JP2777623B2 - Hazardous gas removal equipment - Google Patents

Hazardous gas removal equipment

Info

Publication number
JP2777623B2
JP2777623B2 JP5278969A JP27896993A JP2777623B2 JP 2777623 B2 JP2777623 B2 JP 2777623B2 JP 5278969 A JP5278969 A JP 5278969A JP 27896993 A JP27896993 A JP 27896993A JP 2777623 B2 JP2777623 B2 JP 2777623B2
Authority
JP
Japan
Prior art keywords
harmful gas
reaction
air
photocatalyst
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5278969A
Other languages
Japanese (ja)
Other versions
JPH07108138A (en
Inventor
堯嗣 指宿
浩士 竹内
武男 高橋
和照 新貝
昌広 宮本
聡 西方
哲浩 寺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fuji Electric Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP5278969A priority Critical patent/JP2777623B2/en
Publication of JPH07108138A publication Critical patent/JPH07108138A/en
Application granted granted Critical
Publication of JP2777623B2 publication Critical patent/JP2777623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、環境空気中の低濃度
の有害ガスを除去する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing low-concentration harmful gases from environmental air.

【0002】[0002]

【従来の技術】NOX やSOX などの有害ガスの除去に
関しては、自動車や発電所などからの排ガスを処理する
ための種々の酸化あるいは還元触媒が開発されている。
しかしこれらは、数100ppmという高濃度の有害ガ
スを対象として数100〜1000℃という高温度でそ
の性能を発揮するものであり、使用コストが高く、また
環境空気中の数ppmという低濃度の有害ガスの除去に
は考慮が払われていなかった。
For the removal of the Related Art harmful gases such as NO X and SO X, various oxidation or reduction catalyst for treating an exhaust gas from automobiles and power plants have been developed.
However, they exhibit their performance at a high temperature of several hundred to 1000 ° C. for harmful gases having a high concentration of several hundred ppm, and have a high use cost and a low concentration of harmful gas of several ppm in environmental air. No consideration was given to gas removal.

【0003】そこで、本発明者らは、二酸化チタン(T
iO2 )と活性炭との混合物からなり、光照射により環
境空気中のppmレベルの窒素酸化物などを効率よく除
去できる光触媒を発明し(特許第1613301号)、
またこの光触媒をトンネル排気処理に応用するための技
術を開発し、更にその中で酸化鉄(III)などの鉄系金属
酸化物を添加することにより光触媒活性が一層増大する
ことを見出した(特開平3−233100号ほか3
件)。この光触媒は空気中の低濃度の窒素酸化物などを
酸化して硝酸などの形で捕捉するもので、光触媒は時間
の経過とともに主として表面の活性部分が酸化生成物に
より覆われて性能が徐々に低下するが、光触媒を水洗し
て酸化生成物を除去することにより容易に活性が回復す
る。
Therefore, the present inventors have proposed titanium dioxide (T
Invented a photocatalyst comprising a mixture of iO 2 ) and activated carbon and capable of efficiently removing ppm-level nitrogen oxides and the like in environmental air by light irradiation (Japanese Patent No. 1613301).
We have also developed a technology for applying this photocatalyst to tunnel exhaust treatment, and found that the addition of an iron-based metal oxide such as iron (III) oxide further increases the photocatalytic activity. Kaihei 3-233100 and others 3
Cases). This photocatalyst oxidizes low-concentration nitrogen oxides and the like in the air and captures them in the form of nitric acid.The performance of the photocatalyst gradually increases over time as the active part of the surface is mainly covered with oxidation products. Although reduced, the activity is easily restored by washing the photocatalyst with water to remove oxidation products.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記光触媒
を用いて有害ガス除去装置を構成する場合には、光触媒
を適宜の部材に担持させて有害ガスを含む空気をこれに
導き、光源から光を照射しながら光触媒と有害ガスとを
良好に接触させるとともに、光触媒に付着した酸化生成
物を水洗により定期的に洗い流す構造とすることが必要
になる。図16はそのような従来構造の一例を示すもの
で、円筒管51の内壁面に光触媒52が担持され、これ
に光を照射する光源53は円筒管51の中心に配置され
ている。有害ガスを含む空気は円筒管51の一端から導
入され、矢印で示すように光触媒52と接触しながら通
流して他端から排出される。
When a harmful gas removing device is constructed using the above-mentioned photocatalyst, the photocatalyst is carried on an appropriate member to guide air containing the harmful gas to the light source, and light is emitted from the light source. It is necessary to have a structure in which the photocatalyst and the harmful gas are brought into good contact with each other while irradiating, and the oxidation products adhered to the photocatalyst are periodically washed away with water. FIG. 16 shows an example of such a conventional structure, in which a photocatalyst 52 is carried on the inner wall surface of a cylindrical tube 51, and a light source 53 for irradiating light is disposed at the center of the cylindrical tube 51. Air containing a harmful gas is introduced from one end of the cylindrical tube 51, flows in contact with the photocatalyst 52 as shown by the arrow, and is discharged from the other end.

【0005】ところが、この種の構造は管内での空気の
攪拌度合いが小さいため、管壁に近い外層部の有害ガス
は良好に光触媒に接触するものの内層部は接触割合が少
なく、したがって全体として除去率が低いという問題が
あった。空気通路の途中にじゃま板などを設ければ攪拌
度合いが高まり除去率も向上するが、反面、触媒表面を
水洗するための洗浄機構が複雑になるという問題が生じ
る。そこで、この発明は、じゃま板などの特別の部材を
設けることなく攪拌度合いを高め、有害ガスと光触媒と
の良好な接触を図るとともに光触媒の水洗を簡単にした
有害ガス除去装置を提供することを目的とするものであ
る。
However, in this type of structure, the degree of agitation of air in the tube is small, so that the harmful gas in the outer layer close to the tube wall is in good contact with the photocatalyst, but the inner layer has a small contact ratio, and is therefore removed as a whole. There was a problem that the rate was low. If a baffle plate or the like is provided in the middle of the air passage, the degree of agitation is increased and the removal rate is improved, but on the other hand, a problem arises in that the washing mechanism for washing the catalyst surface with water becomes complicated. Therefore, the present invention provides a harmful gas removing device that enhances the degree of stirring without providing a special member such as a baffle plate, achieves good contact between the harmful gas and the photocatalyst, and simplifies washing of the photocatalyst with water. It is the purpose.

【0006】[0006]

【課題を解決するための手段】この発明は、光触媒を薄
板からなる羽根状の反応板の表面に担持させ、この反応
板をブラインド形式に配列して上記目的を達成するもの
とする。その場合、適宜枚数の反応板を方形の支持枠で
一体化して触媒モジュールを形成し、このモジュール単
位で有害ガス除去装置を組み立てれば、装置の構造が簡
潔となって組立が容易となるとともに、モジュールを種
々の向きで組み合わせることにより空気の攪拌を一層促
進でき、またモジュールの増減により装置の容量を自在
に調整できるなどの利点が得られる。同様に、適宜個数
の光源を方形の支持枠で一体化して光源モジュールを形
成すれば、これを上記触媒モジュールと組み合わせて積
層するだけで有害ガス除去装置を構成でき、装置の構造
が一層簡潔となる。
According to the present invention, a photocatalyst is supported on the surface of a blade-like reaction plate made of a thin plate, and the reaction plates are arranged in a blind manner to achieve the above object. In that case, an appropriate number of reaction plates are integrated with a rectangular support frame to form a catalyst module, and if a harmful gas removing device is assembled in units of this module, the structure of the device becomes simpler and assembly becomes easier, By combining the modules in various directions, the stirring of the air can be further promoted, and the advantage that the capacity of the apparatus can be freely adjusted by increasing or decreasing the number of modules is obtained. Similarly, if an appropriate number of light sources are integrated with a rectangular support frame to form a light source module, a harmful gas removing device can be configured by simply stacking the light source module in combination with the catalyst module, and the structure of the device is further simplified. Become.

【0007】その場合、適宜個数のモジュールをユニッ
ト化して反応ユニットを形成し、更に必要個数の反応ユ
ニットを集合させて装置を構成するのがよい。これによ
り、装置内のレイアウトや運転制御をユニット単位で行
えるなど種々の利便が得られる。上記反応ユニットを複
数個集合させて装置を構成した際、各反応ユニットの空
気出入口に開閉自在なダンパを設け、このダンパを閉め
て反応ユニットごとに光触媒を洗浄するようにすれば、
例えば自動車道トンネルの換気を行う場合に、送風機の
運転を継続しながら光触媒の洗浄をユニット単位で部分
的に進めることが可能となる。
[0007] In this case, it is preferable to form a reaction unit by appropriately unitizing a number of modules to form a reaction unit, and then assembling a required number of reaction units. As a result, various conveniences can be obtained, for example, the layout in the apparatus and operation control can be performed in units. When the apparatus is configured by assembling a plurality of the reaction units, an openable / closable damper is provided at an air inlet / outlet of each reaction unit, and this damper is closed to wash the photocatalyst for each reaction unit.
For example, when ventilating a motorway tunnel, it becomes possible to partially advance the cleaning of the photocatalyst in units of units while continuing the operation of the blower.

【0008】この発明に係る有害ガス除去装置で電力を
消費するのは主として光源と送風機であるが、装置通過
後の空気の品質を考慮しながらも省電力を図るには、有
害ガス濃度と装置の運転条件との関連について配慮が必
要であり、そのためには装置の空気の入口又は出口の有
害ガス濃度を測定するガスセンサと、このガスセンサの
測定結果に基づいて反応板の取付角や光源の点灯数ある
いは光量を増減する手段とを設けるのがよい。なお、通
風方向に対して反応板の取付角が大きいほど有害ガスの
除去率はよいが、反面、圧力損失が増えるため一定の処
理風量を得るための送風機の消費電力が大きくなる。ま
た、反応ユニットを複数の処理系統に分けて設置すると
ともに、空気の入口又は出口の有害ガス濃度を測定する
ガスセンサと、このガスセンサの測定結果に基づいて前
記処理系統別に前記反応ユニットの運転を制御する手段
とを設けることによっても運転を効率化して省電力を図
ることが可能である。
In the harmful gas removing apparatus according to the present invention, power is mainly consumed by the light source and the blower. However, in order to save power while considering the quality of air after passing through the apparatus, the harmful gas concentration and the apparatus must be reduced. Consideration must be given to the relationship with the operating conditions of the equipment.To achieve this, a gas sensor that measures the concentration of harmful gas at the inlet or outlet of the air in the device, and the mounting angle of the reaction plate and lighting of the light source based on the measurement results of this gas sensor Means for increasing or decreasing the number or the amount of light may be provided. Although the removal rate of the harmful gas is better as the mounting angle of the reaction plate with respect to the ventilation direction is larger, the power consumption of the blower for obtaining a constant processing air volume increases because the pressure loss increases. In addition, the reaction unit is divided into a plurality of processing systems and installed, and a gas sensor for measuring a harmful gas concentration at an inlet or an outlet of air, and the operation of the reaction unit is controlled for each processing system based on the measurement result of the gas sensor. It is also possible to increase the efficiency of the operation and save power by providing the means for performing the operation.

【0009】[0009]

【作用】光触媒を薄板からなる羽根状の反応板の表面に
担持させ、この反応板をブラインド形式に配列して空気
を通流させることにより、空気は反応板で種々に方向を
変えられて攪拌され、じゃま板などを設けなくても有害
ガスと光触媒との接触が万遍なく行われる。
[Function] A photocatalyst is supported on the surface of a blade-shaped reaction plate made of a thin plate, and the reaction plates are arranged in a blind manner and air is allowed to flow. Therefore, the contact between the harmful gas and the photocatalyst is performed evenly without providing a baffle plate or the like.

【0010】[0010]

【実施例】以下、図1〜図15に基づいてこの発明の実
施例を説明する。なお、各実施例の互いに対応する部分
には同一の符号を用いるものとする。図1は触媒モジュ
ール1を示す斜視図である。両面に光触媒を担持させた
適宜枚数(図示の場合は6枚)の羽根状の反応板2を適
宜の角度でブラインド形式に配列し、それらの両端を方
形の支持枠3で支持させて一体化し、触媒モジュール1
を構成している。有害ガスを含む空気は矢印で示すよう
に支持枠2内を通流して反応板2と接触する。図示の通
り反応板2を適宜枚数ずつまとめてモジュール化し、後
述するようにこれを単位として有害ガス除去装置を構成
すれば装置の組立が容易となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. Note that the same reference numerals are used for parts corresponding to each other in each embodiment. FIG. 1 is a perspective view showing the catalyst module 1. An appropriate number (six in the illustrated case) of blade-like reaction plates 2 carrying a photocatalyst on both surfaces are arranged in a blind manner at an appropriate angle, and both ends thereof are supported by a rectangular support frame 3 to be integrated. , Catalyst module 1
Is composed. The air containing the harmful gas flows through the inside of the support frame 2 as shown by the arrow, and comes into contact with the reaction plate 2. As shown in the figure, the number of the reaction plates 2 is appropriately grouped into a module to form a module, and as will be described later, the harmful gas removing device is configured as a unit to facilitate assembly of the device.

【0011】反応板2は、プラスチック、アルミ、鉄な
どを用いた長方形の薄板の表面に接着剤を塗布し、その
上に光触媒粉末(TiO2 粉と活性炭粉との混合粉、あ
るいはこれに酸化鉄粉などを添加した混合粉)をまぶす
ように付着させるなどして製作する。支持枠3は鉄板な
どから折り曲げ形成するが、その大きさは縦横をそれぞ
れ1〜2m、奥行き(厚さ)を10〜20cmにするの
がよい。反応板2の取付角は有害ガスの接触性と圧損と
を考慮して決定するが、水平に対して30〜45度が適
している。ただし、後述するようにガス濃度に応じて取
付角を調整する場合には、反応板2は支軸の回りに回転
できるようにする。
The reaction plate 2 is formed by applying an adhesive to the surface of a rectangular thin plate made of plastic, aluminum, iron, or the like, and then applying a photocatalyst powder (a mixed powder of TiO 2 powder and activated carbon powder or an oxidized powder thereof). (Mixed powder to which iron powder is added). The support frame 3 is formed by bending from an iron plate or the like, and its size is preferably 1 to 2 m in length and width and 10 to 20 cm in depth (thickness). The mounting angle of the reaction plate 2 is determined in consideration of the contact property of the harmful gas and the pressure loss, and is preferably 30 to 45 degrees with respect to the horizontal. However, when the mounting angle is adjusted according to the gas concentration as described later, the reaction plate 2 is configured to be rotatable around the support shaft.

【0012】図2は上記触媒モジュール1を適宜個数用
いてユニット化した反応ユニット4を示すものである。
すなわち、断面方形のダクト5内に5〜6個の触媒モジ
ュール1を空間6を隔てて挿入し、空間6の天井面と床
面に反応板2に向かって波長400nm以下の光を照射
する水銀灯などの光源7を配列し、また天井面には反応
板2に洗浄水を噴出する水洗ノズル8を配列してユニッ
ト化している。有害ガス除去装置は反応ユニット4を通
風面積に応じて上下左右に適宜個数集合させて構成する
が、このようなユニット構成は反応ユニット4の増減に
よりどの様な規模の装置も自在に構築でき、また後述す
るように光触媒の洗浄作業をユニット単位で行えるなど
の利点がある。
FIG. 2 shows a reaction unit 4 which is made into a unit by using an appropriate number of the catalyst modules 1.
That is, 5 to 6 catalyst modules 1 are inserted into a duct 5 having a rectangular cross section with a space 6 therebetween, and a mercury lamp that irradiates the ceiling plate and the floor surface of the space 6 with light having a wavelength of 400 nm or less toward the reaction plate 2. A light source 7 is arranged, and a washing nozzle 8 for ejecting washing water to the reaction plate 2 is arranged on the ceiling surface to form a unit. The harmful gas removing device is configured by appropriately grouping the number of the reaction units 4 up, down, left, and right according to the ventilation area, but such a unit configuration can be freely constructed by increasing or decreasing the number of the reaction units 4 to any size. Further, as described later, there is an advantage that the cleaning operation of the photocatalyst can be performed in units.

【0013】反応ユニット4を矢印方向に通流する空気
は各触媒モジュール1を通過する度に反応板2により方
向を変えられて攪拌され、空気中の有害ガスは万遍なく
光触媒に接触する。図示の場合、各触媒モジュール1の
反応板2は同じ方向に向いているが、交互に逆向きにす
れば攪拌度合いは更によくなる。また、図示例では反応
板2を水平にしているが、触媒モジュール1を90度回
転させて、反応板2を垂直にすることも可能である。
The air flowing through the reaction unit 4 in the direction of the arrow is changed and stirred by the reaction plate 2 each time it passes through each catalyst module 1, and the harmful gas in the air uniformly contacts the photocatalyst. In the illustrated case, the reaction plates 2 of each catalyst module 1 are oriented in the same direction. Although the reaction plate 2 is horizontal in the illustrated example, the reaction plate 2 may be vertical by rotating the catalyst module 1 by 90 degrees.

【0014】図3は光源モジュール9を示すものであ
る。平行配置した適宜個数(図示の場合は3個)のブラ
ックライトなどの光源7の両端を寸法が触媒モジュール
1の支持枠3と同一のやはり鉄板などから折り曲げ形成
した方形の支持枠10に支持させて一体化している。図
4は上記触媒モジュール1と光源モジュール9とを適宜
個数ずつ用いて形成した反応ユニット4を示すものであ
る。ダクト5内に触媒モジュール1と光源モジュール9
とを空間6を隔てて交互に積層し、その天井面に反応板
2及び光源7に向かって洗浄水を噴出する水洗ノズル8
を配列してユニット化している。この場合は、光源7も
モジュール化しているためユニット組立が図2の場合よ
り一層容易であり、またダクト壁面ではなく通風空間か
ら光を照射しているため、触媒表面をより均一に照射で
きる。図では光源7は反応板2と平行にしているが、光
源モジュール9を90度回転させてこれらを直交させる
ことも可能である。
FIG. 3 shows the light source module 9. An appropriate number (three in the illustrated case) of light sources 7 such as black lights arranged in parallel are supported at both ends by a rectangular support frame 10 formed by bending a steel plate or the like having the same dimensions as the support frame 3 of the catalyst module 1. And integrated. FIG. 4 shows a reaction unit 4 formed by using the catalyst modules 1 and the light source modules 9 in appropriate numbers. Catalyst module 1 and light source module 9 in duct 5
Are alternately stacked with a space 6 therebetween, and a washing nozzle 8 for ejecting washing water toward the reaction plate 2 and the light source 7 on the ceiling surface.
Are arranged into a unit. In this case, since the light source 7 is also modularized, it is easier to assemble the unit than in the case of FIG. 2, and since the light is emitted not from the duct wall surface but from the ventilation space, the catalyst surface can be more uniformly irradiated. Although the light source 7 is parallel to the reaction plate 2 in the figure, it is also possible to rotate the light source module 9 by 90 degrees and make them orthogonal.

【0015】図5は光源モジュール9に反射ミラー11
を設けたものである。光源モジュール9内の上部及び下
部の光源7からの光のうち、支持枠10の天井面及び底
面に向かうものは無駄になる。そこで、支持枠10と光
源7との間に反射ミラー11を設け、無駄になっていた
光を前後(図の左右)に向けて光触媒に当てるようにし
ている。図示反射ミラー11は破線で示す楕円の円弧の
一部に沿うように形成したものであり、楕円の焦点の一
方の近傍に光源7を位置させ、楕円の長軸を前後に向け
ることにより上向きあるいは下向きの光を水平方向に反
射させている。反射による光の有効利用は支持枠10及
びダクト5(図4)の内壁面を鏡面とすることによって
も可能である。
FIG. 5 shows a light source module 9 with a reflection mirror 11.
Is provided. Of the light from the upper and lower light sources 7 in the light source module 9, those going to the ceiling surface and the bottom surface of the support frame 10 are wasted. Therefore, a reflection mirror 11 is provided between the support frame 10 and the light source 7 so that the wasted light is directed forward and backward (left and right in the figure) to the photocatalyst. The illustrated reflection mirror 11 is formed along a part of the arc of the ellipse indicated by the broken line, and the light source 7 is located near one of the focal points of the ellipse, and the long axis of the ellipse is turned upward or downward to turn the light source 7 upward or downward. It reflects downward light horizontally. Effective use of light by reflection is also possible by making the inner wall surfaces of the support frame 10 and the duct 5 (FIG. 4) mirror surfaces.

【0016】図6は図4における触媒モジュール1を一
つ置きに反転させて、反応板2を交互に逆向きにした場
合を示すものである。これにより、すでに述べたように
反応ユニット4を通過中の空気の攪拌度合いがより強ま
り、未反応の有害ガスの光触媒との接触が一層促進され
る。また、この例ではダクト天井面の水洗ノズル8の他
に、触媒モジュール1と光源モジュール9との対抗面に
沿って立ち上げた配管に水洗ノズル12を上下に配列し
て設け、洗浄効果を高めている。
FIG. 6 shows a case where the catalyst modules 1 in FIG. 4 are alternately inverted and the reaction plates 2 are alternately turned in the opposite direction. As a result, as described above, the degree of stirring of the air passing through the reaction unit 4 is further increased, and the contact of the unreacted harmful gas with the photocatalyst is further promoted. Further, in this example, in addition to the washing nozzle 8 on the duct ceiling, washing nozzles 12 are provided in a vertically arranged manner on a pipe standing along the opposing surface between the catalyst module 1 and the light source module 9 to enhance the washing effect. ing.

【0017】図7は触媒モジュール1を横に2個、縦に
4個連結して構成した大形触媒モジュール13を示すも
のである。図では隣接する単位触媒モジュール1の反応
板2の向きを互いに水平及び垂直に違えて組み合わせて
ある。空気の通流方向だけではなく、同一平面内でも反
応板2の向きを変えることにより空気をより良好に攪拌
することができる。図8は大形触媒モジュール13と同
様に、光源モジュール9を8個連結して構成した大形光
源モジュール14を示すものである。図では光源7は全
て同じ向きにしてあるが、図7と同様に違う向きの組合
せにしてもよい。
FIG. 7 shows a large catalyst module 13 constituted by connecting two catalyst modules 1 horizontally and four vertically. In the figure, the directions of the reaction plates 2 of the adjacent unit catalyst modules 1 are different from each other horizontally and vertically and combined. By changing the direction of the reaction plate 2 not only in the flow direction of the air but also in the same plane, the air can be better agitated. FIG. 8 shows a large light source module 14 formed by connecting eight light source modules 9 like the large catalyst module 13. Although the light sources 7 are all oriented in the same direction in the figure, they may be combined in different directions as in FIG.

【0018】図9は上述した大形の触媒モジュール13
と光源モジュール14とを集合させて構成した有害ガス
除去装置のレイアウトを平面的に示したものである。大
形触媒モジュール13と大形光源モジュール14とをそ
れぞれ4個ずつ横にハ字状に連結したものを空間6を隔
てて矢印で示す空気の通流方向に多数積層してある。各
大形モジュール13,14は自動車道トンネルのバイパ
スずい道や地下駐車場の煙道などからなる通風路15
に、例えばカーテンウォール式に天井から吊り下げて設
置する。地中に掘削されることの多い通風路15の断面
積は限定されており、有害ガスの除去は限られたスペー
スの中で触媒面積をいかに大きく取るかがポイントとな
る。大形触媒モジュール13を図示の通りハ字状に配置
すれば、単に通風路に直交させるよりも同じ通風面積に
対して触媒面積を大きく取ることができる。空間6の天
井面に設置した水洗ノズル8もハ字状面に沿って配置し
てある。
FIG. 9 shows the large catalyst module 13 described above.
FIG. 3 is a plan view showing a layout of a harmful gas removing device configured by assembling a light source module 14 and a light source module 14. A large number of large catalyst modules 13 and four large light source modules 14 each connected in a horizontal C-shape are laminated in the air flow direction indicated by an arrow with a space 6 therebetween. Each of the large modules 13 and 14 is provided with a ventilation path 15 including a bypass road of a motorway tunnel and a flue of an underground parking lot.
Then, it is suspended from the ceiling, for example, in a curtain wall system. The cross-sectional area of the ventilation passage 15 that is often excavated in the ground is limited, and the point of removing harmful gases is how to increase the catalyst area in a limited space. By arranging the large catalyst modules 13 in a C-shape as shown in the figure, it is possible to increase the catalyst area with respect to the same ventilation area as compared to simply crossing the ventilation path at right angles. The washing nozzle 8 installed on the ceiling surface of the space 6 is also arranged along the C-shaped surface.

【0019】ところで、自動車道トンネルの換気塔はト
ンネル内の汚染空気を連続して坑外に排出しており、送
風機の停止は許されない。したがって、このような換気
塔と組み合わせて設備した有害ガス除去装置の触媒洗浄
を実施する際には、装置前後の通風口を閉塞する必要が
ある。ちなみに、開放状態で洗浄を行うと洗浄水が風で
飛ばされて光触媒に十分届かず、また洗浄汚水が飛散し
て装置周辺を汚してしまう。
By the way, the ventilation tower of the motorway tunnel continuously discharges the contaminated air in the tunnel to the outside of the tunnel, and the stop of the blower is not allowed. Therefore, when carrying out the catalyst cleaning of the harmful gas removing device installed in combination with such a ventilation tower, it is necessary to close the ventilation holes before and after the device. By the way, if the cleaning is performed in the open state, the cleaning water is blown off by the wind and does not reach the photocatalyst sufficiently, and the cleaning sewage is scattered to pollute the periphery of the apparatus.

【0020】図10はこの点を考慮して、ユニット本体
の前後にダンパ扉を設けた反応ユニット4を示すもので
ある。触媒モジュール1と光源モジュール9とを交互に
積層したユニット本体の前後の通風口4aに、ダンパ扉
16をヒンジ17を介して開閉自在に取り付けてある。
ダンパ扉16はモジュール1,9と同形の支持枠18に
複数枚の羽根状のダンパ19を図示しない垂直な支軸で
回転自在に支持させた構造となっており、内側に光触媒
を洗浄する水洗ノズル8を多数配列してある。この実施
例ではユニット本体内には水洗ノズルは設けておらず、
前後の水洗ノズル8ですべての洗浄を賄っている。
FIG. 10 shows a reaction unit 4 in which damper doors are provided before and after the unit body in consideration of this point. A damper door 16 is attached via hinges 17 to the front and rear ventilation openings 4a of the unit body in which the catalyst modules 1 and the light source modules 9 are alternately stacked.
The damper door 16 has a structure in which a plurality of blade-shaped dampers 19 are rotatably supported by a vertical support shaft (not shown) on a support frame 18 having the same shape as that of the modules 1 and 9, and a water washing for washing the photocatalyst inside. Many nozzles 8 are arranged. In this embodiment, no washing nozzle is provided in the unit body,
The front and rear washing nozzles 8 cover all washing.

【0021】洗浄作業時には前後のダンパ扉16を閉め
た上でダンパ19を図示状態から90度回転させて通風
口4aを閉塞する。反応ユニット4を複数個集合して構
成した装置の洗浄は反応ユニット4単位で順次行う。こ
れにより、装置の洗浄を部分的に実施しながら有害ガス
を連続的に除去することができる。図11は触媒洗浄を
洗浄水の噴出によらず浸漬により行うようにした反応ユ
ニット4を示すものである。これはダンパ扉16を閉め
て密閉したユニット本体内に注水管20から洗浄水を満
たし、光触媒を水中に浸漬して洗浄するようにしたもの
で、洗浄中は洗浄水を一定レベルからオーバーフローさ
せて排水口21から排出する。
During the cleaning operation, the front and rear damper doors 16 are closed, and the damper 19 is rotated 90 degrees from the state shown to close the ventilation port 4a. The cleaning of the apparatus constituted by assembling a plurality of the reaction units 4 is sequentially performed in units of the reaction units 4. Thus, the harmful gas can be continuously removed while partially cleaning the apparatus. FIG. 11 shows a reaction unit 4 in which catalyst cleaning is performed by immersion instead of jetting of cleaning water. This is a device in which the damper door 16 is closed and the unit body sealed is filled with washing water from the water injection pipe 20, and the photocatalyst is immersed in water for washing. During the washing, the washing water overflows from a certain level. It is discharged from the drain 21.

【0022】図12は図10あるいは図11の反応ユニ
ット4を集合した有害ガス除去装置22を自動車道トン
ネル23と図示しない換気塔との間を結ぶ通風路15内
に設置した例を概念的に示すものである。自動車道トン
ネル23から黒矢印で示すように抽出した汚染空気から
有害ガスを除去し、白抜き矢印で示すように換気塔から
坑外に排出する。
FIG. 12 conceptually shows an example in which the harmful gas removing device 22 in which the reaction units 4 of FIG. 10 or FIG. 11 are assembled is installed in a ventilation path 15 connecting a motorway tunnel 23 and a ventilation tower (not shown). It is shown. The harmful gas is removed from the contaminated air extracted from the motorway tunnel 23 as indicated by the black arrow, and discharged from the ventilation tower outside the mine as indicated by the white arrow.

【0023】光触媒は定期的に洗浄して触媒活性の回復
を図るものとし、洗浄水槽24の水を洗浄ポンプ25で
加圧して有害ガス除去装置22に送る。洗浄はすでに述
べたように反応ユニット4単位で順次に行い、いずれか
が洗浄中でも他の反応ユニット4は稼働させる。洗浄後
の排水は汚水槽26にいったん貯留し、次いでフィルタ
付の排水ポンプ27で中和槽28に送る。光触媒上の酸
化生成物を洗い流した排水は硝酸などを含んでいるの
で、中和槽28で中和剤を加えて中和した後に放流す
る。洗浄が終了したら、ダンパ扉16(図10,11)
のダンパ19を開いて通風し、次の反応ユニット4の洗
浄を行う。自動車道トンネルの汚染空気はタール分を含
んでいるので、洗浄水には油膜除去剤、例えばアルキル
ベンゼン・スルフォン酸ナトリウムなどのポリソープを
加えるのがよい。
The photocatalyst is periodically washed to recover the catalytic activity, and the water in the washing water tank 24 is pressurized by the washing pump 25 and sent to the harmful gas removing device 22. The washing is sequentially performed in units of the reaction units 4 as described above, and the other reaction units 4 are operated while any one of them is being washed. The waste water after washing is once stored in a sewage tank 26 and then sent to a neutralization tank 28 by a drain pump 27 with a filter. Since the wastewater from which the oxidation products on the photocatalyst have been washed away contains nitric acid and the like, the wastewater is discharged after neutralization by adding a neutralizing agent in the neutralization tank. When the cleaning is completed, the damper door 16 (FIGS. 10 and 11)
Then, the damper 19 is opened and air is blown to wash the next reaction unit 4. Since the contaminated air of the motorway tunnel contains tar content, it is preferable to add an oil film remover, for example, a polysoap such as sodium alkylbenzene sulfonate, to the washing water.

【0024】図13は有害ガス除去装置22の空気の入
口又は出口に有害ガスの濃度を測定するガスセンサ29
を設け、その測定結果に基づいて反応板2あるいは光源
7を制御する構成を概念的に示すブロック図である。こ
の場合、図14に示すように各触媒モジュール1の反応
板2は回転軸30に取り付け、例えばチェーン31でモ
ジュールごとに連動させた回転軸30をパルスモータ3
2で駆動して、反応板2の取付角θ(図13)を0から
から90度の範囲内で任意に調整できるようにしてお
く。θ=0、つまり反応板2を図13に矢印で示す通風
方向に対して平行にしたときが圧力損失が最も少なく、
θが90度に近づくにつれて圧力損失が大きくなるが、
有害ガスの除去率は光源7との位置関係からθ=0で最
も小さく、θが90度に近づくほど大きくなる。
FIG. 13 shows a gas sensor 29 for measuring the concentration of harmful gas at the inlet or outlet of the air of the harmful gas removing device 22.
Is a block diagram conceptually showing a configuration for controlling the reaction plate 2 or the light source 7 based on the measurement result. In this case, as shown in FIG. 14, the reaction plate 2 of each catalyst module 1 is attached to a rotating shaft 30, and the rotating shaft 30 linked to each module by a chain 31 is connected to a pulse motor 3.
2 so that the mounting angle θ of the reaction plate 2 (FIG. 13) can be arbitrarily adjusted within a range of 0 to 90 degrees. When θ = 0, that is, when the reaction plate 2 is parallel to the ventilation direction shown by the arrow in FIG.
The pressure loss increases as θ approaches 90 degrees,
The removal rate of the harmful gas is smallest when θ = 0 from the positional relationship with the light source 7, and increases as θ approaches 90 degrees.

【0025】図13ではガスセンサ29で測定した有害
ガス濃度に基づいて、制御部33から必要なパルス信号
を駆動回路34に与え、反応板2の取付角θを適切に増
減するようにしている。すなわち、測定ガス濃度が高い
場合は取付角θを大きくして除去率を高める。その際、
一定の処理風量を確保する必要があれば、送風制御部3
5に信号を送って送風機36の流量を増やし、圧力損失
の増加に伴う風速の低下を防ぐ。これに対して、測定ガ
ス濃度が低い場合は取付角θを小さくして除去率を必要
最小限に抑え、圧力損失が減った分、送風機36の流量
を減らして送風電力の節減を図る。上述した制御の他、
送風機36の流量を不変のまま取付角θを大きくして除
去率を高めたり、小さくして処理風量を増やしたりして
電力消費の変動を抑えることも可能である。
In FIG. 13, a necessary pulse signal is supplied from the control unit 33 to the drive circuit 34 based on the harmful gas concentration measured by the gas sensor 29, so that the mounting angle θ of the reaction plate 2 is appropriately increased or decreased. That is, when the measurement gas concentration is high, the mounting angle θ is increased to increase the removal rate. that time,
If it is necessary to secure a constant processing air volume,
5 to increase the flow rate of the blower 36 to prevent a decrease in wind speed due to an increase in pressure loss. On the other hand, when the measured gas concentration is low, the removal angle is reduced to a necessary minimum by reducing the mounting angle θ, and the flow rate of the blower 36 is reduced by the reduced pressure loss to reduce the blowing power. In addition to the control described above,
The removal rate can be increased by increasing the mounting angle θ while the flow rate of the blower 36 remains unchanged, or the processing air volume can be increased by decreasing the installation angle θ to suppress fluctuations in power consumption.

【0026】また、図13においては、図示の通りガス
センサ29で測定したガス濃度に基づいて、光源7の点
灯を制御することも可能である。すなわち、ガス濃度が
低い場合には全部の光源7を点灯する必要はなく、制御
部33から点灯回路37に指令して一部の光源モジュー
ル9の光源7を点灯し、他は消灯(黒色で表示)して電
力消費を節減する。その際には、光の及ばない反応板2
は図示の通り水平にして無駄な圧力損失を避ける。光源
7を消灯する代わりに、電圧を制御して光量を加減する
ことも可能である。
In FIG. 13, the lighting of the light source 7 can be controlled based on the gas concentration measured by the gas sensor 29 as shown. That is, when the gas concentration is low, it is not necessary to turn on all the light sources 7. The control unit 33 instructs the lighting circuit 37 to turn on the light sources 7 of some of the light source modules 9, and turns off others (black). Display) to save power. In that case, the reaction plate 2 out of the light
Is horizontal as shown to avoid unnecessary pressure loss. Instead of turning off the light source 7, it is also possible to control the voltage to increase or decrease the amount of light.

【0027】自動車道トンネルや大規模地下駐車場など
のように有害ガスを除去する対象空間が大きい場合に
は、有害ガスの処理系統を複数に分け、有害ガス濃度に
応じて運転する処理系統を決定する方が省電力の点から
は効果的である。図15はそのような構成を示すもの
で、自動車道トンネル23から汚染空気を排出する通風
路15を15Aと15Bの2つに分け、各通風路15
A,15Bに必要個数の反応ユニット4及び送風機36
を設けるとともに、空気の入口に1つのガスセンサ29
を共通に設け、空気の出口は各通風路15A,15Bご
とにガスセンサ29を設けている。また、各通風路15
A,15Bに設けた反応ユニット4は前段と後段の2つ
のグループに区分してある。このような構成において、
測定ガス濃度が低いか、必要な処理風量が少ない場合に
は一系統、例えば通風路15Aのみ反応ユニット4及び
送風機36を運転すればよい。また、各系統の反応ユニ
ット4の内、前段か後段か、更にその中のどれを稼働さ
せるかを決定したり、これにすでに述べた反応板2の取
付角や光源7の光量などの制御を加えることも可能であ
る。
When the target space for removing harmful gas is large, such as in a motorway tunnel or a large-scale underground parking lot, the treatment system for harmful gas is divided into a plurality of treatment systems, and a treatment system that operates according to the concentration of harmful gas is provided. The decision is more effective from the viewpoint of power saving. FIG. 15 shows such a configuration. The ventilation passage 15 for discharging contaminated air from the motorway tunnel 23 is divided into two ventilation passages 15A and 15B.
A, 15B required number of reaction units 4 and blowers 36
And one gas sensor 29 at the air inlet.
Are provided in common, and the air outlet is provided with a gas sensor 29 for each of the ventilation paths 15A and 15B. In addition, each ventilation path 15
The reaction units 4 provided in A and 15B are divided into two groups, a former stage and a latter stage. In such a configuration,
When the measured gas concentration is low or the required processing air volume is small, the reaction unit 4 and the blower 36 may be operated only in one system, for example, only in the ventilation path 15A. Further, it is possible to determine which of the reaction units 4 of each system is the former stage or the latter stage, and which one of them is to be operated, and to control the mounting angle of the reaction plate 2 and the light amount of the light source 7 already described above. It is also possible to add.

【0028】[0028]

【発明の効果】以上述べた通り、この発明によれば、光
触媒を薄板からなる羽根状の反応板の表面に担持させ、
この反応板をブラインド形式に配列して空気を通流させ
ることにより、じゃま板などを設けることなく空気の攪
拌を良好にして有害ガスの除去率を高め、構成が簡単で
高性能の有害ガス除去装置を得ることができる。また、
その場合、反応板及び光源をそれぞれモジュール化して
積層すれば構成が一層簡潔となるとともに、各モジュー
ルの向きを適宜に変えて空気の攪拌度合いをより良好に
できるなど種々の利点が得られる。
As described above, according to the present invention, the photocatalyst is supported on the surface of the blade-like reaction plate made of a thin plate,
By arranging the reaction plates in a blind format and letting air flow through, the agitation of air is improved without the need for baffles, etc., and the removal rate of harmful gases is increased. A device can be obtained. Also,
In this case, if the reaction plate and the light source are modularized and laminated, the structure becomes simpler, and various advantages are obtained such that the orientation of each module can be appropriately changed to improve the degree of stirring of air.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す触媒モジュールの斜視
図である。
FIG. 1 is a perspective view of a catalyst module showing an embodiment of the present invention.

【図2】図1の触媒モジュールを用いた反応ユニットの
縦断面図である。
FIG. 2 is a longitudinal sectional view of a reaction unit using the catalyst module of FIG.

【図3】この発明の実施例を示す光源モジュールの斜視
図である。
FIG. 3 is a perspective view of a light source module showing an embodiment of the present invention.

【図4】図1の触媒モジュールと図3の光源モジュール
とを積層した反応ユニットの縦断面図である。
4 is a longitudinal sectional view of a reaction unit in which the catalyst module of FIG. 1 and the light source module of FIG. 3 are stacked.

【図5】図3の光源モジュールに反射ミラーを設けた構
成を示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a configuration in which a reflection mirror is provided in the light source module of FIG. 3;

【図6】触媒モジュールを交互に反転させた反応ユニッ
トの縦断面図である。
FIG. 6 is a longitudinal sectional view of a reaction unit in which a catalyst module is alternately inverted.

【図7】図1の触媒モジュールを連結した大形触媒モジ
ュールを示す正面図である。
FIG. 7 is a front view showing a large catalyst module to which the catalyst modules of FIG. 1 are connected.

【図8】図3の光源モジュールを連結した大形光源モジ
ュールを示す正面図である。
FIG. 8 is a front view showing a large light source module to which the light source modules of FIG. 3 are connected.

【図9】図7の大形触媒モジュールと図8の大形光源モ
ジュールとを積層した有害ガス除去装置のレイアウトを
示す平面図である。
9 is a plan view showing a layout of a harmful gas removing apparatus in which the large catalyst module of FIG. 7 and the large light source module of FIG. 8 are stacked.

【図10】空気の入口と出口にダンパを設けた反応ユニ
ットの斜視図である。
FIG. 10 is a perspective view of a reaction unit provided with dampers at an inlet and an outlet of air.

【図11】図10の反応ユニットの光触媒を洗浄水に浸
漬して洗浄するようにした構成を示す斜視図である。
11 is a perspective view showing a configuration in which the photocatalyst of the reaction unit in FIG. 10 is immersed in cleaning water for cleaning.

【図12】この発明の有害ガス除去装置を自動車道トン
ネルに適用した構成を示す側面図である。
FIG. 12 is a side view showing a configuration in which the harmful gas removing device of the present invention is applied to an automobile road tunnel.

【図13】ガスセンサで測定した有害ガス濃度に基づい
て有害ガス除去装置を制御する構成を示すブロック図で
ある。
FIG. 13 is a block diagram showing a configuration for controlling a harmful gas removing device based on a harmful gas concentration measured by a gas sensor.

【図14】図13における触媒モジュールの正面図であ
る。
FIG. 14 is a front view of the catalyst module in FIG.

【図15】複数の処理系統に分けて反応ユニットを設置
した有害ガス除去装置の構成を示す配置図である。
FIG. 15 is a layout diagram showing a configuration of a harmful gas removing apparatus in which a reaction unit is installed in a plurality of processing systems.

【図16】従来装置の縦断面図である。FIG. 16 is a longitudinal sectional view of a conventional device.

【符号の説明】[Explanation of symbols]

1 触媒モジュール 2 反応板 3 支持枠 4 反応ユニット 7 光源 8 水洗ノズル 9 光源モジュール 10 支持枠 11 反射ミラー 12 水洗ノズル 15 通風路 16 ダンパ扉 19 ダンパ 22 有害ガス除去装置 23 自動車道トンネル 24 洗浄水槽 25 洗浄水ポンプ 26 汚水槽 27 排水ポンプ 28 中和槽 29 ガスセンサ DESCRIPTION OF SYMBOLS 1 Catalyst module 2 Reaction plate 3 Support frame 4 Reaction unit 7 Light source 8 Rinse nozzle 9 Light source module 10 Support frame 11 Reflection mirror 12 Rinse nozzle 15 Ventilation path 16 Damper door 19 Damper 22 Harmful gas removal device 23 Tunnel for motorway 24 Rinse tank 25 Cleaning water pump 26 Sewage tank 27 Drainage pump 28 Neutralization tank 29 Gas sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/02 ZAB B01D 53/36 J 102D (72)発明者 高橋 武男 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 新貝 和照 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 宮本 昌広 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 西方 聡 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 寺野 哲浩 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 審査官 関 美祝 (56)参考文献 特開 平1−143630(JP,A) 特開 平5−237381(JP,A) 特開 昭56−89836(JP,A) 実開 平4−117643(JP,U) 特公 昭58−13215(JP,B2) 特公 昭63−21536(JP,B2) 特公 平2−62297(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B01D 53/94 B01D 53/86 B01J 21/06 B01J 21/18 B01J 35/02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01J 35/02 ZAB B01D 53/36 J 102D (72) Inventor Takeo Takahashi 1-1-1, Tanabe Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Inside Electric Co., Ltd. (72) Inventor Kazushi Shingai 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Masahiro Miyamoto 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Inside Fuji Electric Co., Ltd. (72) Inventor Satoshi Nishikata 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. Examiner at Fuji Electric Co., Ltd. Yoshihisa Seki (56) References JP-A-1-143630 (JP, A) JP-A-5-237381 (JP, A) JP-A-56-89836 (JP, A) Hei 4-117643 (JP, U) JP 58-13215 (JP, B2) JP 63-21536 (JP, B2) JP 2-62297 (JP, B2) (58) Fields surveyed (Int .Cl. 6 , DB name) B01D 53/94 B01D 53/86 B01J 21/06 B01J 21/18 B01J 35/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化チタンと活性炭との混合物を主成分
とする光触媒に波長400nm以下の光を照射しながら
有害ガスを含む空気を接触させ、空気中の有害ガスを前
記光触媒上に捕捉して除去する有害ガス除去装置におい
て、 光触媒を薄板からなる羽根状の反応板の表面に担持さ
せ、適宜枚数の前記反応板をブラインド形式に配列する
とともに、これらの反応板を方形の支持枠で一体化して
触媒モジュールを形成したことを特徴とする有害ガス除
去装置。
An air containing a harmful gas is brought into contact with a photocatalyst containing a mixture of titanium dioxide and activated carbon as a main component while irradiating light having a wavelength of 400 nm or less, and the harmful gas in the air is captured on the photocatalyst. In the harmful gas removing device for removing, a photocatalyst is supported on the surface of a blade-like reaction plate made of a thin plate, and an appropriate number of the reaction plates are arranged in a blind form .
At the same time, these reaction plates are integrated with a rectangular support frame
A harmful gas removing device comprising a catalyst module .
【請求項2】適宜個数の光源を方形の支持枠で一体化し
て光源モジュールを形成したことを特徴とする請求項1
記載の有害ガス除去装置。
2. The light source module according to claim 1, wherein an appropriate number of light sources are integrated by a rectangular support frame.
The harmful gas removing device according to the above.
【請求項3】上記触媒モジュールと上記光源モジュール
とを適宜個数積層して反応ユニットを形成するととも
に、複数個の前記反応ユニットを集合させて構成した
とを特徴とする請求項記載の有害ガス除去装置。
3. A suitably number laminating the above catalyst module and the light source module forms Then together the reaction unit
The harmful gas removing apparatus according to claim 2 , wherein a plurality of the reaction units are assembled .
【請求項4】上記反応ユニットの空気出入口に開閉自在
なダンパを設け、このダンパを閉めて前記反応ユニット
ごとに光触媒を洗浄するようにしたことを特徴とする請
求項記載の有害ガス除去装置。
Wherein provided freely damper opening and closing the air inlet and outlet of the reaction unit, the harmful gas removing apparatus according to claim 3, characterized in that so as to wash the photocatalyst for each of the reaction unit by closing the damper .
【請求項5】空気の入口又は出口の有害ガス濃度を測定
するガスセンサと、このガスセンサの測定結果に基づい
て上記反応板の取付角を増減する手段とを設けたことを
特徴とする請求項1〜請求項4のいずれかに記載の有害
ガス除去装置。
5. A gas sensor for measuring the harmful gas concentration at the inlet or outlet of air, according to claim 1, characterized in that a means for increasing or decreasing the attachment angle of the reaction plate on the basis of the measurement results of the gas sensor The harmful gas removing device according to any one of claims 1 to 4 .
【請求項6】空気の入口又は出口の有害ガス濃度を測定
するガスセンサと、このガスセンサの測定結果に基づい
上記光源の点灯数又は光量を増減する手段とを設けた
ことを特徴とする請求項1〜請求項5のいずれかに記載
の有害ガス除去装置。
6. A gas sensor for measuring the entrance or harmful gas concentration at the outlet of air, claims, characterized in that a means for increasing or decreasing the number of lit or quantity of the light source based on the measurement result of the gas sensor The harmful gas removing device according to any one of claims 1 to 5 .
【請求項7】上記反応ユニットを複数の処理系統に分け
て設置するとともに、空気の入口又は出口の有害ガス濃
度を測定するガスセンサと、このガスセンサの測定結果
に基づいて前記処理系統別に前記反応ユニットの運転を
制御する手段とを設けたことを特徴とする請求項3〜請
求項のいずれかに記載の有害ガス除去装置。
With 7. installed separately above reaction unit to a plurality of processing systems, a gas sensor for measuring the harmful gas concentration at the inlet or outlet of air, the reaction unit by the processing system on the basis of the measurement results of the gas sensor The harmful gas removing device according to any one of claims 3 to 6 , further comprising means for controlling the operation of the harmful gas.
JP5278969A 1993-10-12 1993-10-12 Hazardous gas removal equipment Expired - Lifetime JP2777623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5278969A JP2777623B2 (en) 1993-10-12 1993-10-12 Hazardous gas removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5278969A JP2777623B2 (en) 1993-10-12 1993-10-12 Hazardous gas removal equipment

Publications (2)

Publication Number Publication Date
JPH07108138A JPH07108138A (en) 1995-04-25
JP2777623B2 true JP2777623B2 (en) 1998-07-23

Family

ID=17604593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5278969A Expired - Lifetime JP2777623B2 (en) 1993-10-12 1993-10-12 Hazardous gas removal equipment

Country Status (1)

Country Link
JP (1) JP2777623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316373A (en) * 1999-05-12 2000-11-21 Utopia Kikaku:Kk Photocatalytic gas decomposition device for ethylene gas genearting from farm product

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546061C5 (en) * 1995-12-09 2008-02-28 Schröder, Werner Process for the purification of exhaust air
JPH1015351A (en) * 1996-07-05 1998-01-20 Takasago Thermal Eng Co Ltd Catalyst medium for air cleaning and air cleaner
JPH11207149A (en) * 1998-01-23 1999-08-03 Akio Komatsu Metal carrying photocatalyst type air purifier
EP0993859A1 (en) * 1998-09-18 2000-04-19 Hitachi Metals, Ltd. Three-dimensional, photocatalytic filter apparatus
KR100329805B1 (en) * 1999-06-29 2002-03-25 박호군 Photocatalytic reactor
KR20010037103A (en) * 1999-10-09 2001-05-07 김진원 Development of technology of TiO2 immobilized in several panels using TiO2 powder(Anatase type).
JP2004050100A (en) * 2002-07-22 2004-02-19 Iwasaki Kankyo Shisetsu Kk Photocatalytic reaction apparatus
JP5262219B2 (en) * 2008-03-25 2013-08-14 パナソニック株式会社 Photocatalyst deodorizer
US20130052090A1 (en) * 2011-08-31 2013-02-28 John R. Bohlen Photo-catalytic air purifier system with illuminated angled substrate
IT201900002975A1 (en) * 2019-03-01 2020-09-01 Stefano Carnevale Catalytic support for catalysis processes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813215A (en) * 1981-07-11 1983-01-25 株式会社大築 Anchor bolt
EP0257104B1 (en) * 1986-07-12 1991-10-16 Carl Schenck Ag Hydraulically operated wedge clamp for material testing devices
JPH01143630A (en) * 1987-11-27 1989-06-06 Ebara Res Co Ltd Method for treating fluorocarbon
JPH0262297A (en) * 1988-08-29 1990-03-02 Matsushita Electric Ind Co Ltd Integrated circuit device and ic card using same
JP2570073Y2 (en) * 1991-03-29 1998-04-28 アイシン精機株式会社 Toilet device with deodorizing device
JPH05237381A (en) * 1992-02-28 1993-09-17 Agency Of Ind Science & Technol Ventilation apparatus for motor highway tunnel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316373A (en) * 1999-05-12 2000-11-21 Utopia Kikaku:Kk Photocatalytic gas decomposition device for ethylene gas genearting from farm product

Also Published As

Publication number Publication date
JPH07108138A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
JP2777623B2 (en) Hazardous gas removal equipment
WO2000071867A1 (en) Purification system of exhaust gas of internal combustion engine
CN210340579U (en) UV photocatalysis sewage treatment plant
CN105753088A (en) Rotary type microwave wastewater treatment device
JPH08508448A (en) Mobile device for purifying polluted air
JP2001190646A (en) Photocatalyst purifying device
JP3792577B2 (en) Water treatment equipment using photocatalyst
JP2003284926A (en) Gas cleaning apparatus using photocatalyst
CN208097819U (en) A kind of tail gas decomposer
CN209576263U (en) A kind of waste gas treatment equipment
JP2001046906A (en) Air cleaning device
JP2001064921A (en) Air cleaning soundproof panel
JPH10503126A (en) Contaminated air purification device and related purification method
KR101989741B1 (en) Deodorizing apparatus having a multi-stage oxidation-reduction reaction set
CN210131535U (en) VOC photocatalysis treatment system
CN207385194U (en) A kind of UV photodissociation clarifier
KR20050099784A (en) Voc treatment apparatus using light catalytic reactor
JPH10151323A (en) Method of purifying contaminated air on highway
CN111085095A (en) Integrated low-temperature catalytic photo-oxidation active carbon adsorption energy-saving device
JP3796894B2 (en) Photocatalytic harmful gas removal device
JP2007007588A (en) Filter structure body and air purification apparatus using filter structure body thereof
JP2002126451A (en) Device for removing nitrogen oxides in air
CN221267596U (en) Grease exhaust treatment device
CN116747707B (en) High-efficiency nano material photocatalysis reaction device
JP2002079280A (en) Wastewater treatment apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term