JP2779441B2 - Solder shape detector - Google Patents

Solder shape detector

Info

Publication number
JP2779441B2
JP2779441B2 JP274990A JP274990A JP2779441B2 JP 2779441 B2 JP2779441 B2 JP 2779441B2 JP 274990 A JP274990 A JP 274990A JP 274990 A JP274990 A JP 274990A JP 2779441 B2 JP2779441 B2 JP 2779441B2
Authority
JP
Japan
Prior art keywords
solder
light
shape
led light
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP274990A
Other languages
Japanese (ja)
Other versions
JPH03206907A (en
Inventor
三木夫 浦辻
武文 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROZEFU TEKUNOROJII KK
Original Assignee
ROZEFU TEKUNOROJII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROZEFU TEKUNOROJII KK filed Critical ROZEFU TEKUNOROJII KK
Priority to JP274990A priority Critical patent/JP2779441B2/en
Publication of JPH03206907A publication Critical patent/JPH03206907A/en
Application granted granted Critical
Publication of JP2779441B2 publication Critical patent/JP2779441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント基板上に実装される各種ICのリー
ド先端の半田形状の検出などを画像処理により全自動で
行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for automatically detecting the solder shape of the lead end of various ICs mounted on a printed circuit board by image processing.

〔従来の技術〕[Conventional technology]

プリント基板上のICの半田量は、次のように半田形状
の密接な関係にある。
The solder amount of the IC on the printed circuit board has a close relationship with the solder shape as follows.

半田過多は、半田部の形状が凸のもの、半田適量は半
田部の形状が凹のもの、未半田は、半田部がない場合を
言う。
Excessive solder refers to a case where the shape of the solder portion is convex, an appropriate amount of solder refers to a case where the shape of the solder portion is concave, and unsoldering refers to a case where there is no solder portion.

プリント基板上のICの半田量検査は、今まで検査員に
よって行われている。検査員は、20〜50倍程度の倍率の
手動検査器を用い、半田形状を目視で観察し、その量を
判別していた。
Inspection of the amount of solder on ICs on printed circuit boards has been performed by inspectors. The inspector visually observed the shape of the solder using a manual inspection device having a magnification of about 20 to 50 times to determine the amount.

近年、このような検査を自動化しようとする試みとし
て、レーザ光やX線を用いた半田量検査方法が開発され
ている。
In recent years, as an attempt to automate such inspection, a solder amount inspection method using laser light or X-ray has been developed.

まず、レーザ光を用いた半田量検査は、第11図に示す
ように、プリント基板のパッド1と、その上に取り付け
られたICのリード2との間の半田部3にレーザ光4を照
射し、そのZ方向の反射位置の違いを利用している。す
なわち、レーザ光4は、照射器5から回転ミラー6によ
ってX軸方向に掃引され、半田部3の表面に照射され、
その半田量の大小によって、反射位置を異にしながら集
光レンズ7を経て検出器8に達する。このときの反射側
のレーザ光4は、半田部3の量の変化によって、光路を
異にしながら検出器8の検出面に入射される。このよう
に、反射側のレーザ光4の入射位置は、半田部3の半田
量つまりその高さの変化によって決定される。そこで、
測定システムは、照射器5の位置で反射側のレーザ光4
の入射位置を半田部3の全ての範囲で識別することによ
って、半田部3の形状からその量を算出していく。
First, in the solder amount inspection using laser light, as shown in FIG. 11, laser light 4 is applied to a solder portion 3 between a pad 1 of a printed circuit board and a lead 2 of an IC mounted thereon. Then, the difference in the reflection position in the Z direction is used. That is, the laser beam 4 is swept from the irradiator 5 in the X-axis direction by the rotating mirror 6, and is irradiated on the surface of the solder portion 3,
Depending on the amount of the solder, the light reaches the detector 8 via the condenser lens 7 while changing the reflection position. At this time, the laser beam 4 on the reflection side is incident on the detection surface of the detector 8 while changing the optical path due to a change in the amount of the solder portion 3. As described above, the incident position of the laser beam 4 on the reflection side is determined by the amount of solder of the solder portion 3, that is, the change in the height thereof. Therefore,
The measuring system uses the laser beam 4 on the reflection side at the position of the irradiation device 5.
The incident position is identified in the entire range of the solder portion 3, and the amount is calculated from the shape of the solder portion 3.

一方、X線を用いた半田量検査は、第12図のように、
プリント基板のパッド1の例えば背面側の照射器10から
半田部3に向けてX線9を照射し、プリント基板のパッ
ド1および半田部3にX線9を透過させることによって
行われる。すなわち、X線9は、プリント基板のパッド
1および半田部3を透過し、X線カメラ11によって撮影
される。X線9の透過率は、原子量の大きい物質ほど低
く、また同じ物質でもその厚さに反比例して低くなると
いう性質を有している。したがって、X線画像中で、黒
く写った部分は、原子量の大きい鉛を含む半田部3であ
る。その黒い部分から半田部3の位置が識別でき、また
その部分の明るさから半田部3の半田量が識別できる。
On the other hand, in the solder amount inspection using X-ray, as shown in FIG.
The irradiation is performed by irradiating the solder portion 3 with X-rays 9 from an irradiator 10 on the back side of the pad 1 of the printed circuit board, for example, and transmitting the X-ray 9 to the pad 1 and the solder portion 3 of the printed circuit board. That is, the X-ray 9 passes through the pad 1 and the solder portion 3 of the printed circuit board and is photographed by the X-ray camera 11. The transmittance of the X-rays 9 is lower for a substance having a higher atomic weight, and the same substance has a property of decreasing in inverse proportion to its thickness. Therefore, the black portion in the X-ray image is the solder portion 3 containing lead having a large atomic weight. The position of the solder portion 3 can be identified from the black portion, and the amount of solder in the solder portion 3 can be identified from the brightness of the portion.

〔従来技術の問題点〕[Problems of the prior art]

従来の検査では、下記の問題がある。 The conventional inspection has the following problems.

(1)目視の半田検査は、検査員の疲労をもたらし、労
務管理上の問題がある。また、レーザ式の半田量検査や
X線式の半田量検査では、共に装置の価格が高く、企業
側にとって採算性の難点がある。また、X線式の半田量
検査は、取り扱い作業員の安全上の問題もある。
(1) The visual solder inspection causes the inspector to be tired and has a problem in labor management. In addition, in the laser type solder amount inspection and the X-ray type solder amount inspection, the cost of the apparatus is high, and there is a disadvantage in profitability for the company side. In addition, the X-ray type solder amount inspection has a safety problem for handling workers.

次に画像処理で半田形状をみようとする試みにおける
問題点を記す。
Next, a problem in an attempt to see a solder shape by image processing will be described.

(2)画像は、2次元情報であるため、半田部の3次元
形状はわからない。
(2) Since the image is two-dimensional information, the three-dimensional shape of the solder part is not known.

(3)(1)の問題解決のために2種類の角度の異なる
光源を配置し、光源を切り換えて画像上の半田部の反射
スポットの移動方向から半田形状を検知する方法が考え
られるが、例えば白熱ランプなどの光源の切り換えには
かなりの切り換え時間を要し、また切り換え素子の耐久
性の問題も生じる。
(3) In order to solve the problem (1), a method of arranging two types of light sources having different angles, switching the light sources, and detecting the solder shape from the moving direction of the reflection spot of the solder portion on the image can be considered. For example, switching of a light source such as an incandescent lamp requires a considerable switching time, and also causes a problem of durability of the switching element.

(4)(2)の問題解決のために切り換え時間が速く、
半永久的な耐久性を持つLED照明を用いる事も考えられ
るが、検査部位で充分な照度が得られないので、外乱光
の影響を受けやすい。
(4) Switching time is fast for solving the problem of (2),
Although it is conceivable to use LED lighting that has semi-permanent durability, it is susceptible to disturbance light because sufficient illuminance cannot be obtained at the inspection site.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、上記問題点を解決することを目的としてお
り、下記の手段を講じている。
The present invention has been made to solve the above problems, and has the following means.

本発明は、第1図のように、プリント基板上に実装さ
れたICのリード2先端の半田部3の半田形状を検出する
装置であり、角度の異なる2つのLED光源21a、21bを切
り換えながら半田部3に投光する手段と、外乱光を遮断
する遮光手段と、半田部3での反射光をLED光源21a、21
bの切り換えに同期して撮像する手段と、半田部3の反
射スポットの移動方向から画像処理により半田形状を検
知する手段とを具備する。
As shown in FIG. 1, the present invention is an apparatus for detecting the solder shape of a solder portion 3 at the tip of a lead 2 of an IC mounted on a printed circuit board, while switching between two LED light sources 21a and 21b having different angles. Means for projecting light to the solder part 3, light shielding means for blocking disturbance light, and LED light sources 21a, 21
There is provided a means for imaging in synchronization with the switching of b, and a means for detecting the shape of the solder by image processing from the moving direction of the reflection spot of the solder portion 3.

〔発明の作用〕[Function of the invention]

(1)2つ角度の異なるLED光源21a、21bを半田部3に
照射し、カメラ22で撮像することにより、画像上のスポ
ット光の移動方向から半田形状を検知できる。
(1) By irradiating the solder part 3 with the LED light sources 21a and 21b having two different angles and taking an image with the camera 22, the solder shape can be detected from the moving direction of the spot light on the image.

ここに、第2図のように、パッド1の面上で、リード
2の先端半田部周辺に適当に原点Oをとり、リード長さ
方向にx軸、それらに直交する軸としてy軸、z軸を設
定する。
Here, as shown in FIG. 2, an origin O is appropriately set on the surface of the pad 1 around the soldered end of the lead 2, the x-axis is set in the lead length direction, the y-axis is set as an axis orthogonal thereto, and the z-axis is set. Set the axis.

カメラ22は、x−z平面内にあり、x軸に対しθの角
度を持つ。LED光源21a、21bは、y−z平面内にあり、
y軸に対しそれぞれφa、φbの角度を持つ。
Camera 22 is in the xz plane and has an angle of θ with respect to the x axis. LED light sources 21a, 21b are in the yz plane,
It has angles of φa and φb with respect to the y-axis, respectively.

さて、第2図のように、カメラ22のレンズ中心Pcの位
置ベクトルをC、LED光源21a、21bの発光点Pa、Pbの位
置ベクトルをA、Bとする。このとき、原点Oからカメ
ラのレンズ中心Pcまでの距離をlc、原点OからLED光源2
1a、21bの発光点Pa、Pbまでの距離をもとにlaとする。
Now, as shown in FIG. 2, the position vector of the lens center Pc of the camera 22 is C, and the position vectors of the light emitting points Pa and Pb of the LED light sources 21a and 21b are A and B. At this time, the distance from the origin O to the lens center Pc of the camera is lc, and the distance from the origin O to the LED light source 2 is
The distance between the light emitting points Pa and Pb of 1a and 21b is defined as la.

このとき、それらのベクトル座標は、それぞれ下記と
なる。
At this time, their vector coordinates are as follows.

C=(lc・cosθ、O、lc・sinθ) A=(O、−la・cosφa、la・sinφa) B=(O、−la・cosφb、la・sinφb) さて、リード2先端の半田部3の位置は、ほぼ原点O
と考えてよいから、半田部3の表面で、各LED光源21a、
21bの入射光によって、カメラ22への反射光が生じる反
射スポットの位置Ra、Rbの単位法線ベクトルVa、Vbは、
第3図を参照して、次の式で与えられる。
C = (lc · cos θ, O, lc · sin θ) A = (O, −la · cos φa, la · sin φa) B = (O, −la · cos φb, la · sin φb) Is almost at the origin O
Therefore, on the surface of the solder part 3, each LED light source 21a,
By the incident light of 21b, the position Ra of the reflection spot where the reflection light to the camera 22 occurs, the unit normal vectors Va and Vb of Rb are:
Referring to FIG. 3, it is given by the following equation.

このときの平面x−z内の傾きは、次式から算出でき
る。
The inclination in the plane xz at this time can be calculated from the following equation.

第4図は、半田形状が凹形および凸形の場合におい
て、反射スポットの位置Raと反射スポットの位置Rbとを
含むx−z平面に平行な平面で切った断面図である。半
田形状が凹であれば、照明をLED光源21aからLED光源21b
に切り換えた時、反射スポットは、x軸のマイナス方向
に動く。また半田形状が凸であれば、LED光源21aからLE
D光源21bに切り換えた時、反射スポットは、x軸のプラ
ス方向に動く。
FIG. 4 is a sectional view taken along a plane parallel to the xz plane including the position Ra of the reflection spot and the position Rb of the reflection spot when the solder shape is concave and convex. If the solder shape is concave, the illumination is changed from LED light source 21a to LED light source 21b.
, The reflection spot moves in the minus direction of the x-axis. If the solder shape is convex, LE from LED light source 21a
When switching to the D light source 21b, the reflection spot moves in the positive direction of the x-axis.

第5図は画像で見た反射スポットの位置Ra、Rbの移動
状況を示す。照明を切り換えた場合の反射スポットの位
置Ra、Rbの移動方向は半田形状が凹と凸とでは逆方向に
なる。これを画像処理で検出する事により、半田形状の
判定ができる。
FIG. 5 shows the movement of the positions Ra and Rb of the reflection spots as seen in the image. When the illumination is switched, the direction of movement of the positions Ra and Rb of the reflection spots is reversed when the solder shape is concave and convex. By detecting this by image processing, the solder shape can be determined.

また、半田がない場合には、反射スポットは形成され
ないので、画像処理により反射スポットの存否を判別す
れば、半田部3の有無もわかる。
Further, when there is no solder, no reflection spot is formed. Therefore, if the presence or absence of the reflection spot is determined by image processing, the presence or absence of the solder portion 3 can be known.

(2)照明光源にLED(赤色)光源21a、21bを用いるこ
とにより、高速にスイッチングが可能であり、しかもス
イッチングの回数に特に制限はない。
(2) By using the LED (red) light sources 21a and 21b as the illumination light source, high-speed switching is possible, and the number of switching is not particularly limited.

(3)外乱光を遮断するために、第6図のように、緑色
の遮光カバー23を設ける。
(3) As shown in FIG. 6, a green light-shielding cover 23 is provided to block disturbance light.

第7図に示すように、赤色LEDの波長域約600〔nm〕〜
約700〔nm〕に対し、約500〔nm〕〜約600〔nm〕の緑色
の光のみを通すような緑色の遮光カバー23(材質は例え
ば、ガラス、塩化ビニール)を使えば、装置内部は遮光
カバー23を通してみる事はできるが、遮光カバー23を通
過して装置内部に入った光がLED照明の波長域に及ぼす
影響はない。
As shown in FIG. 7, the wavelength range of the red LED is approximately 600 nm.
If a green light-shielding cover 23 (made of, for example, glass or vinyl chloride) that allows only green light of about 500 [nm] to about 600 [nm] to be used for about 700 [nm] is used, Although the light can be seen through the light-shielding cover 23, the light passing through the light-shielding cover 23 and entering the inside of the device does not affect the wavelength range of the LED illumination.

(4)半田部3におけるLED光源21a、21bからの反射光
を撮像する光学系において、第8図および第9図のよう
に、レンズ4の前面に、赤色LEDの波長域のみを通過さ
せるBP(バンドパス)フィルター25を取り付けることに
より、カメラ22に入力される画像はLED光のみにより構
成される。
(4) In the optical system that captures the reflected light from the LED light sources 21a and 21b in the solder portion 3, as shown in FIGS. 8 and 9, the BP that allows only the wavelength range of the red LED to pass through the front surface of the lens 4. By attaching the (bandpass) filter 25, the image input to the camera 22 is constituted only by the LED light.

〔実施例〕〔Example〕

第10図は、以上の解決手段にもとづく具体的な実施例
を示す。
FIG. 10 shows a specific embodiment based on the above solution.

プリント基板上の半田検査箇所は制御装置26によって
指定され、検査テーブル27の割り出し移動により検査箇
所をカメラ22の画像視野内へ移動させ、LED光源21aの照
射後、画像を画像処理装置28に入力し、反射スポットの
位置Raを算出する。次に、LED光源21aを消し、LED光源2
1Bを点燈し、画像を画像処理装置28に入力し、反射スポ
ットの位置Rbを算出する。反射スポットがなければ半田
なし、反射スポットが画像面で上方向に動けば、半田形
状は凸、画像面で下方向に動けば、半田形状は凹であ
る。なお、この状態は、モニター29により視認できるよ
うになっている。
The solder inspection location on the printed circuit board is designated by the control device 26, the inspection location is moved into the image field of view of the camera 22 by indexing movement of the inspection table 27, and the image is input to the image processing device 28 after irradiation by the LED light source 21a. Then, the position Ra of the reflection spot is calculated. Next, the LED light source 21a is turned off, and the LED light source 2 is turned off.
1B is turned on, the image is input to the image processing device 28, and the position Rb of the reflection spot is calculated. If there is no reflection spot, there is no solder. If the reflection spot moves upward on the image surface, the solder shape is convex. If it moves downward on the image surface, the solder shape is concave. This state can be visually recognized by the monitor 29.

この一連の動作を、プリント基板上の全ICの半田部3
に対して順次に行う。
This series of operations is performed by soldering 3 of all ICs on the printed circuit board.
Are performed sequentially.

〔発明の効果〕〔The invention's effect〕

本発明では、下記の特有の効果がある。 The present invention has the following specific effects.

画像処理にて半田形状をみるので、検査装置が安価で
ある。LED光を用いるので、スイッチングの耐久性が高
い。
Since the solder shape is observed by image processing, the inspection device is inexpensive. Since LED light is used, switching durability is high.

x−z面上にあるカメラの光軸に対し、LED光源の光
軸は、z−y平面上にあるので、高密度実装基板でも、
他のICチップが照明の障害とならず、照明角度に問題は
ない。
Since the optical axis of the LED light source is on the zy plane with respect to the optical axis of the camera on the xz plane, even in a high-density mounting board,
Other IC chips do not hinder the lighting, and there is no problem with the lighting angle.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理の斜面図、第2図は各部の座標
図、第3図は反射部分の斜面図、第4図は反射部の垂直
断面図、第5図は反射部の平面図、第6図は遮光カバー
の説明図、第7図は波長−相対光度のグラフ、第8図は
カメラの側面図、第9図は波長−相対感度のグラフ、第
10図は具体的な装置の側面図である。 第11図および第12図は従来例の説明図である。 1……パッド、2……リード、3……半田部、21a、21b
……LED光源、22……カメラ、23……遮光カバー、24…
…レンズ、25……BPフィルター、26……制御装置、27…
…検査テーブル、28……画像処理装置。
1 is a perspective view of the principle of the present invention, FIG. 2 is a coordinate diagram of each part, FIG. 3 is a perspective view of a reflection part, FIG. 4 is a vertical sectional view of the reflection part, and FIG. FIG. 6, FIG. 6 is an explanatory view of the light shielding cover, FIG. 7 is a graph of wavelength-relative luminous intensity, FIG. 8 is a side view of the camera, FIG.
FIG. 10 is a side view of a specific device. 11 and 12 are explanatory diagrams of a conventional example. 1 ... pad, 2 ... lead, 3 ... solder part, 21a, 21b
…… LED light source, 22 …… Camera, 23 …… Light shielding cover, 24…
... Lens, 25 ... BP filter, 26 ... Control device, 27 ...
... inspection table, 28 ... image processing device.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 G01N 21/84 - 21/91 G06F 15/70 - 15/70 465 H05K 3/32,3/34 B23K 1/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 11/00-11/30 G01N 21/84-21/91 G06F 15/70-15/70 465 H05K 3 / 32,3 / 34 B23K 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プリント基板上に実装されたICのリード
(2)先端の半田部(3)の半田形状を検出する装置
で、外乱光を遮断する遮光手段(23、25)と、角度の異
なる2つのLED光源(21a、21b)と、これらを切り換え
ながら半田部(3)に投光する手段(26)と、半田部
(3)での反射光をLED光源(21a、21b)の切り換えに
同期して撮像する手段(22)と、画像処理による半田部
(3)の反射スポットの移動方向から半田形状を検知す
る手段(28)とを具備して成るプリント基板上ICの半田
形状検出装置。
A device for detecting a solder shape of a solder portion (3) at a tip of an IC lead (2) mounted on a printed circuit board, and a light shielding means (23, 25) for blocking disturbance light; Two different LED light sources (21a, 21b), means (26) for emitting light to the solder part (3) while switching between them, and switching of the light reflected from the solder part (3) to the LED light sources (21a, 21b) Detecting means for detecting the shape of the solder from the direction of movement of the reflection spot of the solder part by image processing (22); apparatus.
JP274990A 1990-01-10 1990-01-10 Solder shape detector Expired - Lifetime JP2779441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP274990A JP2779441B2 (en) 1990-01-10 1990-01-10 Solder shape detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP274990A JP2779441B2 (en) 1990-01-10 1990-01-10 Solder shape detector

Publications (2)

Publication Number Publication Date
JPH03206907A JPH03206907A (en) 1991-09-10
JP2779441B2 true JP2779441B2 (en) 1998-07-23

Family

ID=11537999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP274990A Expired - Lifetime JP2779441B2 (en) 1990-01-10 1990-01-10 Solder shape detector

Country Status (1)

Country Link
JP (1) JP2779441B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750481A (en) * 1993-08-05 1995-02-21 Nec Corp Soldered connection forming equipment
JP2006184022A (en) * 2004-12-24 2006-07-13 Saki Corp:Kk Visual inspection system

Also Published As

Publication number Publication date
JPH03206907A (en) 1991-09-10

Similar Documents

Publication Publication Date Title
US5097516A (en) Technique for illuminating a surface with a gradient intensity line of light to achieve enhanced two-dimensional imaging
EP0473749B2 (en) Method and device for determining a position of at least one lead of an electronic component
US6552783B1 (en) Optical system
US20200049489A1 (en) Three-dimensional imager
JP4201711B2 (en) How to check the placement of parts
KR102038396B1 (en) System and method for calibrating a vision system with respect to a touch probe
CN104439695B (en) A kind of vision inspection apparatus of laser-processing system
US20070247614A1 (en) System for 2-D and 3-D Vision Inspection
JP2005324297A (en) Robot
JP2001521140A (en) 3D inspection system
JPH0875661A (en) Defect detecting equipment
KR101416860B1 (en) Particle inspecting system for camera lens module
US20050206883A1 (en) Single source, single camera inspection system
JPH08210812A (en) Length measuring instrument
EP0718624A2 (en) Method and apparatus for illuminating translucent and semi-transparent material
US9594028B2 (en) Method and apparatus for determining coplanarity in integrated circuit packages
JP2779441B2 (en) Solder shape detector
JPH07151522A (en) Electronic part inspecting device
Gennert et al. Uniform frontal illumination of planar surfaces: where to place the lamps
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP2844348B2 (en) Method for determining solder amount by image processing
JPH10153413A (en) Appearance and dimension inspection device for ic lead
US5666204A (en) Method and apparatus for optical shape measurement of oblong objects
JP3366211B2 (en) Mirror object imaging method
JP3590104B2 (en) Laser distance measuring device