computer 32, the expression (1)
Rocket R and Ground Control Station 10 at Time T2
L2 = L1 + ΔL1 (T2−T1) (2), and further, a free space loss which is a radio wave propagation loss of the control command wave Wc from the distance L2 and the transmission frequency obtained by the equation (2). Calculate Lo. The free space loss Lo increases when the transmission frequency is constant and the distance L2 increases. Based on the free space loss Lo, the computer 32 controls the variable resistance attenuator 34 so that the received electric field intensity at a receiver (not shown) mounted on the rocket R becomes a predetermined predetermined value.
The transmission power of the control command wave Wc from the parabolic antenna 22 is adjusted by instructing and controlling the amount of attenuation. That is, when the distance L2 between the rocket R and the ground control station 10 is small, the computer 32 instructs the attenuation of the variable resistance attenuator 34 to be large, controls the transmission, and transmits the control command wave Wc from the parabolic antenna 22. Reduce power.

【0011】また、ロケットRと地上管制局10との間
の距離L2が大きい場合は電子計算機32は可変抵抗減
衰器34の減衰量を小さく指示し、制御してパラボラア
ンテナ22からの制御指令波Wcの送信電力の低下を少
なくする。この処理は、距離L2以外のロケットRの多
数の飛行位置で同様に行われる。すなわち、各飛行位置
でロケットRに搭載された受信機での受信電界強度が常
に一定の所定値になるように電子計算機32が可変抵抗
減衰器34の減衰量を指示し、制御してパラボラアンテ
ナ22からの制御指令波Wcの送信電力の調整を行う。
When the distance L2 between the rocket R and the ground control station 10 is large, the computer 32 instructs the attenuation of the variable resistance attenuator 34 to be small, and controls the attenuation by controlling the control command wave from the parabolic antenna 22. A decrease in the transmission power of Wc is reduced. This process is similarly performed at many flight positions of the rocket R other than the distance L2. That is, the computer 32 instructs and controls the amount of attenuation of the variable resistance attenuator 34 so that the received electric field strength of the receiver mounted on the rocket R at each flight position always becomes a predetermined value. The transmission power of the control command wave Wc from the controller 22 is adjusted.

【0012】このようにすると、ロケットRに搭載され
た受信機での受信電界強度が所定の一定値になるのでロ
ケットRに搭載される受信機の高周波信号処理系のダイ
ナミックレンジが狭くても良くなる。一例として地上管
制局10からロケットRに制御指令波を送信する場合、
この間の距離が500mから1000kmまで変化する
ような場合は、ロケットの受信機のダイナミックレンジ
を33dBまで低減できる。さらに、送信機30から制
御指令波とともに放射される不要波の許容レベルが高く
ても良くなる。地上管制局10からロケットRに制御指
令波を送信する場合、ロケットRの受信機のダイナミッ
クレンジが一例として70dBである場合、この受信機
が不要波を補捉して誤制御を行わないようにするために
は、送信機30から送出される不要波のレベルは制御指
令波の基本波に対し70dB以上に低減する必要があ
る。ロケットRと地上管制局10の距離が500mから
1000kmまで変化する場合には、ダイナミックレン
ジが33dB低減されるため不要波のレベルの許容値も
制御指令波の基本波に対して37dB以上となる。
In this case, the received electric field intensity at the receiver mounted on the rocket R becomes a predetermined constant value, so that the dynamic range of the high-frequency signal processing system of the receiver mounted on the rocket R may be narrow. Become. As an example, when transmitting a control command wave from the ground control station 10 to the rocket R,
If the distance during this period changes from 500 m to 1000 km, the dynamic range of the rocket receiver can be reduced to 33 dB. Further, the allowable level of the unnecessary wave radiated from the transmitter 30 together with the control command wave may be higher. When the control command wave is transmitted from the ground control station 10 to the rocket R, if the dynamic range of the receiver of the rocket R is, for example, 70 dB, the receiver may capture unnecessary waves to prevent erroneous control. To do so, the level of the unnecessary wave transmitted from the transmitter 30 needs to be reduced to 70 dB or more with respect to the fundamental wave of the control command wave. When the distance between the rocket R and the ground control station 10 changes from 500 m to 1000 km, the dynamic range is reduced by 33 dB, so that the allowable value of the unnecessary wave level becomes 37 dB or more with respect to the fundamental wave of the control command wave.

【0013】なお、この実施例では、送信機30からの
制御指令電力を指示制御により可変抵抗減衰器34で減
衰させているが、送信機30内の送信系を制御して制御
指令電力を大小に調整するようにしても良い。
In this embodiment, the control command power from the transmitter 30 is attenuated by the variable resistance attenuator 34 by instruction control, but the transmission system in the transmitter 30 is controlled to reduce the control command power. May be adjusted.

【0014】[0014]

【発明の効果】以上のように、本発明の送信電力制御式
管制システムは、飛行体の位置と地上管制局との距離を
予測し、この間における電波伝播損失(自由空間損失)
の計算結果にもとづいて飛行体での受信電界強度が実質
的に同一となるように地上管制局からの送信電力を制御
しているため、飛行体に搭載する受信機の高周波処理系
のダイミナックレンジと地上管制局からの送信電力にお
ける不要波抑圧とを特に考慮する必要がなく、その構成
が容易になるとともに良好な回線品質を維持できるとい
う効果を有する。
As described above, the transmission power control type control system of the present invention predicts the distance between the position of the flying object and the ground control station, and the radio wave propagation loss (free space loss) during this period.
The transmission power from the ground control station is controlled so that the received electric field strength at the flying vehicle is substantially the same based on the calculation results of the above, so the high frequency processing system of the receiver mounted on the flying vehicle There is no need to particularly consider the nack range and the suppression of unnecessary waves in the transmission power from the ground control station, which has the effect of simplifying the configuration and maintaining good line quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の送信電力制御式管制システムの実施例
が適用されるロケット打上管制局システムの構成図であ
る。
FIG. 1 is a configuration diagram of a rocket launch control station system to which an embodiment of a transmission power control type control system of the present invention is applied.

【符号の説明】[Explanation of symbols]

10 地上管制局 12 送信電力制御装置 22 パラボラアンテナ 24 受信機 26 距離・距離変化率測定装置 28 制御指令信号発生装置 30 送信機 32 電子計算機 34 可変抵抗減衰器 R ロケット DESCRIPTION OF SYMBOLS 10 Ground control station 12 Transmission power control device 22 Parabolic antenna 24 Receiver 26 Distance / distance change rate measuring device 28 Control command signal generator 30 Transmitter 32 Computer 34 Variable resistance attenuator R Rocket

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01S 7/00 - 7/42 G01S 13/00 - 13/95 H04B 1/60 H04B 3/46 - 3/48 H04B 17/00 - 17/02 H04B 7/24 - 7/26 113 H04Q 7/00 - 7/38──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) G01S 7/00-7/42 G01S 13/00-13/95 H04B 1/60 H04B 3/46-3 / 48 H04B 17/00-17/02 H04B 7/24-7/26 113 H04Q 7/00-7/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 飛行体に少なくとも制御指令波を送信
し、かつ、飛行体からの電波を受信して飛行体を追跡す
る地上管制局に設けられる送信電力制御式管制システム
であって、 前記飛行体追跡中の電波の往復時間にもとづいて飛行体
と地上管制局との間の距離及び距離変化率データを得る
距離・距離変化率測定手段と、 前記距離及び距離変化率データにもとづいて前記地上管
制局から送信する制御指令波が飛行体に到達する飛行位
置と、この飛行位置と前記地上管制局との間の距離を予
測し、この予測距離における電波伝播損失を計算する計
算手段と、 前記電波伝播損失の計算結果にもとづいて前記飛行体で
の受信電界強度が実質的同一となるように地上管制局か
らの制御指令波の送信電力を減衰させる可変抵抗減衰器
と、 を備えることを特徴とする送信電力制御式管制システ
ム。
1. A transmission power control type control system provided in a ground control station for transmitting at least a control command wave to a flying object and receiving a radio wave from the flying object to track the flying object, wherein the flight Distance / distance change rate measurement means for obtaining distance and distance change rate data between the flying object and the ground control station based on the round trip time of the radio wave during body tracking; andthe ground and distance change rate data based on the distance and distance change rate data A flight position at which the control command wave transmitted from the control station reaches the flying object, a distance between the flight position and the ground control station, and a calculating unit that calculates a radio wave propagation loss at the predicted distance; Variable resistance attenuator for attenuating the transmission power of a control command wave from a ground control station so that the received electric field strength at the flying object is substantially the same based on the calculation result of the radio wave propagation loss
And a transmission power control type traffic control system.
JP4086519A 1992-03-10 1992-03-10 Transmission power control type control system Expired - Lifetime JP2792322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086519A JP2792322B2 (en) 1992-03-10 1992-03-10 Transmission power control type control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086519A JP2792322B2 (en) 1992-03-10 1992-03-10 Transmission power control type control system

Publications (2)

Publication Number Publication Date
JPH05249226A JPH05249226A (en) 1993-09-28
JP2792322B2 true JP2792322B2 (en) 1998-09-03

Family

ID=13889238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086519A Expired - Lifetime JP2792322B2 (en) 1992-03-10 1992-03-10 Transmission power control type control system

Country Status (1)

Country Link
JP (1) JP2792322B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750509B2 (en) * 2005-08-18 2011-08-17 株式会社サミーネットワークス Near field communication device, near field communication method and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274887A (en) * 1987-05-06 1988-11-11 Toyo Commun Equip Co Ltd Interrogator for identification
JPH03237380A (en) * 1990-02-14 1991-10-23 Mitsubishi Heavy Ind Ltd Radio wave altimeter

Also Published As

Publication number Publication date
JPH05249226A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US4829590A (en) Adaptive noise abatement system
JP2792322B2 (en) Transmission power control type control system
JPH1164488A (en) Radar
CN107807357A (en) A kind of remote airborne FMCW SAR systems and its control method
JP2748502B2 (en) Radar equipment
JP2923888B2 (en) Active radar augmentor
JPH11261464A (en) Space communication system
JPH0356021B2 (en)
JP2762543B2 (en) Synthetic aperture radar device
CN116704848B (en) Unmanned aerial vehicle airborne target simulation method, device and system for receiving and transmitting simultaneously
RU2707268C1 (en) Method for inbuilt monitoring of on-board radar stations
JP2947326B2 (en) Interference prevention device
JPH05218924A (en) Transmission power control system
JP2002164800A (en) Transmission power controller and radio transmitter using the same
JPS6017377A (en) Radar equipment
JPH022539B2 (en)
JPH0356884A (en) Radio wave interference device
JPH05297130A (en) Secondary monitoring radar device
JPH04203992A (en) Active backscattering device of microwave
JPH05218920A (en) Control system for satellite communication equipment transmission power
JPH02241234A (en) Satellite communication transmission power control system
CN111025337A (en) Co-channel interference elimination method suitable for high-precision satellite navigation equipment
JPH0349396B2 (en)
JPS632507B2 (en)
JPH01238320A (en) Adaptive type tilt beam transmitter