JP2758406B2 - Wafer manufacturing method - Google Patents

Wafer manufacturing method

Info

Publication number
JP2758406B2
JP2758406B2 JP63160310A JP16031088A JP2758406B2 JP 2758406 B2 JP2758406 B2 JP 2758406B2 JP 63160310 A JP63160310 A JP 63160310A JP 16031088 A JP16031088 A JP 16031088A JP 2758406 B2 JP2758406 B2 JP 2758406B2
Authority
JP
Japan
Prior art keywords
silicon wafer
processing
wafer
thickness
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63160310A
Other languages
Japanese (ja)
Other versions
JPH0236069A (en
Inventor
雄一 斎藤
慎介 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Sony Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Sony Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP63160310A priority Critical patent/JP2758406B2/en
Priority to DE68920365T priority patent/DE68920365T2/en
Priority to EP89110984A priority patent/EP0348757B1/en
Priority to US07/367,637 priority patent/US5096854A/en
Priority to KR1019890008887A priority patent/KR0145300B1/en
Publication of JPH0236069A publication Critical patent/JPH0236069A/en
Application granted granted Critical
Publication of JP2758406B2 publication Critical patent/JP2758406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、シリコンウェーハの表面を無歪鏡面に加
工するためのウェーハの製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer manufacturing method for processing a surface of a silicon wafer into a distortion-free mirror surface.

「従来の技術」 従来、シリコンウェーハの無歪鏡面研磨は、厚さが約
2mmの不飽和ポリエステル等の繊維からなるクロスが均
一に接着された金属または合金製の定盤を回転せしめ、
クロス上に0.02μm程度の粒度からなる高純度SiO2粒子
が分散されたpH10〜12程度のアルカリ溶液を滴下せし
め、この面に加工すべきシリコンウェーハを100〜500g/
cm2の圧力で加工し、摩擦する方法が広く用いられてい
る。
"Conventional technology" Conventionally, non-strained mirror polishing of silicon wafers has a thickness of about
Rotate a metal or alloy platen to which a cloth made of fibers such as 2 mm unsaturated polyester is uniformly bonded,
A drop of an alkaline solution having a pH of about 10 to 12 in which high-purity SiO 2 particles having a particle size of about 0.02 μm is dispersed on the cloth, and a silicon wafer to be processed on this surface is 100 to 500 g /
A method of working with a pressure of cm 2 and rubbing is widely used.

この従来法によれば、研磨されるシリコンウェーハの
面内の厚さのばらつきが10μm程度あっても、前述のク
ロスがシリコンウェーハ面にそって圧縮変形するため
に、シリコンウェーハ全面にほぼ均一な圧力が発生し、
従ってシリコンウェーハは全面ほぼ均一な速度で研磨さ
れる。
According to this conventional method, even if the in-plane thickness variation of the silicon wafer to be polished is about 10 μm, since the above-mentioned cloth is compressed and deformed along the silicon wafer surface, it is almost uniform over the entire surface of the silicon wafer. Pressure occurs,
Therefore, the entire surface of the silicon wafer is polished at a substantially uniform speed.

「発明が解決しようとする課題」 しかしながら、前述の従来方法では、クロスがシリコ
ンウェーハ面にそって圧縮変形し、シリコンウェーハは
全面ほぼ均一な速度で研磨されることから、第2図に示
すように、面内厚さにばらつきのあるシリコンウェーハ
1に研磨を施す場合、研磨前の表面2にそって研磨が進
行し、図中符号3で示される研磨取代の部分が研磨除去
される。その結果、研磨前のシリコンウェーハ1が有し
ていた面内の厚さのばらつきは修正されず、研磨後の表
面4には、面内の厚さにばらつきが残留してしまうこと
になる。
[Problem to be Solved by the Invention] However, in the above-mentioned conventional method, the cloth is compressed and deformed along the surface of the silicon wafer, and the entire surface of the silicon wafer is polished at a substantially uniform speed. In the case where the silicon wafer 1 having a variation in in-plane thickness is polished, polishing proceeds along the surface 2 before polishing, and the portion of the stock removal indicated by reference numeral 3 in the figure is polished and removed. As a result, the in-plane thickness variation of the silicon wafer 1 before polishing is not corrected, and the in-plane thickness remains on the polished surface 4.

本発明は、上記事情に鑑みてなされたもので、研磨加
工前のシリコンウェーハの面内の厚さのばらつきがあっ
ても、そのばらつきを修正して無歪鏡面に加工すること
のできる加工方法の提供を目的としている。
The present invention has been made in view of the above circumstances, and even if there is a variation in the in-plane thickness of a silicon wafer before polishing, a processing method capable of correcting the variation and processing the silicon wafer into a distortion-free mirror surface. The purpose is to provide.

「課題を解決するための手段」 上記目的達成のために、本発明は、表面が平滑な高純
度石英からなる定盤の表面に、高純度石英の微粒子から
なる研磨剤が分散されたアルカリ溶液を供給し、この表
面に平行に配置された平坦な支持台に固定されたシリコ
ンウェーハを圧着し、定盤、ウェーハの一方または双方
を回転摩擦せしめるものである。
[Means for Solving the Problems] To achieve the above object, the present invention provides an alkaline solution in which an abrasive made of fine particles of high-purity quartz is dispersed on the surface of a surface plate made of high-purity quartz having a smooth surface. And press-bonds a silicon wafer fixed to a flat support table arranged in parallel with the surface, and causes one or both of the surface plate and the wafer to rotationally rub.

「作用」 表面が平滑な高純度石英からなる定盤の表面に上記ア
ルカリ溶液を供給しつつシリコンウェーハを圧着し、摩
擦せしめることにより、加工前にシリコンウェーハが有
していた面内の厚さのばらつきを修正しつつ研磨するこ
とができる。
"Action" The silicon wafer is pressed against the surface of the surface plate made of high-purity quartz having a smooth surface while supplying the above alkaline solution, and rubbed, so that the thickness within the surface of the silicon wafer before processing is obtained. Can be polished while correcting the variation of.

「実施例」 第1図は本発明によるシリコンウェーハの平面超精密
加工方法の一実施例を説明するための図であって、符号
11は加工前のシリコンウェーハである。このシリコンウ
ェーハ11は面内の厚さにばらつきがあり、加工前の表面
12は平坦になっていない。
Embodiment FIG. 1 is a view for explaining an embodiment of a plane ultra-precision processing method for a silicon wafer according to the present invention.
11 is a silicon wafer before processing. This silicon wafer 11 has a variation in in-plane thickness, and the surface before processing
12 is not flat.

このようなシリコンウェーハ11に平面加工を施すに
は、表面が平坦な高純度石英の定盤の表面に粒度0.02μ
m程度の粒度を有する高純度SiO2粒子が分散されたpH10
〜11のアルカリ溶液を滴下せしめる。そしてこの定盤面
に平行に配置された平坦な支持台に、シリコンウェーハ
11を固定し、その表面12を前述の定盤に100〜500g/cm2
の圧力で圧着し、摩擦することによって加工を行う。こ
のときシリコンウェーハ11の表面は、アルカリ溶液によ
る表面エッチング効果と、このアルカリ溶液のSiO2粒子
による加工効果とによって加工される。
In order to perform such planar processing on such a silicon wafer 11, a 0.02μ particle size is applied to the surface of a high-purity quartz platen having a flat surface.
pH 10 in which high-purity SiO 2 particles having a particle size of about m are dispersed
Add an alkaline solution of ~ 11 dropwise. The silicon wafer is placed on a flat support that is placed parallel to the platen surface.
Fix 11 and place its surface 12 on the platen described above at 100-500 g / cm 2
The processing is performed by pressure bonding and friction. At this time, the surface of the silicon wafer 11 is processed by the surface etching effect of the alkali solution and the processing effect of the alkali solution by the SiO 2 particles.

以上のような条件でシリコンウェーハ11の加工を行う
ことにより、第1図に示すようにシリコンウェーハ11の
厚さが大きな部分から順次鏡面加工が進行する。その結
果、厚さのばらつきが極めて小さく、無歪鏡面に仕上げ
られた加工面13を有する平面加工ウェーハ14が得られ
る。
By processing the silicon wafer 11 under the above conditions, the mirror processing proceeds sequentially from the portion where the thickness of the silicon wafer 11 is large as shown in FIG. As a result, a flat processed wafer 14 having a processed surface 13 with a very small thickness variation and a non-distorted mirror surface can be obtained.

この例によるシリコンウェーハ11の無歪鏡面加工方法
では、シリコンウェーハ11の厚さの大きな部分から順次
鏡面加工が進行し、加工前にシリコンウェーハ11に面内
の厚さのばらつきがあってもその面内の厚さのばらつき
を修正しつつ無歪鏡面に加工することができる。
In the method for processing a mirror-free surface of the silicon wafer 11 according to this example, mirror processing proceeds sequentially from a portion having a large thickness of the silicon wafer 11, and even if the silicon wafer 11 has a variation in in-plane thickness before the processing, the mirror processing is performed. It is possible to process the mirror into a distortion-free mirror surface while correcting the in-plane thickness variation.

(実験例) ウェーハの面内の厚さのばらつきが11μm、面荒さが
2.5μm、直径125mmのシリコンウエーハを、直径250m
m、平坦度5μm、表面荒さ0.01μmの高純度石英(純
度99.99%)からなる定盤に、粒度0.02μmの高純度石
英粒子が0.5wt.%分散されたpH10.2のアルカリ溶液を滴
下しながら、200g/cm2の圧力で圧着し、摩擦させて平面
加工を施した。このとき定盤は、35±1℃に調音された
金属板に固定されており、シリコンウェーハの加工温度
も約35℃であった。
(Experimental example) In-plane thickness variation of wafer is 11μm, surface roughness is low
2.5μm, 125mm diameter silicon wafer, 250m diameter
m, a flatness of 5 μm, and a surface roughness of 0.01 μm on a surface plate made of high-purity quartz (purity: 99.99%). While pressing, pressure was applied at a pressure of 200 g / cm 2 , and a flat surface was formed by friction. At this time, the platen was fixed to a metal plate tuned to 35 ± 1 ° C., and the processing temperature of the silicon wafer was about 35 ° C.

以上の条件で5分間加工した場合には、シリコンウェ
ーハの厚さが厚い部分のみ平坦な鏡面に加工され、他の
部分は未加工面のままであることが確認された。
When processing was performed for 5 minutes under the above conditions, it was confirmed that only the thick portion of the silicon wafer was processed into a flat mirror surface, and the other portions remained unprocessed.

そして加工時間を40分間とした場合には、シリコンウ
ェーハの加工面の全体が鏡面に加工された。このように
して得られた平面加工ウェーハの面内の厚さのばらつき
を測定した結果、厚さのばらつきは1.2μmと極めて平
坦に加工されていた。
When the processing time was set to 40 minutes, the entire processing surface of the silicon wafer was mirror-finished. As a result of measuring the in-plane thickness variation of the thus-obtained planar processing wafer, the thickness variation was 1.2 μm, and the wafer was extremely flat.

(比較例) 上記実施例との比較のために、シリコンウェーハを従
来法によって研磨して、その面内の厚さのばらつきを測
定した。厚さ2mmの不飽和ポリエステル繊維からなるク
ロスを均一に接着した金属製の定盤を回転させ、上述と
同様のSiO2粒子を分散させたアルカリ溶液を滴下しなが
ら、この面に直径125mm、面内の厚さのばらつきが9μ
m、表面荒さ2μmのシリコンウェーハを、200g/cm2
圧力で圧着し、摩擦させて鏡面研磨加工を施した。加工
時間が5分の場合、シリコンウェーハの全面は鏡面に変
化しており、厚さの大きな部分もその他の部分もほぼ同
一速度で研磨が進行していることが確認された。
(Comparative Example) For comparison with the above example, a silicon wafer was polished by a conventional method, and the in-plane thickness variation was measured. Rotate a metal platen to which a cloth made of unsaturated polyester fiber having a thickness of 2 mm is uniformly adhered, and drop an alkaline solution in which the same SiO 2 particles are dispersed as described above. 9μ variation in thickness
A silicon wafer having a surface roughness of 2 μm and a surface roughness of 2 μm was pressed under pressure of 200 g / cm 2 and rubbed to perform mirror polishing. When the processing time was 5 minutes, the entire surface of the silicon wafer was changed to a mirror surface, and it was confirmed that polishing was progressing at substantially the same speed in both the large thickness portion and the other portions.

40分研磨を行い完全な鏡面が得られた後、シリコンウ
ェーハの面内の厚さのばらつきを測定したところ、7μ
mであり、厚さのばらつきが改善され難いことが明白と
なった。
After polishing for 40 minutes to obtain a perfect mirror surface, the in-plane thickness variation of the silicon wafer was measured.
m, and it became clear that the variation in thickness was difficult to be improved.

「発明の効果」 以上説明したように本発明によれば、表面が平滑な高
純度石英の定盤の表面に、高純度石英の微粒子からなる
研磨剤が分散されたアルカリ溶液を供給し、この表面に
平行に配置された平坦な支持台に固定されたシリコンウ
ェーハを圧着し、定盤とウェーハを摩擦せしめることに
より、シリコンウェーハの厚さの大きな部分から順次加
工が進行し、加工前にシリコンウェーハに面内の厚さの
ばらつきがあってもその面内の厚さのばらつきを修正し
つつ無歪鏡面に加工することができる効果がある。
According to the present invention, as described above, according to the present invention, an alkaline solution in which an abrasive made of fine particles of high-purity quartz is dispersed is supplied to the surface of a surface plate of high-purity quartz having a smooth surface. By pressing a silicon wafer fixed on a flat support stand arranged parallel to the surface and rubbing the surface plate and the wafer, processing proceeds sequentially from the thicker part of the silicon wafer, and silicon is processed before processing. Even if the thickness of the wafer varies in the plane, there is an effect that the wafer can be processed into a distortion-free mirror surface while correcting the variation in the thickness in the plane.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を説明するための図であっ
て、シリコンウェーハの断面図、第2図は従来の研磨方
法を説明するための図であって、シリコンウェーハの断
面図である。 11……シリコンウェーハ 14……平面加工ウェーハ。
FIG. 1 is a view for explaining one embodiment of the present invention and is a sectional view of a silicon wafer, and FIG. 2 is a view for explaining a conventional polishing method and is a sectional view of a silicon wafer. is there. 11 Silicon wafer 14 Planar processed wafer.

───────────────────────────────────────────────────── フロントページの続き 審査官 鈴木 充 (56)参考文献 特開 昭50−74969(JP,A) 特開 昭49−132691(JP,A) (58)調査した分野(Int.Cl.6,DB名) B24B 37/04────────────────────────────────────────────────── ─── continued examiner Takashi Suzuki front page (56) reference Patent Sho 50-74969 (JP, a) JP Akira 49-132691 (JP, a) (58 ) investigated the field (Int.Cl. 6 , DB name) B24B 37/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面が平滑な高純度石英からなる定盤の表
面に、高純度石英の微粒子からなる研磨剤が分散された
アルカリ溶液を供給し、この表面に平行に配置された平
坦な支持台に固定されたシリコンウェーハを圧着し、定
盤とウェーハを摩擦せしめることを特徴とするウェーハ
の製造方法。
1. An alkali solution in which an abrasive made of fine particles of high-purity quartz is supplied to the surface of a surface plate made of high-purity quartz having a smooth surface, and a flat support placed in parallel with the surface. A method of manufacturing a wafer, comprising: pressing a silicon wafer fixed to a table, and rubbing the surface plate and the wafer.
JP63160310A 1988-06-28 1988-06-28 Wafer manufacturing method Expired - Lifetime JP2758406B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63160310A JP2758406B2 (en) 1988-06-28 1988-06-28 Wafer manufacturing method
DE68920365T DE68920365T2 (en) 1988-06-28 1989-06-16 Process for polishing a semiconductor wafer.
EP89110984A EP0348757B1 (en) 1988-06-28 1989-06-16 Method for polishing a silicon wafer
US07/367,637 US5096854A (en) 1988-06-28 1989-06-19 Method for polishing a silicon wafer using a ceramic polishing surface having a maximum surface roughness less than 0.02 microns
KR1019890008887A KR0145300B1 (en) 1988-06-28 1989-06-27 Polishing method of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160310A JP2758406B2 (en) 1988-06-28 1988-06-28 Wafer manufacturing method

Publications (2)

Publication Number Publication Date
JPH0236069A JPH0236069A (en) 1990-02-06
JP2758406B2 true JP2758406B2 (en) 1998-05-28

Family

ID=15712192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160310A Expired - Lifetime JP2758406B2 (en) 1988-06-28 1988-06-28 Wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP2758406B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802449B2 (en) * 1990-02-16 1998-09-24 三菱電機株式会社 Method for manufacturing semiconductor device
JP2006224252A (en) * 2005-02-18 2006-08-31 Kumamoto Univ Polishing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311428B2 (en) * 1973-11-02 1978-04-21

Also Published As

Publication number Publication date
JPH0236069A (en) 1990-02-06

Similar Documents

Publication Publication Date Title
JP2850803B2 (en) Wafer polishing method
KR100222228B1 (en) Regeneration method and apparatus of wafer and substrate
JP2002124490A (en) Method of manufacturing semiconductor wafer
JP2758406B2 (en) Wafer manufacturing method
JPH10256203A (en) Manufacturing method of mirror-finished thin sheet-like wafer
JP4778130B2 (en) Edge polishing apparatus and edge polishing method
JP3162558B2 (en) Glass substrate for magnetic recording medium and method of manufacturing magnetic recording medium
JPH02208931A (en) Polishing process for compound semiconductor substrate
US5934981A (en) Method for polishing thin plate and apparatus for polishing
JPH02139163A (en) Working method for wafer
JPH0319336A (en) Polishing of semiconductor wafer
JPS62236664A (en) Texturing method for magnetic disk substrate
JP3821944B2 (en) Wafer single wafer polishing method and apparatus
JPH1055990A (en) Semiconductor wafer and its manufacture
JPH0417332A (en) Wafer-holding plate for polishing semiconductor wafer and its face-correction treatment
JPH11226862A (en) Grinding device and grinding method
JP2889292B2 (en) Polishing equipment
JPH02178927A (en) Method of polishing plate
JPH08174395A (en) Manufacture of high flat glass base plate
JP3467483B2 (en) Fixed abrasive structure for precision polishing
JP2671857B2 (en) Wafer polishing equipment
JPS6117627B2 (en)
JPH02294032A (en) Method and device for polishing wafer
JPH05131369A (en) Polishing method for mirror surface
JPH08112740A (en) Polishing method of aluminum nitride

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11