JP2722968B2 - Condensation prevention control device for indoor air conditioner - Google Patents

Condensation prevention control device for indoor air conditioner

Info

Publication number
JP2722968B2
JP2722968B2 JP4287280A JP28728092A JP2722968B2 JP 2722968 B2 JP2722968 B2 JP 2722968B2 JP 4287280 A JP4287280 A JP 4287280A JP 28728092 A JP28728092 A JP 28728092A JP 2722968 B2 JP2722968 B2 JP 2722968B2
Authority
JP
Japan
Prior art keywords
opening
operating frequency
heat exchanger
fan
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4287280A
Other languages
Japanese (ja)
Other versions
JPH06137647A (en
Inventor
繁治 平良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP4287280A priority Critical patent/JP2722968B2/en
Publication of JPH06137647A publication Critical patent/JPH06137647A/en
Application granted granted Critical
Publication of JP2722968B2 publication Critical patent/JP2722968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、室内空気調和機、特に
メッシュフィン熱交換器を採用した室内空気調和機の結
露防止制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indoor air conditioner, and more particularly to a dew condensation prevention control device for an indoor air conditioner employing a mesh fin heat exchanger.

【0002】[0002]

【従来の技術】メッシュフィン熱交換器は、例えば外径
1〜4mmの伝熱管を例えば10〜20mmピッチで多数配
置し、これらの外面に空気が貫流しうる網目状のフィン
を長手方向に沿って固着してなり、フレキシブルで種々
の曲面をなすように容易に加工でき、しかもファンの風
速が速いときに相当傾斜させて配置しても表面に結露し
た水滴が落下しないという利点を有する。従って、この
メッシュフィン熱交換器は、熱交換器の配置が空間的,
形態的に制約される天井埋込型等の室内空気調和機に、
最近多用され、室内機のコンパクト化,低騒音化,コスト
ダウンに貢献している。
2. Description of the Related Art In a mesh fin heat exchanger, for example, a large number of heat transfer tubes having an outer diameter of 1 to 4 mm are arranged at a pitch of, for example, 10 to 20 mm, and mesh fins through which air can flow through the outer surfaces thereof are formed along the longitudinal direction. It has the advantage that water droplets condensed on the surface do not fall even if the fan is arranged at a considerable inclination when the wind speed of the fan is high, since it is flexible and easily formed into various curved surfaces. Therefore, in this mesh fin heat exchanger, the arrangement of the heat exchanger is spatial,
For indoor air conditioners such as ceiling-embedded type
It has been widely used recently and contributes to downsizing, lower noise and cost reduction of indoor units.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記メッシ
ュフィン熱交換器は、圧力損失の大きい細径(1〜4mm)
の伝熱管を用いているため、圧力損失を減じるべく太径
管から10本以上に分岐させて多パス化する必要があ
り、この多パス化により、不可避的に各細径の伝熱管の
間で偏流つまり冷媒流量に差が生じる。すると、冷媒流
量の多い伝熱管で蒸発する冷媒は湿り度が高くなり、冷
媒流量の少ない伝熱管で蒸発する冷媒は過熱度が高くな
るから、室内空気が露点に近い場合、後者の伝熱管を通
った室内空気は、十分冷却されずに湿った状態のまま下
流側のファンに達し、冷房運転下で均一に冷却されてい
るファンに接して結露する。換言すれば、従来の結露防
止制御は、偏流の生じない太径の伝熱管をもつ普通の熱
交換器を対象とし、室温が露点近くまで低下したとき、
単に冷房運転を停止して、室内機のファンやケーシング
への結露を防止する手法にすぎないため、かかる制御で
もっては、偏流が生じやすい新種のメッシュフィン熱交
換器を採用した室内機の結露を防止することができず、
ファンや吹出口に結露した水滴が、室内に吹き飛ばされ
るという問題が存するのである。また、室温が露点に近
付いたときに冷房運転を停止するだけでは、冷凍回路系
から冷媒が徐々に漏洩するのを検知できず、かかる漏洩
で循環冷媒量が減り、熱交換器で蒸発する冷媒の過熱度
が高まって、上述と同様に、室内空気が露点に近いとき
ファンに結露が生じるという問題がある。
However, the above mesh fin heat exchanger has a small diameter (1 to 4 mm) having a large pressure loss.
Because of the use of heat transfer tubes, it is necessary to diverge from a large-diameter tube to 10 or more in order to reduce pressure loss and to form multiple passes. , A difference occurs in the refrigerant flow rate. Then, the refrigerant evaporating in the heat transfer tube with a high refrigerant flow rate has a high degree of wetness, and the refrigerant evaporating in the heat transfer tube with a low refrigerant flow rate has a high degree of superheat. The passed indoor air reaches the downstream fan in a wet state without being sufficiently cooled, and contacts the uniformly cooled fan during the cooling operation to form dew. In other words, the conventional dew condensation prevention control targets a normal heat exchanger having a large-diameter heat transfer tube with no drift, and when the room temperature drops to near the dew point,
This is merely a method of preventing the condensation on the fan and casing of the indoor unit by simply stopping the cooling operation.Therefore, with such control, the condensation of the indoor unit using a new type of mesh fin heat exchanger that easily causes drift Can not be prevented,
There is a problem that water droplets condensed on the fan and the outlet are blown into the room. Also, simply stopping the cooling operation when the room temperature approaches the dew point does not detect the gradual leakage of the refrigerant from the refrigeration circuit system, and the leakage reduces the amount of circulating refrigerant, and the refrigerant evaporates in the heat exchanger. As described above, there is a problem in that when the indoor air is near the dew point, dew condensation occurs on the fan.

【0004】そこで、本発明の目的は、結露の可能性を
室温,外気温度,ファン風量,圧縮機回転数等のパラメー
タで判定し、ファン風量や圧縮機回転数などを変化させ
て、熱交換器で蒸発する冷媒の過熱度を適正に制御する
ことによって、偏流の生じやすいメッシュフィン熱交換
器等を採用した室内機または冷媒が漏洩する室内機での
結露をも防止し、かかる室内機の汎用性を高めうる室内
空気調和機の結露防止装置を提供することにある。
Accordingly, an object of the present invention is to determine the possibility of dew condensation based on parameters such as room temperature, outside air temperature, fan air flow rate, compressor rotation speed, etc., and change the fan air flow rate, compressor rotation speed, etc. to change heat exchange. By properly controlling the degree of superheat of the refrigerant evaporating in the heat exchanger, dew condensation in an indoor unit employing a mesh fin heat exchanger or the like in which drift is likely to occur or in an indoor unit in which the refrigerant leaks is also prevented. An object of the present invention is to provide a dew condensation preventing device for an indoor air conditioner that can improve versatility.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の室内空気調和機の結露防止制御装置は、図
1に例示するように、吸込口11aと、開閉フラップ1
2をもつ吹出口11bを有するケーシング11内に、冷
凍回路1の圧縮機2から吐出される冷媒が蒸発する熱交
換器7と、送風量Qを変化できるファン8とを収容した
室内空気調和機において、外気温度Toと室温Tiが夫々
所定値T1,T2以下で、かつ、上記室温Tiと設定温度T
sの差の絶対値│Ts−Ti│が所定値T3以下の場合に、
上記ファン8の送風量Qと上記開閉フラップ12の開度
Θと上記圧縮機2の運転周波数fを検出する第1検出手
段14と、この第1検出手段14で検出された上記送風
量Qが小(L)かつ上記運転周波数fが最小fminであると
き、上記送風量Qと運転周波数fを共に中(M,f<fm)に
変化させ、続いて検出された上記開度Θが最小Θminで
あるとき、この開度Θを中(Θ<Θm)に変化させて、上
記熱交換器7における冷媒の過熱度を上げてケーシング
11での結露をなくすように制御する第1制御手段14
と、上記第1検出手段14で検出された上記送風量Qが
大(H)かつ上記運転周波数fが最大fmaxであるとき、上
記送風量Qと運転周波数fを共に中(M,fm<f)に変化さ
せ、続いて検出された上記開度Θが最大Θmaxであると
き、この開度Θを中(Θm<Θ)に変化させて、上記熱交
換器7における冷媒の過熱度を下げてファン8での結露
をなくすように制御する第2制御手段14を備えたこと
を特徴とする。また、上記第1検出手段14に、熱交換
器7の温度Thをさらに検出させるようにして第2検出
手段14'とし、上記第2制御手段14に、上記第2検
出手段14'で検出される熱交換器7の温度Thが所定値
4以下であるときにも、送風量Qと運転周波数fを共に
中(M,f<fm)に変化させるようにして第3制御手段1
4'とすることもできる。
In order to achieve the above object, a dew condensation prevention control device for an indoor air conditioner according to the present invention comprises a suction port 11a and an opening / closing flap 1 as illustrated in FIG.
Indoor air conditioner in which a heat exchanger 7 for evaporating the refrigerant discharged from the compressor 2 of the refrigeration circuit 1 and a fan 8 capable of changing the blown air amount Q are accommodated in a casing 11 having an air outlet 11b having an air outlet 2. , The outside air temperature To and the room temperature Ti are respectively equal to or less than predetermined values T 1 and T 2 , and the room temperature Ti and the set temperature T
If the absolute value │Ts-Ti│ difference s is less than the predetermined value T 3,
A first detecting means 14 for detecting an air flow amount Q of the fan 8, an opening degree の of the opening / closing flap 12, and an operating frequency f of the compressor 2, and an air flow amount Q detected by the first detecting means 14. When the operating frequency f is small (L) and the operating frequency f is the minimum fmin, the air flow rate Q and the operating frequency f are both changed to medium (M, f <fm). , The opening degree 変 化 is changed to a medium value (Θ <Θm) to increase the degree of superheat of the refrigerant in the heat exchanger 7 so as to eliminate condensation in the casing 11.
When the air flow rate Q detected by the first detection means 14 is large (H) and the operating frequency f is the maximum fmax, the air flow rate Q and the operating frequency f are both medium (M, fm <f ), And when the detected opening degree で is the maximum Θmax, the opening degree 中 is changed to medium (Θm <、) to reduce the degree of superheat of the refrigerant in the heat exchanger 7. A second control means 14 for controlling dew condensation in the fan 8 is provided. In addition, the first detection means 14 is further made to detect the temperature Th of the heat exchanger 7 as a second detection means 14 ', and the second control means 14 detects the temperature Th by the second detection means 14'. even when the temperature Th of the heat exchanger 7 that is less than or equal to a predetermined value T 4, air volume Q and in both the operating frequency f (M, f <fm) third control means so as to vary the 1
It can be 4 '.

【0006】[0006]

【作用】室内空気調和機は、吸込口11aと開閉フラッ
プ12をもつ吹出口11bとを有するケーシング11内
に、冷凍回路1の圧縮機2から吐出される冷媒が蒸発す
る熱交換器7と、送風量Qを変化できるファン8を収容
している。請求項1に記載の結露防止制御装置の第1検
出手段14は、外気温度Toと室温Tiが所定値T1,T2
以下で、かつ、室温Tiと設定温度Tsの差の絶対値│T
s−Ti│が所定値T3以下の場合、湿り空気線図上で露
点に近付いたとして、ファン8の送風量Q,開閉フラッ
プ12の開度Θ,圧縮機2の運転周波数fを検出する。上
記装置の第1制御手段14は、第1検出手段14で検出
された上記送風量Qが小(L)かつ上記運転周波数fが最
小fminであるとき、熱交換器7で蒸発する冷媒の湿り度
が高くて空気が冷却不足で結露しやすいとして、上記送
風量Qと運転周波数fを共に中(M,f<fm)に変化させ、
続いて検出された上記開度Θが最小Θminであるとき、
吹出口11bで冷気が停滞して結露が促進されるとし
て、この開度Θを中(Θ<Θm)に変化させる。これによ
り、熱交換器7で蒸発する冷媒の乾き度が上がって空気
が十分冷却され、速度が増して冷気が吹出口11bで停
滞せず、吹出口付近などのケーシング11への結露が防
止される。一方、上記装置の第2制御手段14は、第2
検出手段14で検出された上記送風量Qが大(H)かつ上
記運転周波数fが最大fmaxであるとき、熱交換器7で蒸
発する冷媒の過熱度が高くて冷媒の偏流に伴う局所的な
空気の冷却不足によりファン8が結露しやすいとして、
上記送風量Qと運転周波数fを共に中(M,fm<f)に変化
させ、続いて検出された上記開度Θが最大Θmaxである
とき、吹出風量の増加でファン8の結露が促進されると
して、この開度Θを中(Θm<Θ)に変化させる。これに
より、熱交換器7で蒸発する冷媒の過熱度が下がって偏
流による局所的な冷却不足がなくなり、吹出風量の減少
でファン8への結露が防止される。
The indoor air conditioner includes a heat exchanger 7 in which a refrigerant discharged from the compressor 2 of the refrigeration circuit 1 evaporates in a casing 11 having an inlet 11a and an outlet 11b having an opening / closing flap 12. The fan 8 which can change the blowing amount Q is accommodated. The first detecting means 14 of the dew condensation prevention control device according to claim 1, wherein the outside air temperature To and the room temperature Ti are set to predetermined values T 1 , T 2.
And the absolute value | T of the difference between the room temperature Ti and the set temperature Ts
If s−Ti | is equal to or less than the predetermined value T 3 , it is determined that the dew point is approaching on the psychrometric chart, and the blowing amount Q of the fan 8, the opening degree Θ of the opening / closing flap 12, and the operating frequency f of the compressor 2 are detected. . The first control means 14 of the above-mentioned device, when the blown air amount Q detected by the first detection means 14 is small (L) and the operating frequency f is the minimum fmin, wets the refrigerant evaporated in the heat exchanger 7. As the air temperature is high and the air is insufficiently cooled and dew condensation is likely to occur, both the air flow rate Q and the operating frequency f are changed to medium (M, f <fm).
Subsequently, when the detected opening Θ is the minimum Θmin,
The opening Θ is changed to a medium (Θ <Θm), assuming that the cool air stagnates at the outlet 11b to promote dew condensation. Thereby, the dryness of the refrigerant evaporating in the heat exchanger 7 increases, the air is sufficiently cooled, the speed increases, and the cool air does not stagnate at the outlet 11b, thereby preventing condensation on the casing 11 near the outlet. You. On the other hand, the second control means 14 of the device
When the blowing amount Q detected by the detecting means 14 is large (H) and the operating frequency f is the maximum fmax, the degree of superheat of the refrigerant evaporated in the heat exchanger 7 is high, and the local temperature accompanying the drift of the refrigerant is high. Assuming that the fan 8 tends to form dew due to insufficient cooling of the air,
Both the blowing amount Q and the operating frequency f are changed to medium (M, fm <f), and when the detected opening degree で is the maximum Θmax, the dew condensation of the fan 8 is promoted by the increase of the blowing air amount. Therefore, the opening degree 変 化 is changed to medium (Θm <Θ). As a result, the degree of superheat of the refrigerant evaporating in the heat exchanger 7 is reduced, so that there is no local lack of cooling due to drift, and the amount of blown air is reduced, thereby preventing condensation on the fan 8.

【0007】請求項2に記載の結露防止装置は、請求項
1の第1検出手段14に、熱交換器7の温度Thをさら
に検出させるようにして第2検出手段14'とし、請求
項1の第1制御手段14を備え、請求項1の第2制御手
段14に、上記第2検出手段14'で検出される熱交換
器7の温度Thが所定値T4以下であるときにも、送風量
Qと運転周波数fを共に中(M,fm<f)に変化させるよう
にして第3制御手段14'としたものである。従って、
この装置の第2検出手段14'は、上述の第1検出手段
14の動作に加えて、熱交換器7の温度Thを検出す
る。上記装置の第1制御手段14'は、上述の第1制御
手段14と同様に動作して、ケーシング11への結露を
防止する。一方、上記装置の第3制御手段14は'、上
述の第2制御手段14と同様に動作して、ファン8への
結露を防止するとともに、第2検出手段14'で検出さ
れた熱交換器7の温度Thが所定値T4以下であるとき、
冷凍回路系1からの冷媒の漏洩などの原因で熱交換器7
で蒸発する冷媒の過熱度が高まり、冷媒の偏流に伴う局
所的な空気の冷却不足によりファン8が結露しやすいと
して、上記送風量Qと運転周波数fを共に中(M,fm<f)
に変化させる。これにより、冷凍回路系1からの冷媒の
漏洩によるファン8への結露も防止される。
In the second aspect of the present invention, the dew condensation preventing device further includes a second detecting means 14 'which causes the first detecting means 14 to further detect the temperature Th of the heat exchanger 7. comprising a first control means 14, the second control means 14 according to claim 1, even when the temperature Th of the heat exchanger 7 as detected by the second detecting means 14 'is less than the predetermined value T 4, The third control means 14 'is configured to change both the air flow rate Q and the operating frequency f to medium (M, fm <f). Therefore,
The second detecting means 14 'of this device detects the temperature Th of the heat exchanger 7 in addition to the operation of the first detecting means 14 described above. The first control means 14 'of the above device operates in the same manner as the above-described first control means 14, and prevents dew condensation on the casing 11. On the other hand, the third control means 14 'of the device operates in the same manner as the above-described second control means 14 to prevent condensation on the fan 8 and to prevent the heat exchanger detected by the second detection means 14'. when the temperature Th of 7 is equal to or less than the predetermined value T 4,
Heat exchanger 7 due to leakage of refrigerant from refrigeration circuit system 1
As the degree of superheat of the refrigerant evaporating in the air increases, and the fan 8 tends to form dew due to local insufficient cooling of the air due to the drift of the refrigerant, it is assumed that both the blowing amount Q and the operating frequency f are medium (M, fm <f).
To change. Thereby, dew condensation on the fan 8 due to leakage of the refrigerant from the refrigeration circuit system 1 is also prevented.

【0008】[0008]

【実施例】以下、本発明を図示の実施例により詳細に説
明する。図1は、本発明の結露防止装置を採用した室内
空気調和機の一例を示す断面図及びこの室内空気調和機
を含む冷凍回路を示す回路図である。上記冷凍回路1
は、図1(A)に示すように、圧縮機2,四路切換弁3,室
外ファン5をもつ室外熱交換器4,膨張弁6および室内
ファン8をもつ室内熱交換器7を順次管路9a〜9fで循
環接続してなり、四路切換弁3を実線,破線で示す通路
に切り換えて、室内Rを夫々冷房,暖房するようになっ
ている。室内空気調和機10は、図1(B)に示すよう
に、吸込口11aと開閉フラップ12をもつ吹出口11b
とを有するケーシング11内に、ドレンパン13を下方
に備えた上記室内熱交換器7(以下、「熱交換器」と略称
する。)と、タップをL,M,Hの3段に変えて送風量Qを
小,中,大に変化できる上記室内ファン8(以下、「ファ
ン」と略称する。)とを収容してなる。上記熱交換器7
は、メッシュフィン熱交換器であり、上記開閉フラップ
12は、図2に示すように、開度Θが最小のΘminから
最大のΘmaxまで図示しないサーボモータによって変化
せしめられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 1 is a cross-sectional view illustrating an example of an indoor air conditioner employing the dew condensation prevention device of the present invention, and a circuit diagram illustrating a refrigeration circuit including the indoor air conditioner. The refrigeration circuit 1
As shown in FIG. 1 (A), a compressor 2, an outdoor heat exchanger 4 having an outdoor fan 5, an expansion valve 6 and an indoor heat exchanger 7 having an indoor fan 8 are sequentially piped as shown in FIG. The four-way switching valve 3 is switched to a path indicated by a solid line and a broken line to cool and heat the room R, respectively. As shown in FIG. 1B, the indoor air conditioner 10 has an air outlet 11b having a suction port 11a and an opening / closing flap 12.
The above-mentioned indoor heat exchanger 7 (hereinafter abbreviated as “heat exchanger”) having a drain pan 13 below in a casing 11 having: The indoor fan 8 (hereinafter, abbreviated as “fan”) that can change the air volume Q to small, medium, and large is housed. The heat exchanger 7
Is a mesh fin heat exchanger, and as shown in FIG. 2, the opening / closing flap 12 is changed by a servomotor (not shown) from the minimum opening degree Θmin to the maximum opening degree Θmax.

【0009】室内空気調和機10のケーシング11やフ
ァン8への結露を防止する結露防止装置は、図1(A)
に示すマイクロコンピュータ14(以下、「マイコン」と
略称する。)で構成され、このマイコン14が、請求項1
に掲げた後述する第1検出手段,第1制御手段および第
2制御手段を兼ねる。即ち、上記マイコン14は、第1
検出手段として、外気温度センサ15,室温センサ16
からの検出信号を受けて、外気温度Toが所定値T1
下、室温Tiが所定値T2以下で、かつ、室温Tiと室内
機に設定された設定温度Tsの差の絶対値│Ts−Ti│
が所定値T3以下と判断した場合に(図3のS1参照)、
ファン8のモータ,開閉フラップ12のサーボモータ,圧
縮機2からの信号を受けて、ファンの送風量Qが小,中,
大のいずれであり、フラップの開度Θがいくらで、圧縮
機の運転周波数fがいくらであるかを検出する。なお、
上記判断(図3のS1)は、各センサ15,16の温度検
出精度にバラツキがあるため、2℃程度の誤差を伴う。
FIG. 1A shows a dew condensation preventing device for preventing dew condensation on the casing 11 and the fan 8 of the indoor air conditioner 10.
(Hereinafter abbreviated as "microcomputer").
, Also serves as first detection means, first control means, and second control means described later. That is, the microcomputer 14 has the first
As detection means, an outside air temperature sensor 15 and a room temperature sensor 16
Receiving a detection signal from outside air temperature To is below the predetermined value T 1, at room temperature Ti is less than a predetermined value T 2, and the absolute value of the difference between the set temperature Ts set in the room temperature Ti and the indoor unit │Ts- Ti│
If There it is determined that the predetermined value or less T 3 (see S1 in FIG. 3),
In response to signals from the motor of the fan 8, the servomotor of the opening / closing flap 12, and the compressor 2, the blown air amount Q of the fan is small, medium,
It is determined whether the opening degree フ of the flap is large or the operating frequency f of the compressor. In addition,
The above judgment (S1 in FIG. 3) involves an error of about 2 ° C. because the temperature detection accuracy of the sensors 15 and 16 varies.

【0010】そして、上記マイコン14は、第1制御手
段として、検出した送風量Qが小(L)かつ運転周波数f
が最小fminであるとき(図3のS2参照)、上記送風量Q
と運転周波数fを共に中(M,f<fm)に変化させ(同S3参
照)、続いて検出した上記開度Θが最小Θminであるとき
(同S4参照)、この開度Θを中(Θ<Θm)に変化させて
(同S5参照)、熱交換器7で蒸発する冷媒の過熱度を上
げてケーシング11での結露をなくすように制御を行な
う。また、上記マイコン14は、第2制御手段として、
検出した送風量Qが大(H)かつ運転周波数fが最大fmax
であるとき(図3のS6参照)、上記送風量Qと運転周波
数fを共に中(M,fm<f)に変化させ(同S7参照)、続い
て検出した上記開度Θが最大Θmaxであるとき(同S8参
照)、この開度Θを中(Θm<Θ)に変化させて(同S9参
照)、熱交換器7で蒸発する冷媒の過熱度を下げてファ
ン8での結露をなくすように制御を行なう。
The microcomputer 14 operates as a first control means so that the detected air volume Q is small (L) and the operating frequency f
Is the minimum fmin (see S2 in FIG. 3),
And the operating frequency f is changed to medium (M, f <fm) (see S3), and when the detected opening degree で is the minimum Θmin
(See S4), change the opening Θ to medium (Θ <中 m)
(Refer to S5), control is performed to increase the degree of superheat of the refrigerant evaporated in the heat exchanger 7 to eliminate condensation in the casing 11. In addition, the microcomputer 14 is provided as a second control unit,
Detected air volume Q is large (H) and operating frequency f is maximum fmax
(See S6 in FIG. 3), the air flow rate Q and the operating frequency f are both changed to medium (M, fm <f) (see S7), and the detected opening degree で is a maximum Θmax. At some point (see step S8), the opening degree 変 化 is changed to medium (Θm <Θ) (see step S9), and the degree of superheat of the refrigerant evaporated in the heat exchanger 7 is reduced to eliminate condensation in the fan 8. Control is performed as follows.

【0011】尚、上記fm、Θmは、圧縮機2の最大,最小
の運転周波数fmax,fminの中間値、開閉フラップ12の
最大,最小の開度Θmax,Θminの中間値を夫々表わす。従
って、上記f<fmは、運転周波数fが中間値fmより小さい
中の値に、上記Θm<Θは、開度Θが中間値Θmより大き
い中の値に夫々設定されることを意味する。以上で述べ
た第1検出手段,第1制御手段,第2制御手段を兼ねるマ
イコン14による検出,制御処理は、図2の一覧表に示
すとおりである。
The above-mentioned fm and Δm represent an intermediate value between the maximum and minimum operating frequencies fmax and fmin of the compressor 2 and an intermediate value between the maximum and minimum opening degrees Δmax and Δmin of the opening / closing flap 12, respectively. Accordingly, f <fm means that the operating frequency f is set to a medium value smaller than the intermediate value fm, and 、 m <Θ means that the opening Θ is set to a medium value larger than the intermediate value Θm. The detection and control processing by the microcomputer 14, which also serves as the first detection means, the first control means, and the second control means described above, is as shown in the table of FIG.

【0012】上記構成の請求項1に記載の室内空気調和
機の結露防止制御装置の動作を、図3を参照しつつ次に
説明する。いま、図1(A)の冷凍回路1の四路切換弁3
が図示の実線の通路に切り換えられ、圧縮機2,室外フ
ァン5およびファン8が駆動されて、蒸発器として働く
熱交換器7により室内Rが冷房される冷房運転状態にあ
るとする。結露防止制御装置であるマイコン14は、外
気温度センサ15,室温センサ16からの検出信号を受
けて、図3のステップS1で、外気温度Toが所定値T1
以下、かつ室温Tiが所定値T2以下、かつ室内機に設定
された設定温度Tsと室温Tiの差の絶対値│Ts−Ti│
が所定値T3以下か否かを判断し、肯と判断すると、湿
り空気線図上で露点に近付いたとして、ファン8,圧縮
機2及び開閉フラップ12の各モータからの信号を受け
て、ファン8の送風量Qが小,中,大(L,M,Hタップ)の
いずれであり、圧縮機2の運転周波数fがいくらで、フ
ラップの開度Θがいくらであるかを検出する。
The operation of the dew condensation prevention control device for an indoor air conditioner according to the first aspect of the present invention will be described below with reference to FIG. Now, the four-way switching valve 3 of the refrigeration circuit 1 of FIG.
Is switched to the path indicated by the solid line in the drawing, and the compressor 2, the outdoor fan 5 and the fan 8 are driven, and the indoor R is cooled by the heat exchanger 7 functioning as an evaporator. The microcomputer 14, which is the dew condensation prevention control device, receives the detection signals from the outside air temperature sensor 15 and the room temperature sensor 16, and in step S1 in FIG. 3, sets the outside air temperature To to a predetermined value T 1.
Or less and room temperature Ti is the predetermined value T 2 or less, and the absolute value │Ts-Ti│ the difference between the set temperature Ts and the ambient temperature Ti which is set in the indoor unit
There it is determined whether a predetermined value T 3 below, when it is determined that affirmation, as close to the dew point on the diagram psychrometric, in response to a signal from the motor of the fan 8, the compressor 2 and the opening and closing flaps 12, It detects whether the air flow amount Q of the fan 8 is small, medium, or large (L, M, H taps), what the operating frequency f of the compressor 2 is, and what the flap opening Θ is.

【0013】つぎに、ステップS2で、検出した送風量
Qが小(L)かつ運転周波数fが最小fminであるか否かを
判断し、肯と判断すれば、熱交換器7で蒸発する冷媒の
湿り度が高くて空気が冷却不足でケーシングに結露しや
すいので、ステップS3に進んで、両モータに制御信号
を送って上記送風量Qと運転周波数fを共に中(M,f<f
m)に変化させる。続いて、ステップS4で、検出した開
度Θが最小Θminであるか否かを判断し、肯と判断すれ
ば、吹出口11bで冷気が停滞して結露が促進されるの
で、ステップS5に進んで、サーボモータに制御信号を
送って開閉フラップ12の開度Θを中(Θ<Θm)に変化
させる。これらの制御により、メッシュフィン型の熱交
換器7で蒸発する冷媒の乾き度が上がって空気が十分冷
却され、風速が増して吹出口11bで冷気が停滞せず、
吹出口付近などのケーシング11への結露が防止され
る。
Next, in step S2, it is determined whether the detected air volume Q is small (L) and the operating frequency f is the minimum fmin, and if the determination is affirmative, the refrigerant evaporating in the heat exchanger 7 is determined. Since the humidity of the air is high and the air is insufficiently cooled and dew condensation easily occurs on the casing, the process proceeds to step S3, in which a control signal is sent to both motors to set both the air flow rate Q and the operating frequency f to medium (M, f <f).
m). Subsequently, in step S4, it is determined whether or not the detected opening degree で is the minimum Θmin. If the determination is affirmative, the cool air stagnates at the outlet 11b to promote dew condensation, and the process proceeds to step S5. Then, a control signal is sent to the servomotor to change the opening Θ of the opening / closing flap 12 to a medium (Θ <Θm). By these controls, the dryness of the refrigerant evaporating in the mesh fin type heat exchanger 7 increases, the air is sufficiently cooled, the wind speed increases, and the cool air does not stagnate at the outlet 11b.
Condensation on the casing 11 near the outlet is prevented.

【0014】上記ステップS2で否と判断すれば、ステ
ップS6に進んで、検出した送風量Qが大(H)かつ運
転周波数fが最大fmaxであるか否かを判断し、肯と判断
すれば、熱交換器7で蒸発する冷媒の過熱度が高くて冷
媒の偏流に伴う局所的な空気の冷却不足によりファン8
が結露しやすいので、ステップS7に進んで、各モータ
に信号を送って送風量Qと運転周波数fを中(M,fm<
f)に変化させる。続いて、ステップS8で、検出した
開度Θが最大Θmaxであるか否かを判断し、肯と判断す
れば、吹出風量の増加でファン8の結露が促進されるの
で、ステップS9に進んで、サーボモータに信号を送っ
て開閉フラップ12の開度Θを中(Θm<Θ)に変化させ
る。これらの制御により、メッシュフィン型の熱交換器
7で蒸発する冷媒の過熱度が下がって偏流による局所的
な冷却不足がなくなり、吹出風量の減少でファン8への
結露が防止される。
If the answer is NO in step S2, the process proceeds to step S6, in which it is determined whether the detected air volume Q is large (H) and the operating frequency f is the maximum fmax. The degree of superheating of the refrigerant evaporating in the heat exchanger 7 is high and the fan 8
Proceeds to step S7, and sends a signal to each motor to set the air flow rate Q and the operating frequency f to the middle (M, fm <
f). Subsequently, in step S8, it is determined whether or not the detected opening Θ is the maximum Θmax. If the determination is affirmative, condensation of the fan 8 is promoted by an increase in the amount of blown air, and the process proceeds to step S9. Then, a signal is sent to the servomotor to change the opening Θ of the opening / closing flap 12 to a medium (Θm <Θ). By these controls, the degree of superheat of the refrigerant evaporating in the mesh fin type heat exchanger 7 is reduced, so that there is no local lack of cooling due to drift, and the amount of blown air is reduced to prevent dew condensation on the fan 8.

【0015】図4は、本発明の請求項2に記載の結露防
止装置の制御を示すフローチャートである。この結露防
止装置は、第2検出手段,第1制御手段および第3制御
手段を兼ねる図1(A)で述べたと略同様のマイコン1
4'で構成される。即ち、このマイコン14'は、第2検
出手段として、既述の温度センサ15,16に加えて、
熱交換器7に接して設けられた温度センサ17からの検
出信号をも受けて、図3のS1で既述の判断で肯とした
場合に(図4のS11参照)、送風量Q,フラップ開度Θ,
運転周波数fに加えて熱交換器7の温度Thがいくらであ
るかを検出する。また、上記マイコン14'は、第1制
御手段として、図3のS2〜S5で述べたと同一の制御
を行なうと共に(図4のS12〜S15)、第3制御手段
として、送風量Qが大(H)かつ運転周波数fが最大fmax
であるときに加えて、熱交換器7の温度Thが所定値T4
以下であるときにも、送風量Qと運転周波数fを共に中
(M,fm<f)に変化させる(図4のS16参照)。その他の
制御(図4のS17〜S19)は、図3で述べたステップ
S7〜S9と同一である。
FIG. 4 is a flowchart showing the control of the dew condensation preventing device according to the second aspect of the present invention. This dew condensation preventing device has a microcomputer 1 similar to that described with reference to FIG. 1A and serving as a second detecting means, a first controlling means, and a third controlling means.
4 '. That is, the microcomputer 14 ′, as the second detecting means, in addition to the temperature sensors 15 and 16 described above,
When a detection signal from the temperature sensor 17 provided in contact with the heat exchanger 7 is also received and the result of the above-described determination is affirmative in S1 in FIG. 3 (see S11 in FIG. 4), the air flow rate Q, the flap Opening Θ,
It detects how much the temperature Th of the heat exchanger 7 is in addition to the operating frequency f. Further, the microcomputer 14 'performs the same control as described in S2 to S5 in FIG. 3 as the first control means (S12 to S15 in FIG. 4), and as the third control means, the air flow amount Q is large ( H) and the operating frequency f is the maximum fmax
In addition, when the temperature Th of the heat exchanger 7 becomes a predetermined value T 4
If the air flow rate Q and the operating frequency f are both
(M, fm <f) (see S16 in FIG. 4). Other controls (S17 to S19 in FIG. 4) are the same as steps S7 to S9 described in FIG.

【0016】従って、上記マイコン14'は、図4のス
テップS11〜S15で既述の図3のS1〜S5と同じ
制御により、ケーシング11への結露を防止する。ま
た、送風量Qが大(H)かつ運転周波数fが最大fmaxのと
き、図4のステップS16〜S19で既述の図3のS6
〜S9と同じ制御により、ファン8への結露を防止する
とともに、ステップS16で、メッシュフィン型の熱交
換器7の温度Thが所定値T4以下であるとき、冷凍回路
1からの冷媒の漏洩などの原因で熱交換器7で蒸発する
冷媒の過熱度が高まり、冷媒の偏流に伴う局所的な空気
の冷却不足によりファン8が結露しやすいとして、ステ
ップ17に進んで、上記送風量Qと運転周波数fを共に
中(M,fm<f)に変化させる。これらの制御により、メッ
シュフィン型の熱交換器7で蒸発する冷媒の過熱度が下
がって偏流による局所的な冷却不足がなくなり、吹出風
量の減少でファン8への結露が防止されるとともに、冷
凍回路1からの冷媒の漏洩による過熱度の上昇に伴うフ
ァン8への結露も防止される。
Accordingly, the microcomputer 14 'prevents condensation on the casing 11 in steps S11 to S15 in FIG. 4 by the same control as in steps S1 to S5 in FIG. Further, when the air blowing amount Q is large (H) and the operating frequency f is the maximum fmax, in steps S16 to S19 in FIG.
The same control as ~S9, thereby preventing condensation of the fan 8, at step S16, when the temperature Th of the heat exchanger 7 of the mesh fin is equal to or less than the predetermined value T 4, the leakage of the refrigerant from the refrigeration circuit 1 Assuming that the degree of superheat of the refrigerant evaporating in the heat exchanger 7 is increased due to the above reasons, and that the fan 8 tends to form dew due to local insufficient cooling of the air due to the drift of the refrigerant, the process proceeds to step 17 and the flow rate Q The operating frequency f is changed to medium (M, fm <f). By these controls, the degree of superheat of the refrigerant evaporating in the mesh fin type heat exchanger 7 is reduced, so that there is no local lack of cooling due to the drift, and the amount of blown air is reduced, thereby preventing dew condensation on the fan 8 and freezing. Dew condensation on the fan 8 due to an increase in the degree of superheat due to leakage of the refrigerant from the circuit 1 is also prevented.

【0017】[0017]

【発明の効果】以上の説明で明らかなように、本発明の
室内空気調和機の結露防止制御装置は、開閉フラップを
もつ吹出口を有するケーシング内に、圧縮機からの冷媒
が蒸発する熱交換器と、送風量が可変のファンを収容し
た室内空気調和機において、外気温度と室温が所定値以
下かつ室温と設定温度の差の絶対値が所定値以下の場合
に、第1検出手段により、送風量とフラップ開度と圧縮
機の運転周波数を検出し、検出された送風量が小かつ運
転周波数が最小またはフラップ開度が最小であるとき、
第1制御手段により、これらを共に中に変化させて、過
熱度の上昇でケーシングの結露をなくす一方、検出され
た送風量が大かつ運転周波数が最大またはフラップ開度
が最大であるとき、第2制御手段により、これらを共に
中に変化させて、過熱度の下降でファンの結露をなくす
ようにしているので、偏流が生じやすいメッシュフィン
熱交換器を採用した室内機においても、ファンやケーシ
ングへの結露を効果的に防止することができ、メッシュ
フィンゆえにコンパクト化,低騒音化,コストダウンが図
れるかかる室内機の汎用性を高めることができる。ま
た、上記結露防止制御装置の第1検出手段に、熱交換器
の温度を更に検出させ、第2制御手段に、検出された熱
交換器の温度が所定値以下であるときにも、送風量と運
転周波数を共に中に変化させるようにすれば、冷凍回路
からの冷媒の漏洩による過熱度の上昇に伴うファンへの
結露も防止することができる。
As is apparent from the above description, the dew condensation prevention control apparatus for an indoor air conditioner according to the present invention provides a heat exchange system in which refrigerant from a compressor evaporates in a casing having an outlet having an opening / closing flap. In the indoor air conditioner containing a fan with a variable air flow rate, when the outside air temperature and the room temperature are equal to or less than a predetermined value and the absolute value of the difference between the room temperature and the set temperature is equal to or less than a predetermined value, Detects the air flow, flap opening and compressor operating frequency, and when the detected air flow is small and the operating frequency is minimum or flap opening is minimum,
While the first control means changes both of them to inside to eliminate the condensation of the casing due to an increase in the degree of superheat, when the detected air volume is large and the operation frequency is maximum or the flap opening is maximum, (2) The control unit changes both of them to the inside so that dew condensation of the fan is eliminated due to a decrease in the degree of superheat. Therefore, even in an indoor unit employing a mesh fin heat exchanger in which drift tends to occur, the fan and the casing can be used. It is possible to effectively prevent dew condensation on the indoor unit, and to increase the versatility of such an indoor unit, which can be made compact, reduce noise, and reduce costs because of the mesh fins. Further, the first detection means of the dew condensation prevention control device further detects the temperature of the heat exchanger, and the second control means causes the air flow rate to be increased even when the detected temperature of the heat exchanger is equal to or lower than a predetermined value. If both the operating frequency and the operating frequency are changed to medium, it is possible to prevent condensation on the fan due to an increase in the degree of superheat due to leakage of the refrigerant from the refrigeration circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の結露防止制御装置を採用した室内空
気調和機の一例を示す断面図およびこの室内熱交換器を
含む冷凍回路を示す回路図である。
FIG. 1 is a cross-sectional view showing an example of an indoor air conditioner employing a condensation prevention control device of the present invention, and a circuit diagram showing a refrigeration circuit including the indoor heat exchanger.

【図2】 本発明の請求項1に記載の結露防止装置の一
例の検出,制御処理を示す一覧表である。
FIG. 2 is a table showing a detection and control process of an example of the dew-prevention device according to claim 1 of the present invention.

【図3】 上記結露防止装置の一例の制御の流れを示す
フローチャートである。
FIG. 3 is a flowchart showing a control flow of an example of the above dew condensation preventing device.

【図4】 本発明の請求項2に記載の結露防止制御装置
の一例の制御の流れを示すフローチャートである。
FIG. 4 is a flowchart showing a control flow of an example of a dew condensation prevention control device according to claim 2 of the present invention.

【符号の説明】[Explanation of symbols]

1…冷凍回路、2…圧縮機、7…(室内)熱交換器、8…
(室内)ファン、9a〜9f…管路、10…室内空気調和
機、11…ケーシング、12…開閉フラップ、14,1
4'…マイコン、15…外気温度センサ、16…室温セ
ンサ、17…温度センサ。
1: Refrigeration circuit, 2: compressor, 7: (indoor) heat exchanger, 8:
(Indoor) Fans, 9a-9f: Pipe, 10: Indoor air conditioner, 11: Casing, 12: Opening / closing flap, 14, 1
4 ': microcomputer, 15: outside air temperature sensor, 16: room temperature sensor, 17: temperature sensor.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸込口(11a)と、開閉フラップ(12)
をもつ吹出口(11b)を有するケーシング(11)内に、
冷凍回路(1)の圧縮機(2)から吐出される冷媒が蒸発す
る熱交換器(7)と、送風量(Q)を変化できるファン(8)
とを収容した室内空気調和機の結露防止制御装置におい
て、 外気温度(To)と室温(Ti)が夫々所定値(T1,T2)以下
で、かつ、上記室温(Ti)と設定温度(Ts)の差の絶対値
(│Ts−Ti│)が所定値(T3)以下の場合に、上記ファ
ン(8)の送風量(Q)と上記開閉フラップ(12)の開度
(Θ)と上記圧縮機(2)の運転周波数(f)を検出する第1
検出手段(14)と、この第1検出手段(14)で検出され
た上記送風量(Q)が小(L)かつ上記運転周波数(f)が最
小(fmin)であるとき、上記送風量(Q)と運転周波数(f)
を共に中(M,f<fm)に変化させ、続いて検出された上記
開度(Θ)が最小(Θmin)である時、この開度(Θ)を中(Θ
<Θm)に変化させて、上記熱交換器(7)における冷媒の
過熱度を上げてケーシング(11)での結露をなくすよう
に制御する第1制御手段(14)と、上記第1検出手段
(14)で検出された上記送風量(Q)が大(H)かつ上記運
転周波数(f)が最大(fmax)である時、上記送風量(Q)と
運転周波数(f)を共に中(M,fm<f)に変化させ、続いて
検出された上記開度(Θ)が最大(Θmax)であるとき、こ
の開度(Θ)を中(Θm<Θ)に変化させて、上記熱交換器
(7)における冷媒の過熱度を下げてファン(8)での結
露をなくすように制御する第2制御手段(14)を備えた
ことを特徴とする室内空気調和機の結露防止制御装置。
1. A suction port (11a) and an opening / closing flap (12).
In a casing (11) having an outlet (11b) having
A heat exchanger (7) for evaporating the refrigerant discharged from the compressor (2) of the refrigeration circuit (1), and a fan (8) capable of changing the air volume (Q)
In condensation prevention control device of the indoor air conditioner accommodating the door, the outside air temperature (To) and room temperature (Ti) is respective predetermined values (T 1, T 2) or less, and the room temperature (Ti) and the set temperature ( Ts) Absolute value of difference
When (| Ts−Ti |) is equal to or less than a predetermined value (T 3 ), the blowing amount (Q) of the fan (8) and the opening degree of the opening / closing flap (12)
(Θ) and a first method for detecting the operating frequency (f) of the compressor (2)
Detecting means (14), when the air flow rate (Q) detected by the first detection means (14) is small (L) and the operating frequency (f) is minimum (fmin), Q) and operating frequency (f)
Are changed to medium (M, f <fm), and when the detected opening (Θ) is the minimum (Θmin), the opening (Θ) is changed to medium (中
<Θm) to increase the degree of superheating of the refrigerant in the heat exchanger (7) so as to eliminate condensation in the casing (11); and the first detection means.
When the air volume (Q) detected in (14) is large (H) and the operating frequency (f) is the maximum (fmax), both the air volume (Q) and the operating frequency (f) are medium ( M, fm <f), and when the detected opening (Θ) is the maximum (Θmax), the opening (Θ) is changed to medium (Θm <Θ), A dew-prevention control device for an indoor air conditioner, comprising second control means (14) for controlling the degree of superheat of the refrigerant in the exchanger (7) to eliminate dew condensation in the fan (8). .
【請求項2】 吸込口(11a)と、開閉フラップ(12)
をもつ吹出口(11b)を有するケーシング(11)内に、
冷凍回路(1)の圧縮機(2)から吐出される冷媒が蒸発す
る熱交換器(7)と、送風量(Q)を変化できるファン(8)
とを収容した室内空気調和機の結露防止制御装置におい
て、 外気温度(To)と室温(Ti)が夫々所定値(T1,T2)以下
で、かつ、上記室温(Ti)と設定温度(Ts)の差の絶対値
(│Ts−Ti│)が所定値(T3)以下の場合に、上記ファ
ン(8)の送風量(Q)と上記開閉フラップ(12)の開度
(Θ)と上記圧縮機(2)の運転周波数(f)と上記熱交換器
(7)の温度(Th)を検出する第2検出手段(14')と、こ
の第2検出手段(14')で検出された上記送風量(Q)が
小(L)かつ上記運転周波数(f)が最小(fmin)であると
き、上記送風量(Q)と運転周波数(f)を共に中(M,f<f
m)に変化させ、続いて検出された上記開度(Θ)が最小
(Θmin)であるとき、この開度(Θ)を中(Θ<Θm)に変化
させて、上記熱交換器(7)における冷媒の過熱度を上げ
てケーシング(11)での結露をなくすように制御する第
1制御手段(14')と、上記第2検出手段(14')で検出
された上記送風量(Q)が大(H)かつ上記運転周波数(f)
が最大(fmax)または上記熱交換器(7)の温度(Th)が所
定値(T4)以下であるとき、上記送風量(Q)と運転周波
数(f)を共に中(M,fm<f)に変化させ、続いて検出され
た上記開度(Θ)が最大(Θmax)であるとき、この開度
(Θ)を中(Θm<Θ)に変化させて、上記熱交換器(7)に
おける冷媒の過熱度を下げてファン(8)での結露をなく
すように制御する第3制御手段(14')を備えたことを
特徴とする室内空気調和機の結露防止制御装置。
2. An inlet (11a) and an opening / closing flap (12).
In a casing (11) having an outlet (11b) having
A heat exchanger (7) for evaporating the refrigerant discharged from the compressor (2) of the refrigeration circuit (1), and a fan (8) capable of changing the air volume (Q)
In condensation prevention control device of the indoor air conditioner accommodating the door, the outside air temperature (To) and room temperature (Ti) is respective predetermined values (T 1, T 2) or less, and the room temperature (Ti) and the set temperature ( Ts) Absolute value of difference
When (| Ts−Ti |) is equal to or less than a predetermined value (T 3 ), the blowing amount (Q) of the fan (8) and the opening degree of the opening / closing flap (12)
(Θ), the operating frequency (f) of the compressor (2) and the heat exchanger
(7) a second detecting means (14 ') for detecting the temperature (Th), and the air flow (Q) detected by the second detecting means (14') is small (L) and the operating frequency ( When f) is the minimum (fmin), the air flow rate (Q) and the operating frequency (f) are both medium (M, f <f
m), and then the detected opening (Θ) is minimized.
(Θmin), the opening (Θ) is changed to medium (中 <Θm) to increase the degree of superheat of the refrigerant in the heat exchanger (7) so as to eliminate condensation in the casing (11). The first air flow rate (Q) detected by the second control means (14 ') is large (H) and the operating frequency (f)
When is the temperature of the maximum (fmax) or the heat exchanger (7) (Th) is below a predetermined value (T 4), the air volume (Q) and the operating frequency (f) through the both (M, fm < f), and then when the detected opening (Θ) is the maximum (Θmax), this opening
(Θ) is changed to medium (変 化 m <Θ) to reduce the degree of superheat of the refrigerant in the heat exchanger (7) so as to eliminate condensation in the fan (8). A dew prevention control device for an indoor air conditioner, comprising:
JP4287280A 1992-10-26 1992-10-26 Condensation prevention control device for indoor air conditioner Expired - Fee Related JP2722968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4287280A JP2722968B2 (en) 1992-10-26 1992-10-26 Condensation prevention control device for indoor air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4287280A JP2722968B2 (en) 1992-10-26 1992-10-26 Condensation prevention control device for indoor air conditioner

Publications (2)

Publication Number Publication Date
JPH06137647A JPH06137647A (en) 1994-05-20
JP2722968B2 true JP2722968B2 (en) 1998-03-09

Family

ID=17715361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4287280A Expired - Fee Related JP2722968B2 (en) 1992-10-26 1992-10-26 Condensation prevention control device for indoor air conditioner

Country Status (1)

Country Link
JP (1) JP2722968B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214887B (en) * 2013-06-04 2017-03-15 珠海格力电器股份有限公司 The control method of air conditioner air deflector
CN105241017B (en) * 2015-10-26 2018-11-06 广东美的制冷设备有限公司 The control method for frequency of air-conditioning system and compressor of air conditioner
JP6825233B2 (en) * 2016-06-01 2021-02-03 ダイキン工業株式会社 Air conditioner
JP2017215115A (en) * 2016-06-01 2017-12-07 ダイキン工業株式会社 Air conditioning device
CN109812922B (en) * 2019-02-21 2020-12-11 珠海格力电器股份有限公司 Air conditioner condensation prevention control method and device and air conditioner
CN111336647B (en) * 2020-03-17 2021-09-21 宁波奥克斯电气股份有限公司 Air conditioner condensation prevention control method and device, air conditioner and storage medium
CN111623483A (en) * 2020-04-28 2020-09-04 海信(山东)空调有限公司 Air conditioner and protection method thereof
CN113915755B (en) * 2020-07-07 2023-03-10 广东美的制冷设备有限公司 Refrigeration operation control method of air conditioner, air conditioner and readable storage medium

Also Published As

Publication number Publication date
JPH06137647A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
JP2020060362A (en) Air conditioner
JP3835453B2 (en) Air conditioner
JP2008224210A (en) Air conditioner and operation control method of air conditioner
CN107062534B (en) Anti-condensation control system, air conditioner and condensation prevention control method
JP2722968B2 (en) Condensation prevention control device for indoor air conditioner
JPH09310927A (en) Device for controlling refrigerant of air conditioner
JP3816782B2 (en) Air conditioner
JP3185791B2 (en) Control device for air conditioner
JPH03244956A (en) Air conditioner
JPH0278844A (en) Air conditioner
JP2004132572A (en) Air conditioner
JP4039100B2 (en) Air conditioner
JP2002243306A (en) Air conditioner
JPH1038398A (en) Controller of electric expansion valve
JP2006118822A (en) Air humidity detecting method, air humidity detector, and air conditioner
JP4483141B2 (en) Air conditioner
JP2002243307A (en) Air conditioning apparatus
JP3976561B2 (en) Air conditioner
JPH0849931A (en) Controlling device of motor operated expansion valve of branch unit
JPH02171562A (en) Freezing cycle device
JPH10213342A (en) Air conditioner
JP2006078080A (en) Air conditioner
JPH06213541A (en) Heating-and-cooling machine
JP3819523B2 (en) Refrigeration equipment
JPH07218004A (en) Motor operated expansion valve controller for air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees