JP2705235B2 - The driving method of the electrophoretic display element - Google Patents

The driving method of the electrophoretic display element

Info

Publication number
JP2705235B2
JP2705235B2 JP1233846A JP23384689A JP2705235B2 JP 2705235 B2 JP2705235 B2 JP 2705235B2 JP 1233846 A JP1233846 A JP 1233846A JP 23384689 A JP23384689 A JP 23384689A JP 2705235 B2 JP2705235 B2 JP 2705235B2
Authority
JP
Japan
Prior art keywords
electrode layer
transparent electrode
polarity
transparent
dispersed particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1233846A
Other languages
Japanese (ja)
Other versions
JPH0396925A (en
Inventor
直樹 中村
和夫 戸島
秀章 植野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP1233846A priority Critical patent/JP2705235B2/en
Publication of JPH0396925A publication Critical patent/JPH0396925A/en
Application granted granted Critical
Publication of JP2705235B2 publication Critical patent/JP2705235B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気泳動表示素子の駆動方法に関する。 DETAILED DESCRIPTION OF THE INVENTION [FIELD OF THE INVENTION The present invention relates to a driving method of the electrophoretic display device.

[従来の技術] 電気泳動型表示素子は、透明電極を有する一対のガラス基板の間に、絶縁液体中に粒子を分散させた分散液層を封入したものであって、分散液層中の粒子が表面電荷を持つことを利用して、電気泳動によって粒子を移動させて信号を可視化するものである。 [Prior Art] electrophoretic display device, between a pair of glass substrates having a transparent electrode, there is encapsulated a dispersion layer in which particles are dispersed in an insulating liquid, the particles of the dispersion layer There utilizing to have a surface charge, it is to visualize the signal to move the particles by electrophoresis.

従来の電気泳動型表示体としては、例えば第4図に示すようなものが知られている(特開昭62−299824号公報)。 A conventional electrophoretic display body is known for example, as shown in FIG. 4 (JP 62-299824 JP). 第4図において、Aは視認側を示すが、一対の基板1aおよび1bが相対向するように配置され、少なくとも視認側の基板1aは透明であって、それぞれの基板1aおよび1bの相対向する面には透明電極層2aおよび2bが設けられている。 In Figure 4, A is shows the viewing side, but the pair of substrates 1a and 1b are disposed so as to face each other, the substrate 1a of at least the visible side is a transparent, opposing the respective substrates 1a and 1b the transparent electrode layer 2a and 2b are provided on the surface. 基板1aおよび1bの間でセルを形成すべく基板 Substrate to form a cell between the substrates 1a and 1b
1aおよび1bの周縁部内面にはスペーサ5が固着されている。 The 1a and 1b periphery the inner surface of the spacer 5 is fixed. 分散液層は絶縁液体からなる分散媒4に正または負に帯電する分散粒子3を分散させたもので、基板1aおよび1bの間に形成されるセル中に注入されて形成される。 Dispersion layer is formed by injecting into the cells formed between the one obtained by dispersing disperse particles 3 that positively or negatively charged in the dispersion medium 4 made of an insulating liquid, the substrate 1a and 1b.

透明電極層2aと2bの間で直流電圧を印加すると、分散媒4の中で正または負に帯電した分散粒子3は、電圧の極性に応じて、第4図の右半分または左半分に示したように、いずれかの電極の方に泳動して付着する。 When a DC voltage is applied between the transparent electrode layers 2a and 2b, dispersed particles 3 charged positively or negatively in the dispersion medium 4, depending on the polarity of the voltage, shown on the right half or left half of FIG. 4 and so, to adhere to migrate towards one of the electrodes. 第4図の右半分に示したように、視認側の透明電極層2aに分散粒子3が付着した場合は、表示素子は分散粒子3の色彩が表示され、分散粒子3が分散媒4中に分散している場合または第4図の左半分に示したように、反対の電極層 As shown in the right half of FIG. 4, if the dispersed particles 3 deposited on the transparent electrode layer 2a on the viewing side, the display element displays the color of the dispersed particles 3, the dispersed particles 3 in a dispersion medium 4 as shown in the left half of the case or FIG. 4 is dispersed, the opposite electrode layer
2bに分散粒子3が付着すると、視認側の基板は分散媒4 When the dispersed particles 3 adhere to 2b, the substrate on the viewing side of the dispersion medium 4
の色彩が表示される。 Color of is displayed.

このように従来の電気泳動型表示素子においては、電極層に電圧を印加しない場合は、分散粒子が分散媒中に分散し、表示側の基板は分散媒の染料の色彩を表示し、 Thus in the conventional electrophoretic display device, when no voltage is applied to the electrode layer, the dispersed particles are dispersed in the dispersion medium, the substrate of the display side displays the color of the dye of the dispersion medium,
電極層に電圧を印加した場合、電極層を形成した表示部には分散粒子が付着して分散粒子の色彩表示されるものであって、表示素子としては反射型のものであり、そのままでは透過型の表示素子としては使用できなかった。 When a voltage is applied to the electrode layer, the display unit forming an electrode layer be those that are color display of the dispersed particles to adhere the dispersed particles, as the display device is of a reflective type, the intact transmission the type of display device could not be used.

[発明が解決しようとする課題] そこで、従来の電気泳動表示素子を透過型の表示素子とするため、透明の分散媒を使用するとともに、一方の透明電極層を網目状または縞状とするか、あるいは一方の透明基板を鋸歯状にし光の進行方向に平行な面に透明電極層を形成した提案がなされている(実願昭63−7602 [SUMMARY OF THE INVENTION] Accordingly, either to a conventional electrophoretic display device and the transmissive-type display device, with using a dispersion medium transparent to the one of the transparent electrode layer and the mesh-like or striped , or one of the transparent substrate in the traveling direction of the serrated light have been proposed in which a transparent electrode layer in a plane parallel (JitsuganAkira 63-7602
1、実願昭63−79064、実願昭63−86709など)。 1, JitsuganAkira 63-79064, such as JitsuganAkira 63-86709). これら提案においては、網目状または縞状の透明電極層に分散粒子を付着させたときは、分散粒子の集積した透明電極層の間を通り抜けた光が透明な分散媒を透過し、透過型表示が可能となる。 In these proposals, when depositing the dispersed particles in a mesh shape or stripe-shaped transparent electrode layer, the light having passed through between the integrated the transparent electrode layer of the dispersed particles passes through the transparent dispersion medium, transmissive display it is possible.

しかしながら、一方の透明電極層を網目状または縞状にした前記提案においては、透過状態における光線の透過率を向上させるため、電極パターンの開口率を上げると、電圧印加時にセル内で電界が不均一となり、着色状態で分散粒子が全面電極上に均一に広がらず、着色時の遮光率を劣化させるという問題点がある。 However, in the proposal of one of the transparent electrode layer was reticulated or banded, to improve the transmittance of light in the transmissive state, increasing the aperture ratio of the electrode pattern, an electric field in the cell when a voltage is applied not becomes uniform, dispersed particles are not spread uniformly over the entire surface electrode colored state, there is a problem that deteriorates the light blocking ratio at the time of coloring. また、透過状態にする際に、応答速度を上げるためには高電圧を印加する必要があるが、過剰電荷のため電極に電流が流れて電荷が減少するいわゆる分散粒子のチャージアップや不平等電界のため、分散粒子が縞状または網目状の電極から遊離して電極から染み出して、入射光線の透過率が低下するという問題点があった。 Further, when the transmission state, but in order to increase the response speed, it is necessary to apply a high voltage, the charge-up and non-uniform electric field of the so-called dispersed particles charge decreases current to the electrodes for excess charge flows for, dispersed particles exudes from the free to the electrode from the stripe or mesh electrodes, the transmittance of incident light is disadvantageously lowered.

本発明は一方の透明基板に形成された透明電極層を網目状または縞状とした透過型電気泳動表示素子の透過状態または遮光状態における前記のごとき問題点を解決すべくなされたものであって、優れた応答速度で、着色状態において分散粒子が全面電極層に均一に付着し、良好な遮光状態が得られると共に、透過状態においても分散粒子が縞状または網目状の透明電極層から遊離することなく付着し良好な透過状態が得られる透過型電気泳動表示素子の駆動方法を提供することを目的とする。 The present invention was made to solve the above such problems in the transmission state or light blocking state of the transmissive electrophoretic display device in which the transparent electrode layer formed on one transparent substrate and reticulated or banded , with excellent response speed, dispersed particles in the colored state is uniformly adhered to the entire surface electrode layer, with good light shielding state can be obtained, even dispersed particles in the transparent state is liberated from the stripe shape or a mesh-shaped transparent electrode layer and an object thereof is to provide a method of driving a transmissive electrophoretic display device attached good transmission state can be obtained without.

[課題を解決するための手段] 本発明の透過型電気泳動表示素子の駆動方法は、2枚の相対向して配置された透明基板と、前記2枚の透明基板の相対向する面にそれぞれ形成され一方が全面に形成され他方が網目状または縞状に形成された透明電極層と、前記透明基板の間にセルを形成すべく前記透明基板の周縁部に固着されたスペーサと、前記セル中に封入された高絶縁性の分散媒と、前記分散媒中に分散された分散粒子とからなる透過型電気泳動表示素子の駆動方法であって、 前記網目状または縞状の透明電極層の極性が分散粒子の帯電の極性と逆になるように第1の直流高電圧を印加した後、第2の直流低電圧を印加して保持し表示素子の透過状態を得、前記全面に形成された透明電極層の極性が前記分散粒子の帯電の極性と逆にな The driving method of a transmissive electrophoretic display device of the present invention [Means for Solving the Problems], respectively a transparent substrate disposed to face the two, the opposing surfaces of the two transparent substrates and one is formed and the other is formed on the entire surface are formed as a mesh or stripe-shaped transparent electrode layer, and a spacer fixed to the periphery of the transparent substrate to form a cell between the transparent substrate, the cell a highly insulating dispersion medium encapsulated in a driving method of a transmissive electrophoretic display device comprising a dispersing particles dispersed in the dispersion medium, of the reticulated or striped transparent electrode layer after polarity is applied to the first high DC voltage so that the polarity opposite to the charging of the dispersed particles to obtain a transmission state of the held display device by applying a second low DC voltage, is formed on the entire surface polarity of the transparent electrode layer I to the polarity opposite to the charging of the dispersed particles ように第1の直流高電圧を印加した後、第2の直流低電圧を印加して保持し表示素子の着色状態を得ることを要旨とする。 After applying the first high DC voltage, as is summarized in that to obtain a colored state of the display element is held by applying a second low DC voltage.

本発明において、網目状または縞状の透明電極層あるいは全面に形成された透明電極層に印加される第1の直流高電圧は、表示素子の透過状態または着色状態を得るために十分な応答速度が得られる程度でなければならない。 In the present invention, the first high DC voltage applied to the mesh-like or stripe-shaped transparent electrode layer or a transparent electrode layer formed on the entire surface, a sufficient response speed in order to obtain a transparent state or colored state of the display device It must be a degree that can be obtained. この直流高電圧はセルギャップの厚みに応じて、20 The high DC voltage according to the thickness of the cell gap, 20
0〜500Vの間で適宜な値が選ばれる。 Appropriate value between 0~500V is selected. 第1の直流高電圧の印加時間は分散粒子が分散媒の中を泳動し網目状または縞状の透明電極層あるいは全面に形成された透明電極層の近傍に達するに十分な時間であって、セルギャップに応じて0.5秒〜1分の間で適宜選ばれる。 The application time of the first high DC voltage is a sufficient time to disperse the particles reach the vicinity of the loading and reticulated or striped transparent electrode layer or the entire surface which is formed on the transparent electrode layer through the dispersion medium, It is appropriately selected between 0.5 seconds to 1 minute, depending on the cell gap.

第2の直流低電圧は、分散粒子にチャージアップを起こさせず、網目状または縞状の透明電極層あるいは全面に形成された透明電極層に分散粒子を吸着させるに十分な電圧であれば良く、第1の直流高電圧のほぼ半分程度以下であることが好ましい。 Good second low DC voltage, without causing charge-up the dispersed particles, if sufficient voltage to adsorb the dispersed particles in a mesh shape or stripe-shaped transparent electrode layer or a transparent electrode layer formed on the entire surface is preferably not more than about almost half of the first high DC voltage. なお、第1の直流高電圧を印加した後に、第1の直流高電圧と第2の直流低電圧の中間の直流電圧で一時保持してから第2の直流低電圧を印加しても良い。 Incidentally, after applying the first high DC voltage, it may after temporarily holds the first high DC voltage and the second low DC voltage intermediate DC voltage be applied to the second low DC voltage.

電気泳動表示素子を透過状態にする場合も、着色状態にする場合も、透明電極層の正負の極性が異なるだけで、同一の電圧印加のパターンで直流電圧が印加される。 If you want to electrophoretic display devices a transmission state also may be colored state, the positive or negative polarity of the transparent electrode layer is different only a DC voltage is applied in a pattern of the same voltage application.

[作用] 網目状または縞状の透明電極膜の極性が分散粒子の帯電の極性と逆になるように、第1の直流高電圧を印加すると、高電圧であるため、分散媒中に分散しまたは全面電極に付着ていた分散粒子は、素早く分散中を泳動して素早い応答速度で網目状または縞状の透明電極層に到達する。 [Operation] As polar reticulated or stripe-shaped transparent electrode film becomes opposite to the polarity of charging of the dispersed particles, upon application of a first high DC voltage, since a high voltage, and dispersed in a dispersion medium or dispersed particles had adhered to the entire surface electrodes reaches the reticulated or stripe-shaped transparent electrode layer at a quick response speed were run through the dispersed quickly.

続いて、網目状または縞状の透明電極層の極性が分散粒子の帯電の極性と逆になるように、第2の直流低電圧を印加すると、網目状または縞状の透明電極層に到達した分散粒子はチャージアップを起こすことなく、透明電極層に付着するので、応答性を悪化させずにかつ分散粒子が遊離することなく、透過率の優れた透過状態が得られる。 Subsequently, as polar reticulated or stripe-shaped transparent electrode layer is opposite to the polarity of charging of the dispersed particles, upon application of a second low DC voltage, it reaches the reticulated or striped transparent electrode layer dispersed particles without causing charge-up, since the adhesion to the transparent electrode layer, without and dispersed particles without deteriorating the responsiveness is liberated, excellent transmission state of the transmittance.

また、全面透明電極層の極性が分散粒子の帯電の極性と逆になるように、第1の直流高電圧を印加すると、高電圧であるため、分散媒中に分散しあるいは縞状または網目状または縞状の透明電極層に付着していた分散粒子は、素早く分散媒中を泳動して早い応答速度で全面透明電極層に到達する。 Further, as the polarity of the entire transparent electrode layer is opposite to the polarity of charging of the dispersed particles, upon application of a first high DC voltage, high order voltage is, dispersed in a dispersion medium or striped or mesh or dispersed particles adhering to the stripe-shaped transparent electrode layer reaches the entire surface transparent electrode layer were run through the quick dispersion medium at a fast response speed.

続いて、全面透明電極層の極性が分散粒子の帯電の極性と逆になるように、第2の直流低電圧を印加すると、 Subsequently, as polar entirely transparent electrode layer is opposite to the polarity of charging of the dispersed particles, upon application of a second low DC voltage,
全面透明電極層に到達した分散粒子はチャージアップを起こすことなく、速やかに透明電極層に付着するので、 Dispersed particles reaches the entire surface transparent electrode layer without causing charge-up, since adheres rapidly to the transparent electrode layer,
応答性を悪化させずに優れた着色状態が得られる。 Excellent colored state without deteriorating the responsiveness obtained.

[実施例] 本発明の好適な一実施例について以下図面に従って説明する。 It will be described with reference to the drawings below a preferred embodiment of the Embodiment] The present invention. なお、本発明が以下に述べる実施例の記載によって何等限定的に解釈されるものではない。 The present invention is not construed as being limited interpreted by the description of the embodiments described below.

第1図は本発明の一実施例の駆動方法および比較例の駆動方法の時間の経過に対する電圧の変化を示す線図、 Graph showing the change in voltage with respect to the elapsed time of the driving method and the comparative example of the driving method of an embodiment of FIG. 1 according to the present invention,
第2図は第1図の本発明の実施例および比較例で表示素子を駆動した場合の時間の経過に対する透過率の変化を示す線図、第3図は本発明が適用される透過型電気泳動表示素子のの断面図である。 Figure 2 is graph showing the change in transmittance with respect to the elapsed time in the case of driving the display device in Examples and Comparative Examples of the present invention of FIG. 1, FIG. 3 is a transmission type electro which the present invention is applied it is a cross-sectional view of the electrophoretic display device.

先ず、第3図の透過型電気泳動表示素子について説明する。 It will be described first transmissive electrophoretic display device of FIG. 3. 図において矢印は光の入射方向を示し、Aは視認側を示す。 Arrows in the figure indicate the direction of incidence of light, A is shows the viewing side. 2枚の透明基板1aおよび1bは厚さ1.8mmのソーダ石灰ガラス(旭ガラス製)であって、2枚が所望のギャップを隔てて相対向するように配置されている。 The two transparent substrates 1a and 1b have a thickness 1.8mm soda-lime glass (manufactured by Asahi Glass), two are arranged so as to oppose across a desired gap.

それぞれの透明基板1aおよび1bの相対向する面には、 The opposing surfaces of the respective transparent substrates 1a and 1b,
ITOからなる透明電極層2aおよび2bが1500Åの厚さで形成されている。 The transparent electrode layer 2a and 2b made of ITO is formed to a thickness of 1500 Å. 視認側の透明電極層2aは透明基板1aの全面に形成されているが、光源側の透明電極層2bはストライプ状であって、線幅を400μm、線間を1000μmとして、スクリーン印刷とエッチングの手法でパターン化して形成されたものである。 A transparent electrode layer 2a on the viewing side is formed on the entire surface of the transparent substrate 1a, but the transparent electrode layer 2b of the light source side is a stripe shape, the line width 400 [mu] m, as 1000μm between lines, screen printing and etching method and is formed by patterning with.

透明基板1aおよび1bの周縁部内面には基板の間でセルを形成すべく、厚さ100μmのポリエステルフィルム(東レ製)からなるスペーサ5が固着されている。 To form a cell between the substrates at the peripheral inner surface of the transparent substrate 1a and 1b, a spacer 5 made of a polyester film having a thickness of 100 [mu] m (manufactured by Toray Industries) is fixed. また、スペーサ5および透明基板1aおよび1bの外周にはエポキシ系接着剤からなるシール剤6が接着されている。 Further, on the outer periphery of the spacer 5 and the transparent substrate 1a and 1b sealing material 6 made of an epoxy-based adhesive is adhered.

セルの中には分散粒子3および分散媒4が封入されている。 Some cells dispersed particles 3 and a dispersion medium 4 is sealed. 分散粒子3には日本チバガイギー製顔料violet B The dispersed particles 3 manufactured by Nihon Ciba-Geigy pigment violet B
を用い、これは分散媒4中では負に帯電する。 Used, which is charged negatively in the dispersion medium 4. また、分散媒4にはキシレン/テトラクロロエチレン(ナカライテスク社製)を用いた。 Further, in the dispersion medium 4 with xylene / tetrachlorethylene (manufactured by Nacalai Tesque).

この透過型電気泳動表示素子を用い、第1図に示す駆動方法により、透過状態および着色状態に駆動した。 Using this transmissive electrophoretic display device, the driving method shown in FIG. 1, it is driven in the transmission state and the colored state.

すなわち、まず本発明例としてストライプ状の透明電極膜2bの極性が分散粒子3の帯電の極性と逆になるように、透明電極2a−2b間に第1の直流高電圧が300Vで、印加時間を10秒間として印加した。 That is, first, as the polarity of the stripe-shaped transparent electrode film 2b as invention sample is opposite to the polarity of charging of the dispersed particles 3, in the first high DC voltage between the transparent electrodes 2a-2b is 300 V, application time It was applied as 10 seconds. 続いて、ストライプ状の透明電極膜2bの極性が分散粒子3の帯電の極性と逆になるように、透明電極2a−2b間に第2の直流低電圧の10 Subsequently, as polar stripe-shaped transparent electrode film 2b is opposite to the polarity of charging of the dispersed particles 3, the second low DC voltage between the transparent electrodes 2a-2b 10
0Vを印加して保持したところ、表示素子の透過状態が得られた。 It was held by applying 0V, the transmission state of the display element was obtained. 第1の直流電圧印加された後透過状態が保持されるまでの間の表示素子の透過率を測定した。 The transmittance of the display element until transparent state is maintained after the first DC voltage applied was measured.

続いて、全面透明電極層2aの極性が分散粒子3の帯電の極性と逆になるように、透明電極2a−2b間に第1の直流高電圧が300Vで、印加時間を10秒間として印加した。 Subsequently, as polar entirely transparent electrode layer 2a is opposite to the polarity of charging of the dispersed particles 3, the first high DC voltage is 300V between the transparent electrodes 2a-2b, and applies an applied time of 10 seconds .
続いて、全面透明電極層2aの極性が分散粒子3の帯電の極性と逆になるように、透明電極2a−2b間に第2の直流低電圧の100Vを印加して保持したところ、分散粒子3が全面透明電極層2aに付着し表示素子の着色状態が得られた。 Subsequently, when the polarity of the entire transparent electrode layer 2a is held by applying 100V of dispersion so that the polarity opposite to the particles 3 of the charging, the second low DC voltage between the transparent electrodes 2a-2b, the dispersed particles 3 was obtained colored state of the display device attached to the entire surface transparent electrode layer 2a. 第1の直流電圧を印加した後遮光状態が保持される間の表示素子の透過率を前と同様に測定した。 Were measured as before the transmittance of the display element between the light-shielding state is maintained after the application of the first DC voltage.

次いで、第3図の透過型電気泳動表示素子を用い、第1図の比較例1および比較例2に示す従来の駆動方法により、透過状態および着色状態に駆動した。 Then, using a transmission type electrophoretic display device of FIG. 3, the conventional driving method shown in Comparative Example 1 and Comparative Example 2 of FIG. 1, it is driven in the transmission state and the colored state. なお、第1 It should be noted that the first
図に示したように、比較例1は高電圧印加であって、30 As shown in FIG., Comparative Example 1 is a high voltage application, 30
0Vの直流を印加するものであり、比較例2は低電圧印加であって、100Vの直流を印加するものである。 Is intended to apply a DC 0V, Comparative Example 2 is a low voltage application, is to apply a direct current of 100 V.

すなわち、ストライプ状の透明電極膜2bの極性が分散粒子3の帯電の極性と逆になるように、透明電極2a−2b That is, as the polarity of the stripe-shaped transparent electrode film 2b is opposite to the polarity of charging of the dispersed particles 3, the transparent electrode 2a-2b
間に比較例1では直流電圧として300Vを、比較例2では直流電圧として100Vを印加して保持し、透過状態を得た。 The 300V Comparative Example 1, a direct current voltage between, and held by applying a 100V as the DC voltage Comparative Example 2, to obtain a transparent state.

この電圧印加後透過状態が得られるまでの透過率を測定した後、全面電極膜2aの極性が分散粒子3の帯電の極性と逆になるように、比較例1では直流300Vを、比較例2では直流100Vを印加して保持して、着色状態を得た。 After After the voltage application transmissive state the transmittance was measured to obtain, as the polarity of the entire electrode film 2a is opposite to the polarity of charging of the dispersed particles 3, the DC 300V Comparative Example 1, Comparative Example 2 in hold by applying a DC 100 V, to obtain a colored state.
前と同様に電圧印加後着色状態の得られるまでの透過率を測定した。 Before and transmittance to obtain the voltage applied after the colored state in the same manner was measured.

実施例1で示す本発明方法の駆動方法と、比較例1および比較例2で示す従来方法の駆動方法で得られた、第1の直流高電圧印加後の、透過状態および着色状態の、 A driving method of the present invention the method shown in Example 1, was obtained in a conventional method for driving method shown in Comparative Examples 1 and 2, after the first high DC voltage is applied, the transmission state and the colored state,
時間の経過に対する透過率の変化を第2図に示した。 The change in transmittance with respect to the elapsed time shown in Figure 2.

第2図に示したように、比較例1は高電圧であったため、応答速度が非常に速いが、過剰電荷のためチャージアップが起こり、分散粒子が電極から遊離して、透過状態での透過率が低く、また着色状態での遮光率が低下している。 As shown in FIG. 2, for Comparative Example 1 was high voltage, very fast response speed, occur charge-up due to excessive charge, the dispersed particles are released from the electrodes, transmission at a transmission state rate is low and the light blocking ratio in the colored state is reduced. また、比較例2は低電圧であったため、応答速度が遅く、透過率および遮光率は優れているものの、完全な透過状態または着色状態になるのに、本発明例の4 Moreover, since Comparative Example 2 had a low voltage, the response speed, although the transmittance and the light blocking ratio is better, to become a full transmission state or colored state, 4 of the present invention embodiment
倍近く時間がかかっている。 Nearly double the time is at stake.

これに対して本発明例である実施例1では、応答速度は高電圧の比較例1に匹敵して優れたものであり、かつ透過状態における透過率および着色状態における遮光率は共に比較例1と同程度に優れたものであって、本発明の効果が確認された。 In Example 1 an inventive examples contrast, response speed are those superior comparable to Comparative Example 1 of the high voltage, and the light blocking ratio in the transmission and colored state in the transmission state are both Comparative Example 1 be those with excellent comparable, the effect of the present invention was confirmed.

なお、本実施例においては、第1の直流高電圧を印加した後、直ちに第2の直流低電圧を印加したが、第1の直流高電圧を印加した後、第1の直流高電圧と第2の直流低電圧の中間の直流電圧で一時保持してから第2の直流低電圧を印加しても同様の結果が得られる。 In the present embodiment, after applying the first high DC voltage, immediately was applied to a second low DC voltage, after applying the first high DC voltage, the first high DC voltage and the 2 DC low voltage intermediate DC voltage at the same result by applying a second low DC voltage from the temporarily holding is obtained.

[発明の効果] 本発明の透過型電気泳動表示素子の駆動方法は、一方の透明基板には全面に透明電極層を形成し、他方の透明基板には網目状または縞状に透明電極層を形成した透過型電気泳動表示素子の駆動方法であって、前記網目状または縞状の透明電極層の極性が前記分散粒子の帯電の極性と逆になるように第1の直流高電圧を印加した後、第2の直流低電圧を印加して保持し表示素子の透過状態を得、前記全面に形成された透明電極層の極性が前記分散粒子の帯電の極性と逆になるように第1の直流高電圧を印加した後、第2の直流低電圧を印加して保持し表示素子の着色状態を得ることを特徴とするものであって、着色状態において分散粒子が全面電極に均一に付着し、遮光率の高い良好な遮光状態が得られると共に、透過状態にお The driving method of a transmissive electrophoretic display device of the Effect of the Invention] The present invention is formed on the entire surface of the transparent electrode layer on one transparent substrate, a transparent electrode layer in a network form or stripes on the other transparent substrate a formed the driving method of the transmissive electrophoretic display device, the application of the first high DC voltage such that the polarity of the reticulated or stripe-shaped transparent electrode layer is opposite to the polarity of the charge of the dispersed particles after, to obtain a transmission state of the display element is held by applying a second low DC voltage, the entire surface which is formed on the transparent electrode layer polarity first to be opposite to the polarity of the charge of the dispersed particles after applying a DC high voltage, to obtain a colored state of the display element is held by applying a second low DC voltage be one, wherein the dispersion particles are uniformly adhered to the entire surface electrodes in the colored state , together with high light-shielding rate good shielding state can be obtained, contact a transmissive state いても分散粒子が縞状または網目状の透明電極層から遊離することなく付着するので、透過率の高い良好な透過状態が速い応答速度で得られるという優れた効果がある。 Because Some dispersed particles adhere without free from stripes or mesh of the transparent electrode layer, there is an excellent effect that a high transmittance good transmission state can be obtained at a high response speed.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図は本発明の駆動方法と比較例の駆動方法の時間の経過に対する電圧の変化を示す線図、第2図は第1図の本発明例および比較例で第3図の表示素子を駆動した場合の時間の経過に対する透過率の変化を示す線図、第3 Graph showing the change in voltage with respect to the elapsed time of the driving method of Comparative Example and the driving method of the first figure invention, Figure 2 is a display device of FIG. 3 in the present invention examples and comparative examples of FIG. 1 graph showing the change in transmittance with respect to time elapsed in the case of driving the third
図は本発明が適用される透過型電気泳動表示素子のの断面図、第4図は従来の電気泳動表示素子の断面図である。 Figure is a cross-sectional view of a transmissive electrophoretic display device to which the present invention is applied, FIG. 4 is a sectional view of a conventional electrophoretic display device. 1aおよび1b……透明基板、2aおよび2b……透明電極層、 1a and 1b ...... transparent substrate, 2a and 2b ...... transparent electrode layer,
3……分散媒、4……分散粒子、5……スペーサ 3 ...... dispersion medium, 4 ...... dispersed particles, 5 ...... spacer

Claims (1)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】2枚の相対向して配置された透明基板と、 And 1. A transparent substrate disposed two opposing to,
    前記2枚の透明基板の相対向する面にそれぞれ形成され一方が全面に形成され他方が網目状または縞状に形成された透明電極層と、前記透明基板の間にセルを形成すべく前記透明基板の周縁部に固着されたスペーサと、前記セル中に封入された高絶縁性の分散媒と、前記分散媒中に分散された分散粒子とからなる透過型電気泳動表示素子の駆動方法であって、 前記網目状または縞状の透明電極層の極性が前記分散粒子の帯電の極性と逆になるように第1の直流高電圧を印加した後、第2の直流低電圧を印加して保持し表示素子の透過状態を得、前記全面に形成された透明電極層の極性が前記分散粒子の帯電の極性と逆になるように第1の直流高電圧を印加した後、第2の直流低電圧を印加して保持し表示素子の着色状態を得ることを特徴とす Wherein the one formed respectively in opposing surfaces of two transparent substrate is formed on the entire surface other is reticulated or banded to form a transparent electrode layer, said transparent to form a cell between the transparent substrate a spacer fixed to the periphery of the substrate, and the highly insulating dispersion medium encapsulated in the cell, a method of driving the transmissive electrophoretic display device comprising a dispersing particles dispersed in the dispersion medium Te, after the polarity of the reticulated or stripe-shaped transparent electrode layer was applied the first high DC voltage to be opposite to the polarity of the charge of the dispersed particles, holding and applying a second low DC voltage obtain a transmission state of the display device and, after the polarity of the transparent electrode layer formed on the entire surface was applied first DC high voltage so that the polarity opposite to the charging of the dispersed particles, low second DC It is characterized to obtain a colored state of the display element is held by applying a voltage る透過型電気泳動表示素子の駆動方法。 The driving method of a transmissive electrophoretic display device that.
JP1233846A 1989-09-08 1989-09-08 The driving method of the electrophoretic display element Expired - Fee Related JP2705235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233846A JP2705235B2 (en) 1989-09-08 1989-09-08 The driving method of the electrophoretic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233846A JP2705235B2 (en) 1989-09-08 1989-09-08 The driving method of the electrophoretic display element

Publications (2)

Publication Number Publication Date
JPH0396925A JPH0396925A (en) 1991-04-22
JP2705235B2 true JP2705235B2 (en) 1998-01-28

Family

ID=16961486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233846A Expired - Fee Related JP2705235B2 (en) 1989-09-08 1989-09-08 The driving method of the electrophoretic display element

Country Status (1)

Country Link
JP (1) JP2705235B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402145A (en) * 1993-02-17 1995-03-28 Copytele, Inc. Electrophoretic display panel with arc driven individual pixels
WO1999056171A1 (en) * 1998-04-27 1999-11-04 E-Ink Corporation Shutter mode microencapsulated electrophoretic display
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
TWI591604B (en) 2010-04-09 2017-07-11 E Ink Corp Methods for driving electro-optic displays

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823644B2 (en) * 1989-09-04 1996-03-06 トヨタ自動車株式会社 The driving method of the electrophoretic display element

Also Published As

Publication number Publication date
JPH0396925A (en) 1991-04-22

Similar Documents

Publication Publication Date Title
US7327511B2 (en) Light modulators
US4218302A (en) Electrophoretic display devices
KR100973377B1 (en) Display device and method of manufacturing a particle used for picture display
US5345251A (en) Electrophoretic display panel with interleaved cathode and anode
EP0390225B1 (en) Liquid-crystal display device
US5279511A (en) Method of filling an electrophoretic display
US6392728B2 (en) LCD with color filter substrate with tapering color filter portions overlapped by electrode and black matrix layers
US5978061A (en) Liquid crystal display device
US4874461A (en) Method for manufacturing liquid crystal device with spacers formed by photolithography
US20030071957A1 (en) Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US20080130092A1 (en) Light modulators
US5304439A (en) Method of making an electrophoretic display panel with interleaved local anode
US20020151246A1 (en) Process for producing display device
US4648956A (en) Electrode configurations for an electrophoretic display device
US4924144A (en) Matrix screen, its production process and matrix display means with several tones, controlled on an all or nothing basis and incorporating said screen
US20050104844A1 (en) Electrophoretic display device and method of driving electrophoretic display device
EP0258848B1 (en) Liquid crystal device and method for manufacturing same with spacers formed by printing
JP2758864B2 (en) The liquid crystal display device
US5078480A (en) Light modulating cell
US7116466B2 (en) Electro-optic displays
JP2845215B2 (en) The liquid crystal display device and manufacturing method thereof
US5056899A (en) Material for light modulation and manufacturing processes
KR100294522B1 (en) Liquid Crystal Display Device and Manufacturing Method for Same
JP3485997B2 (en) The liquid crystal display device
US3944333A (en) Electrochromic display with porous separator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees