JP2713028B2 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法

Info

Publication number
JP2713028B2
JP2713028B2 JP4174010A JP17401092A JP2713028B2 JP 2713028 B2 JP2713028 B2 JP 2713028B2 JP 4174010 A JP4174010 A JP 4174010A JP 17401092 A JP17401092 A JP 17401092A JP 2713028 B2 JP2713028 B2 JP 2713028B2
Authority
JP
Japan
Prior art keywords
annealing
recrystallization
less
grain
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4174010A
Other languages
English (en)
Other versions
JPH0617201A (ja
Inventor
裕義 屋鋪
輝雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4174010A priority Critical patent/JP2713028B2/ja
Publication of JPH0617201A publication Critical patent/JPH0617201A/ja
Application granted granted Critical
Publication of JP2713028B2 publication Critical patent/JP2713028B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は変圧器や発電機、電動
機の鉄心材料として広く用いられる方向性電磁鋼板およ
びその製造方法に関するものである。
【0002】
【従来の技術】方向性電磁鋼板は、ゴス方位と呼ばれる
{110}<001>方位を主方位とする結晶配向を持
ち、圧延方向に優れた励磁特性と鉄損特性を有する軟磁
性材料である。この種の材料は、一般には次のような工
程を経て製造される。低炭素でSiを 3.0%前後含有する
鋼のスラブを熱間圧延し、そのままあるいは焼鈍 (熱延
板焼鈍) を行った後、1回または中間焼鈍を挟んで2回
以上の冷間圧延を施して最終板厚とし、その後連続脱炭
焼鈍を施して一次再結晶させた後、焼き付き防止のため
の焼鈍分離剤を塗布してコイルに巻取り、更に1100〜12
00℃の超高温の仕上げ焼鈍を行う。
【0003】仕上げ焼鈍の目的は、二次再結晶を発生さ
せてゴス方位に集積した集合組織を形成することと、そ
のあと二次再結晶を発生させるのに用いたインヒビター
と呼ばれる析出物を除去することにある。この析出物の
除去工程は、純化焼鈍とも呼ばれ、二次再結晶の発生と
共に良好な磁気特性を得るためには必須の工程と言え
る。
【0004】特開昭49−61019 号公報には、Sbを含有す
る磁束密度の高い一方向性電磁鋼板の製造方法が示され
ている。しかし、この発明に示される鋼は、一次再結晶
を脱炭焼鈍で行い、純化のための仕上焼鈍を1100℃以上
の超高温で処理することが必要な組成のものである。
【0005】以上のような製造法により得られた方向性
電磁鋼板は、その製造過程で連続脱炭焼鈍や1100℃以上
の超高温の仕上げ焼鈍というような特殊な工程が必要で
あるから、極めてコストの高いものになる。
【0006】このコストの問題を解決すべく、従来から
種々の研究開発が進められている。
【0007】例えば、本発明者らは、先に、Si: 0.5〜
2.5 %、Mn: 1.0〜2.0 %、sol.Al:0.003 〜0.015 %
で、かつC:0.01%以下、N: 0.001〜0.010 %を含有
することを主な特徴とする方向性電磁鋼板と、脱炭焼鈍
を必要とせず、低温焼鈍が可能なその製造方法を発明し
た (特開平1−119644号公報参照) 。この方法は、連続
脱炭焼鈍の省略と仕上げ焼鈍温度の低下によって、方向
性電磁鋼板のコスト低減に大きく貢献し得るものであ
る。
【0008】
【発明が解決しようとする課題】近年、省エネルギーの
気運が一段と高まる趨勢の中で、方向性電磁鋼板に対し
てはその鉄損を小さくすることが強く要望されるように
なってきている。本発明は、上記の特開平1−119644号
公報に示した電磁鋼板およびその製造方法を更に改善す
ることを課題とし、鉄損が極めて低い、方向性電磁鋼板
とその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】本発明の要旨は下記の
(1)の方向性電磁鋼板と (2)の方向性電磁鋼板の製造方
法にある。
【0010】(1) 重量%で、C:0.01%以下、Si: 1.5
〜4.0 %、Mn: 1.0〜6.0 %、S:0.01%以下、酸可溶
性Al: 0.003〜0.030 %、N:0.010 %以下およびSb:
0.01〜0.20%を含有し、かつ Si(%) − 0.5×Mn (%)
≦ 2.0で、残部はFeおよび不可避的不純物からなる方向
性電磁鋼板。
【0011】(2) 重量%で、C:0.01%以下、Si: 1.5
〜4.0 %、Mn: 1.0〜6.0 %、S:0.01%以下、酸可溶
性Al: 0.003〜0.030 %、N: 0.001〜 0.010%および
Sb:0.01〜0.20%を含有し、かつ Si(%) − 0.5×Mn
(%) ≦ 2.0で、残部はFeおよび不可避的不純物からな
る組成のスラブを下記〜の工程で処理する方向性電
磁鋼板の製造方法。
【0012】熱間圧延を行う工程、 熱間圧延のまま、または熱間圧延後に焼鈍してから、
1回または中間焼鈍を挟んだ2回以上の冷間圧延を行う
工程、 連続焼鈍により一次再結晶を起こさせる工程、 825〜925 ℃の温度域で7〜100 時間保持して二次再
結晶を起こさせる工程と、それに引き続く 925℃を超
え、1050℃までの温度域で4〜100 時間保持し純化する
工程からなる仕上焼鈍工程。
【0013】
【作用】まず本発明の基礎となった実験結果について述
べる。以下、合金成分についての%は全て重量%を意味
する。
【0014】表1に示す化学組成の鋼のスラブを 2.3mm
厚に熱間圧延し、 880℃で1分の熱延板焼鈍をした後、
酸洗により脱スケールを行い、更に1回で0.35mm厚に冷
間圧延した。その後、 880℃で30秒均熱する非脱炭雰囲
気中で連続焼鈍を行い一次再結晶させた。次に、仕上げ
焼鈍として15%N2+85%H2雰囲気中、 880℃で24時間の
二次再結晶を起こさせる均熱および引き続き 100%H2
囲気に置換して 950℃で24時間の純化のための均熱から
なる仕上焼鈍を行った。仕上げ焼鈍後の磁気特性を表1
に併せて示す。
【0015】表1から明らかなように、前記の特開平1
−119644号公報に示す組成の鋼AにSbを含有させた鋼B
は、良好な磁気特性を示した。この現象は、粒界偏析元
素であるSbを含有させることによりインヒビター効果が
強化され、この結果、仕上焼鈍においてゴス方位粒の選
択成長が促進され、ゴス方位集積度の高い二次再結晶が
発生したためにもたらされたものである。
【0016】前記のように、このようなSbの効果は、脱
炭焼鈍や超高温の純化焼鈍を行うことが必要な組成の鋼
の場合には知られていたが、これらの処理を必要としな
い表1に示す組成の鋼のスラブに適正なSbを含有させる
ことも磁気特性改善に有効であることは、従来明らかで
はなかった。本発明はこのような新しい知見を基になさ
れた。
【0017】
【表1】
【0018】以下に、本発明の構成要件毎に作用効果を
説明する。
【0019】I 製品電磁鋼板または素材となる鋼スラブ
の組成 (a) C:製品中のC含有量は鉄損に悪影響を及ぼすた
め、0.010 %以下、望ましくは、0.005 %以下とする必
要がある。製品段階で残存したCは炭化物を生成し、こ
れが磁壁移動の障害物となり鉄損が増加するからであ
る。
【0020】素材となる鋼スラブの段階で、C含有量を
0.010 %以下にしておけば、一次再結晶のための連続焼
鈍を脱炭焼鈍としなくともよいことになるので、0.010
%以下とした。
【0021】(b) Si:Siは磁気特性に大きな影響を与え
る元素であり、含有量が増加するほど鋼板の電気抵抗が
上昇して渦電流損が低下し、結果として鉄損が低減す
る。しかし、4.0 %を超える含有量では加工性が低下し
て冷間圧延が困難となる。一方、 1.5%未満の含有量で
は鋼板の電気抵抗が低く、鉄損の低減ができない。従っ
て、Si含有量は 1.5〜4.0 %の範囲が適当である。
【0022】(c) Mn:Mnは、高Siの極低炭素鋼スラブに
おいてα−γ変態を生じさせるのに有効な元素である。
この変態の発生が熱間圧延中の熱延板の組織の微細化と
均質化を促進し、結果として仕上げ焼鈍でゴス方位への
集積度の高い二次再結晶が安定して発生するとともに、
高Si鋼の加工性を改善することができる。当然、α−γ
変態の発生はフェライト形成元素であるSiとオーステナ
イト形成元素であるMnの含有量のバランスで決まるもの
であるから、SiとMnの含有量は関連させて調整しなけれ
ばならない。本発明では、 Si ( %) −0.5 × Mn(%)
≦ 2.0となるようにMnを含有させる。こうすることが、
熱延板の適当な変態発生に必要である。
【0023】本発明の上限Si含有量である4.0 %の場合
に上式を満たすためには 4.0%以上のMn含有量が必要に
なる。Si含有量が 2.0%未満の材料でも 1.0%以上のMn
含有が二次再結晶の安定化に有効である。また、MnはSi
と同様に鋼板の電気抵抗を上昇させるのに有効であり、
鉄損低減の目的からも 1.0%以上のMnの含有量が必要と
なる。しかし 6.0%を超えるMn含有量は冷間加工性を劣
化させるから、その上限を 6.0%とする。すなわち、Mn
含有量は 1.0〜6.0 %の範囲で、かつ Si(%)−0.5 ×M
n (%) ≦ 2.0の条件を満足させることが必要である。
【0024】(d) S:SはMnと結合してMnS を形成す
る。本発明では主要なインヒビターとしてAlN、 (Al、S
i)NやMnを含む窒化物を使っている。従って、一般の方
向性電磁鋼板のようにMnS を主要なインヒビターとして
使わないので、Sを多量に添加する必要はない。製品段
階で多量のMnS 粒子が鋼中に残存すると鉄損の劣化をき
たす。更に、本発明では仕上げ焼鈍全体を通してその温
度が1050℃以下と低いため、純化焼鈍においても脱硫効
果は期待できない。このため、S含有量は製品において
も、素材の鋼スラブにおいても0.01%以下とする。な
お、鉄損低減の観点から望ましいのは 0.005%以下であ
る。
【0025】(e) 酸可溶性Al(sol.Al):Alは、二次再結
晶の発生に重要な役割を果たす主要なインヒビターであ
るAlNや (Al、Si)Nのような窒化物を形成する重要な元
素である。sol.Alで 0.003%未満では十分なインヒビタ
ー効果が得らない。しかし、sol.Alが 0.030%を超える
とインヒビター量が多くなりすぎるとともにその分散状
態も不適切になり、安定した二次再結晶が生じない。
【0026】(f) N:前述のCと同様に製品中のN含有
量は鉄損に悪影響を及ぼすため、0.010 %以下、望まし
くは0.006 %以下にすることが必要である。製品中のN
含有量は少なければ少ないほど磁気特性は改善される。
製品段階で残存したNは窒化物を生成し、これが磁壁移
動の障害物となり鉄損が増加するからである。したがっ
て、製品中のN含有量を 0.010%以下とした。
【0027】しかし、Nはインヒビターとなる窒化物を
形成する重要な元素であり、二次再結晶が完了するまで
はその適当量が必要である。鋼スラブの段階では 0.001
%未満では窒化物の析出量が少なすぎて所望のインヒビ
ター効果が得られず、一方、0.010 %を超えて含有させ
ると、その効果は飽和することから 0.001〜0.010 %の
範囲が適当である。このNも純化焼鈍時に上記の所望の
低い含有量にまで低減できる。
【0028】(g)Sb :Sbは前述のように粒界偏析元素と
して、インヒビター効果を有する。Nとともに適切な量
を含有させると、両元素の持つインヒビター効果の相乗
作用により、ゴス方位への集積度の高い二次再結晶が生
じる。このようなSbの効果は、0.01%未満の含有量では
得られない。一方、0.20%を超えると過剰なインヒビタ
ー効果を発現し、二次再結晶が不安定となる。よって、
Sbの含有量を0.01〜0.20%とした。
【0029】II 製造工程 (a) 第の工程(熱間圧延):素材のスラブは前記の組
成をもつものである。これは、転炉、電気炉等で溶製
し、必要があれば真空脱ガス等の処理を施した溶鋼を、
連続鋳造法でスラブにしたもの、あるいはインゴットに
して分塊圧延したもののいずれでもよい。
【0030】熱間圧延の条件については特に制約はない
が、望ましいのは、加熱温度1150〜1270℃、仕上げ温度
700〜900 ℃である。
【0031】(b) 第の工程(熱延板焼鈍、冷間圧
延):熱延鋼板を1回または複数回の冷間圧延によっ
て、所定の製品板厚まで圧延する。このとき、冷間圧延
開始前に焼鈍(いわゆる熱延板焼鈍)を行ってもよい。
【0032】この熱延板焼鈍は、析出物の分散状態の適
正化と熱延板の再結晶によるミクロ組織の均質化を促進
し、二次再結晶の発生を安定化するのに有効である。
【0033】熱延板焼鈍を連続焼鈍で行う場合は、 750
〜1100℃で10秒から5分の均熱、箱焼鈍で行う場合は、
650〜950 ℃で30分〜24時間の均熱とするのが望まし
い。
【0034】また、複数回の冷間圧延を行う場合は中間
に焼鈍工程を挟む。この中間焼鈍は、700 〜1000℃の温
度で行うのが望ましい。また、連続焼鈍で良好な一次再
結晶組織を得るためには、最終の冷間圧延の圧下率とし
て40〜90%が望ましく、更に言えば60〜90%が効果的で
ある。
【0035】(c) 第の工程(仕上げ焼鈍前の連続焼
鈍、一次再結晶焼鈍):後述の仕上げ焼鈍で安定した二
次再結晶を発生させるためには、急速加熱による一次再
結晶が必要であり、このために連続焼鈍が有効である。
焼鈍温度としては、 700〜1000℃が望ましい。
【0036】(d) 第の工程(二次再結晶および純化の
ための仕上焼鈍):仕上げ焼鈍の目的は、二次再結晶の
発生とその後の純化焼鈍と呼ばれる析出物の除去であ
る。ゴス方位への集積度の高い二次再結晶を発生させる
ためには、その温度域でインヒビター強度を適切に制御
することが重要である。
【0037】仕上焼鈍工程の前半で 825〜925 ℃の温度
域で、まず7〜100 時間保持するのは、この温度域で最
も適切なインヒビター強度が得られ、ゴス方位への集積
度の高い二次再結晶が発生するからである。 825℃未満
では、インヒビターの効果、すなわち粒成長抑制力が強
すぎて二次再結晶が発生しない。一方、 925℃を超える
温度域では、インヒビター効果が弱いためゴス方位の集
積度の低い二次再結晶が発生するか、あるいは正常粒の
成長により一次再結晶粒が粗大化するだけである。
【0038】825〜925 ℃の範囲での保持時間が7時間
未満では、二次再結晶の発生に十分ではなく、一方、 1
00時間を超える保持は意味がなく経済的にも不利であ
る。これらの理由で、二次再結晶の発生を目的とする焼
鈍工程の条件を、 825〜925 ℃で7〜100 時間保持する
こととした。
【0039】この温度域での焼鈍はN2を5〜50%で含有
する雰囲気で行うのが望ましい。この理由は、インヒビ
ターとして作用する窒化物が脱窒により減少し、二次再
結晶が不安定になるのを防止するためである。さらに積
極的な意味としては、焼鈍雰囲気からの吸窒によりイン
ヒビターとして作用する窒化物の析出量を増加させて、
ゴス方位への集積度の高い二次再結晶を発生させるため
である。
【0040】二次再結晶が発生した後は、インヒビター
の窒化物は磁気特性上有害なものであり除去、すなわち
純化する必要がある。この目的で上記に引き続く仕上焼
鈍の工程の後半部は、雰囲気を 100%のH2に置換して、
925℃を超え1050℃までの温度域で4〜100 時間保持す
る純化焼鈍を行う。 925℃以下では脱窒効果が十分でな
く、一方、1050℃を超えると脱窒効果は飽和するので意
味がない。
【0041】保持時間が4時間未満では脱窒反応が十分
進行せず、一方、 100時間を超える保持は不必要でその
意味がない。従って、脱窒純化を目的とする仕上げ焼鈍
工程の後半部の条件を、 925℃を超える温度から1050℃
までの温度域で4〜100 時間保持することとした。
【0042】なお、仕上げ焼鈍の前に焼鈍時の焼き付き
防止のための焼鈍分離剤を塗布することは、通常の方向
性電磁鋼板の製造方法と同じである。仕上げ焼鈍後の工
程としては通常の方向性電磁鋼板と同様に、焼鈍分離剤
を除去した後、必要に応じて絶縁コーティングを施した
り平坦化焼鈍を行うことになる。
【0043】
【実施例】
(試験1)転炉で溶製し、真空処理で成分調整をして連
続鋳造して得たC:0.0045%、Si:2.45%、Mn:2.04
%、S: 0.0006 %、sol.Al: 0.010%、N:0.0045%
およびSb:0.030 %で、残部はFeおよび不可避的不純物
からなり、 Si(%) −0.5 ×Mn (%) が1.43である本発
明で定める範囲の組成を有する鋼スラブを、加熱温度12
40℃、仕上温度 820℃で熱間圧延し 2.0mm厚に仕上げ
た。
【0044】次に 890℃で60秒間均熱の熱延板焼鈍を行
った後、酸洗により脱スケールし、1回の冷間圧延で0.
30mm厚まで冷間圧延した。その冷延板を非脱炭雰囲気
(50%N2+50%H2、露点は−15℃以下)中、 875℃で30
秒間均熱する連続焼鈍に付し、一次再結晶させた後、焼
鈍分離剤を塗布して仕上げ焼鈍を実施した。仕上げ焼鈍
は、25%N2+75%H2雰囲気中で、 890℃に昇温して24時
間均熱後、引き続き 100%H2雰囲気に置換して表2に示
す温度で純化焼鈍を行った。このようにして得られた鋼
板の圧延方向の磁気特性を併せて表2に示す。
【0045】表2に示すとおり、いずれの試験において
も、純化温度条件によらず良好な磁気特性が得られてい
るが、なかでも純化温度条件も本発明で定める範囲であ
る試験No.2、3 では鉄損が極めて低く、また磁束密度も
高く、非常に良好な特性となっている。
【0046】
【表2】
【0047】(試験2)表3に示すようなSb以外の組成
はほぼ同一で、いずれも本発明で定める範囲内にあり、
Sbの含有量を変化させた3鋼種の鋼を、試験1と同じ方
法で溶製して得たスラブを試験1と同じ条件で熱間圧延
して 1.8mm厚に仕上げた。この熱延板を酸洗して脱スケ
ールし、750 ℃で2時間均熱する箱焼鈍による熱延板焼
鈍に付し、次いで1回の冷間圧延で0.27mm厚とした。
【0048】上記の冷延板を非脱炭雰囲気(75%N2+25
%H2、露点は−25℃以下)中、 875℃で30秒保持均熱す
る連続焼鈍に付し一次再結晶させた後、焼鈍分離剤を塗
布して仕上げ焼鈍を行った。仕上げ焼鈍は、10%N2+90
%H2雰囲気中で 880℃に昇温して24時間均熱後、 100%
H2雰囲気に切り替えてさらに 950℃で24時間均熱する純
化焼鈍を行い炉冷した。得られた鋼板の圧延方向の磁気
特性を表4に示す。
【0049】Sbが本発明で定める下限量よりも低い試験
No.4では、二次再結晶は発生するもののインヒビター
効果が弱く、ゴス方位への集積度が低いため、鉄損が高
く、良好な磁気特性を示さない。Sbが本発明で定める範
囲よりも高い No.6は、二次再結晶の発生が不十分であ
るので、鉄損および磁束密度の両面で非常に悪いものと
なっている。これらに対して、本発明の電磁鋼板の例に
相当する No.5は、極めて良好な磁気特性を示してい
る。
【0050】
【表3】
【0051】
【表4】
【0052】(試験3)表5に示す試験1と同じ方法で
溶製した鋼スラブを、試験1と同じ条件で熱間圧延し
2.3mm厚に仕上げた。これらの供試鋼では、表5のよう
に、低鉄損化を図るために一般の方向性電磁鋼板(固有
抵抗が約50μΩ・cm)に比べ大幅に固有抵抗を増加させ
ており、しかもほぼ同一の固有抵抗を持つようにSiとMn
のバランスを変えた。
【0053】次に、 880℃で1分間の連続焼鈍方式の熱
延板焼鈍を行った後、酸洗により脱スケールし、更に0.
35mm厚まで1回目の冷間圧延を試みた。しかし、本発明
で定める組成範囲を外れる試験 No.7の熱延板では、冷
間圧延中に鋼板エッジ部より亀裂が発生したり、あるい
は破断が発生する事態に至ったため、所定の板厚 0.35
mmまで圧延できなかった。これに対し、SiとMnの関係も
本発明で定める範囲の試験 No.8では、破断することな
く所定の板厚まで圧延できた。
【0054】
【表5】
【0055】(試験4)上記の試験3の試験No.8で得ら
れた0.35mm厚の冷延板を、非脱炭雰囲気(50%N2+50%
H2、露点は−20℃以下)中、 880℃で30秒間均熱する連
続焼鈍に付し、一次再結晶させた後、焼鈍分離剤を塗布
して仕上げ焼鈍を実施した。仕上げ焼鈍は、15%N2+85
%H2雰囲気中で 885℃に昇温して24時間均熱後、引き続
き 100%H2雰囲気に置換してさらに 950℃に昇温して24
時間の純化焼鈍を行った。このようにして得られた鋼板
の圧延方向の磁気特性は、鉄損W17/50 =1.10W/kg、磁
束密度B8 =1.83(T) の極めて良好な値を示した。
【0056】
【発明の効果】本発明によれば、鉄損が極めて小さく、
変圧器や発電機、電動機の鉄心材料などとして用いるの
に好適な方向性電磁鋼板を製造することができる。この
製造方法は、長時間を要する脱炭焼鈍工程や1150〜1200
℃といった超高温での仕上げ焼鈍工程を必要とせず、ま
た、素材となる鋼は冷間加工性にも優れるから製造コス
トの低減という面でも有利である。

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】重量%で、C:0.01%以下、Si: 1.5〜4.
    0 %、Mn: 1.0〜6.0 %、S:0.01%以下、酸可溶性A
    l: 0.003〜0.030 %、N:0.010 %以下、およびSb:
    0.01〜0.20%を含有し、かつ Si(%) − 0.5×Mn (%)
    ≦ 2.0で、残部はFeおよび不可避的不純物からなる方向
    性電磁鋼板。
  2. 【請求項2】重量%で、C:0.01%以下、Si: 1.5〜4.
    0 %、Mn: 1.0〜6.0 %、S:0.01%以下、酸可溶性A
    l: 0.003〜0.030 %、N: 0.001〜0.010 %およびS
    b:0.01〜0.20%を含有し、かつ Si(%) − 0.5×Mn
    (%) ≦ 2.0で、残部はFeおよび不可避的不純物からな
    る組成のスラブを下記〜の工程で処理する方向性電
    磁鋼板の製造方法。 熱間圧延を行う工程、 熱間圧延のまま、または熱間圧延後に焼鈍してから、
    1回または中間焼鈍を挟んだ2回以上の冷間圧延を行う
    工程、 連続焼鈍により一次再結晶を起こさせる工程、 825〜925 ℃の温度域で7〜100 時間保持して二次再
    結晶を起こさせる工程と、それに引き続く 925℃を超え
    1050℃までの温度域で4〜100 時間保持し純化する工程
    からなる仕上焼鈍工程。
JP4174010A 1992-07-01 1992-07-01 方向性電磁鋼板およびその製造方法 Expired - Lifetime JP2713028B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4174010A JP2713028B2 (ja) 1992-07-01 1992-07-01 方向性電磁鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4174010A JP2713028B2 (ja) 1992-07-01 1992-07-01 方向性電磁鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JPH0617201A JPH0617201A (ja) 1994-01-25
JP2713028B2 true JP2713028B2 (ja) 1998-02-16

Family

ID=15971068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174010A Expired - Lifetime JP2713028B2 (ja) 1992-07-01 1992-07-01 方向性電磁鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP2713028B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658408B1 (ko) * 1998-10-27 2006-12-15 제이에프이 스틸 가부시키가이샤 가공성과 자기특성이 양호한 전자강판 및 그 제조방법
WO2016035530A1 (ja) * 2014-09-01 2016-03-10 新日鐵住金株式会社 方向性電磁鋼板
CN110257700A (zh) * 2019-06-02 2019-09-20 郭慧敏 一种取向硅钢钢带或钢板的制造方法

Also Published As

Publication number Publication date
JPH0617201A (ja) 1994-01-25

Similar Documents

Publication Publication Date Title
JP3172439B2 (ja) 高い体積抵抗率を有する粒子方向性珪素鋼およびその製造法
JP2004332071A (ja) 高磁束密度方向性電磁鋼板の製造方法
JP2639226B2 (ja) 方向性電磁鋼板およびその製造方法
EP0076109B1 (en) Method of producing grain-oriented silicon steel sheets having excellent magnetic properties
JP2713028B2 (ja) 方向性電磁鋼板およびその製造方法
JP4123679B2 (ja) 方向性電磁鋼板の製造方法
US5425820A (en) Oriented magnetic steel sheets and manufacturing process therefor
KR950009760B1 (ko) 방향성 규소강판의 제조방법
JP2746631B2 (ja) 鉄損特性の優れた高磁束密度方向性けい素鋼板およびその製造方法
JP2712913B2 (ja) 方向性電磁鋼板およびその製造方法
JPH0949023A (ja) 鉄損が優れた一方向性電磁鋼板の製造方法
JP2888324B2 (ja) 磁束密度が高い方向性電磁薄鋼板の製造方法
JP2671717B2 (ja) 方向性電磁鋼板の製造方法
JP2819994B2 (ja) 優れた磁気特性を有する電磁鋼板の製造方法
JP3443151B2 (ja) 方向性珪素鋼板の製造方法
JPH06184707A (ja) 方向性電磁鋼板およびその製造方法
KR950014313B1 (ko) 소량의 보론첨가로 입자-방향성 규소강을 제조하는 방법
JP2819993B2 (ja) 優れた磁気特性を有する電磁鋼板の製造方法
JPH11269544A (ja) 高磁束密度低鉄損方向性電磁鋼板の製造方法
JP3536306B2 (ja) 鋼板疵の少ない磁気特性の優れた方向性珪素鋼板の製造方法
JP3300034B2 (ja) 磁束密度の極めて高い方向性珪素鋼板の製造方法
JPH07310124A (ja) 磁気特性、被膜特性の優れた厚い板厚の一方向性電磁鋼板の製造方法
JPH0649607A (ja) 方向性電磁鋼板およびその製造方法
JPH0797631A (ja) 磁気特性および被膜特性に優れた高磁束密度方向性けい素鋼板の製造方法
JP3474594B2 (ja) 磁気特性の優れた厚い板厚の一方向性電磁鋼板の製造方法